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Abstract: Prior studies on integrating production and distribution optimisation
highlight the benefits of such an approach. However, no studies regarding
standardised metrics for categorising shelf life lengths in different scenarios
were found. Moreover, the current literature does not address the change of
behaviour on solving strategies accordingly to different shelf life profiles. To
address these gaps, this research proposes the normalised shelf life metric
to classify long and short shelf life products. Additionally, we present a
simplified optimisation formulation for the integrated production scheduling
and vehicle routing problem. By evaluating three solution methods (MILP
model, genetic algorithm, and logic-based Benders decomposition model), our
findings reveal that shelf life significantly affects solution performance. These
results emphasise the need for research focused on solution methods tailored
specifically for short shelf life products. [Received: 26 July 2022; Accepted:
7 June 2023]

Keywords: shelf life; production-distribution integration; perishable products;
genetic algorithm.

Reference to this paper should be made as follows: Dantas, H.T.A.,
Tavares Neto, R.F. and Sagawa, J.K. (2024) ‘The influence of shelf life
on the integrated production scheduling and vehicle routing optimisation for
perishable products’, European J. Industrial Engineering, Vol. 18, No. 6,
pp.860–884.

Biographical notes: Hercules Tadeu Asato Dantas holds an MSc in Industrial
Engineering from Federal University of São Carlos, and a Bachelor’s in
Industrial Engineering from Federal University of São Carlos. His research
interests include optimisation methods applied to logistics problems.

Roberto Fernandes Tavares Neto is an Associated Professor at the Federal
University of Sao Carlos. He holds a PhD and MSc in Industrial Engineering,
focusing on the application of artificial intelligence to solve logistics and

Copyright © 2024 Inderscience Enterprises Ltd.



The influence of shelf life on the integrated production scheduling 861

scheduling problems. He was a Visiting Scholar at the University of Graz and
Université Libre de Bruxelles, enhancing his focus on integrated production
planning and control and algorithm design. Seeking a high integration
between academy and industry, he has been developing joint works with
several companies, approaching problems ranging from those from the oil
industry, logistics, maintenance, and manufacturing production planning and
scheduling.

Juliana Keiko Sagawa is an Associate Professor at the Department of
Production Engineering of the Federal University of São Carlos, Brazil. She
holds a PhD in Production Engineering from the University of São Paulo
(USP) and had a temporary research stay at Universität Bremen, Germany.
Her research interests encompass dynamic modelling and control theory
applications to manufacturing, intelligent production systems, production
planning and control systems, strategy and organisational integration.

1 Introduction

There are several reasons why the integrated approach for production and distribution
optimisation is becoming more popular. Computational studies show that this approach
can lead to cost reductions ranged from 3% to 20% when compared with a sequential
planning (Chandra and Fisher, 1994), i.e., when the production schedule is input for
the distribution schedule. Besides the benefits in costs, situations where the inventory
is constrained also benefit from adopting an integrated approach. Examples of that are
found in companies that adopt the make-to-order production system (Chen, 2010) or
companies that handle perishable products (Marandi and Zegordi, 2017), which are
goods that have physical deterioration or a decrease in the customer’s value perception
over time (Amorim et al., 2013b). In this case, inefficiencies in the production
planning will affect the distribution system. Therefore, several authors often highlight
the attractiveness of the integrated planning (Amorim et al., 2012; Chen, 2010).

One characteristic that significantly influences operational planning for a perishable
product is its shelf life. When analysing the integration of production scheduling and
vehicle routing problem for a product with a fixed shelf life, Amorim et al. (2012)
and Farahani et al. (2012) verified that the integrated approach value is leveraged for
products with a higher perishability degree. Despite these encouraging results, there is
little knowledge regarding how the problem’s characteristics impact the integration of
those two sub-problems (Moons et al., 2017). This paper will refer to that integrated
problem as integrated production and distribution scheduling problem for perishable
products (IPDSP-P).

Both the production scheduling and the vehicle routing problem are usually classified
as NP-Hard. Thus, Section 5 an investigation on the performance of commercial solvers
for the IPDSP-P. Furthermore, we also investigate how the shelf life influences the
expected of several solution methods. In this case, a good expected performance would
be the solution method that could find solutions for the IPDSP-P in short time.

A better understanding of how the shelf life impacts the expected performance of
the solution methods to solve the IPDSP-P may lead to a better choice in a project
that aims to solve this kind of problem. For example, if a shorter shelf life does make
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the IPDSP-P harder to solve, a standard MILP model implemented in a commercial
solver may be inappropriate. Thus, besides the MILP model, we evaluate two other
solution approaches: an exact method using logic-based Benders decomposition (LBBD)
and a genetic algorithm (GA). The Genetic Algorithm was chosen due to the ease
of integrating additional techniques into the steps of the algorithm and the promising
results found in different applications (e.g., see Shin et al., 2022; Di Placido et al.,
2022; Türkyılmaz et al., 2022). The other solution approach analysed, the Logic-Based
Benders Decomposition, was selected because one major challenge of solving an
integrated problem using an exact method is the size of the resulting model (Grossmann,
2005; Papageorgiou, 2009; Garcia and You, 2015). Thus, decomposition methods are
often applied to address the integrated problems (Grossmann, 2012). Moreover, the
structural properties of the problem (presented in Subsection 4.1) suggested that the
IPDSP-P could be decomposed into a master problem and subproblems, which supports
the choice of the LBBD as a solution approach.

But what could be considered a short shelf life? Looking in the literature, we
found several different metrics to calculate a product shelf life. Therefore, we propose
a standard metric called normalised shelf life and analysed several papers using this
metric to be able to distinguish a short from a long shelf life.

Besides the comparison of the influence of the shelf life on IPDSP-P and the
normalised shelf life, another contribution of this study includes a form to simplify the
problem. We prove that, given a feasible route for the problem, if there is any production
schedule that turns the IPDSP-P feasible, then the production schedule that follows the
same sequence as the given route will also be feasible.

The remainder of this paper is organised as follows. Section 2 reviews the
existing literature on production and distribution integration for perishable products. The
mathematical formulation for IPDSP-P is provided in Section 3. In Section 4, we present
our approach to solving the IPDSP-P using the logic-based Benders decomposition
and a genetic algorithm. Then, the proposed metric called normalised shelf life and
the computational results are presented in Section 5. Finally, conclusions and further
research opportunities are presented in Section 6.

2 Literature review

A significant set of researchers studied integrated production-distribution problems. For
reviews on models that address the strategic level refer to Vidal and Goetschalckx
(1997), for tactical level refer to Mula et al. (2010), and for operational level refer to
Chen (2010), Moons et al. (2017) and Reimann et al. (2014). This section will focus on
operational production-distribution planning specifically for perishable products.

Amorim et al. (2013a) developed two MIP models to solve the integrated production
and distribution problem for a set of parallel lines with limited capacity to produce
several perishable products, whose shelf life was 3 or 5 times the average production
time of a demand order. Several homogeneous vehicles deliver the goods, respecting
the routes stated by the model. The study’s objective was to evaluate if lot-sizing has
advantages over a situation that only considers the batching of orders.

Devapriya et al. (2017) opted for an evolutionary approach. They developed a
genetic algorithm and two memetic algorithms to minimise the distribution cost by
defining the production schedule and the vehicles’ routes for a plant that produces a
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single product, whose shelf life is equal to 50. In this problem, the vehicles may start
another trip after returning to the depot from a delivery.

In a similar problem, Marandi and Zegordi (2017) also created an evolutionary
approach algorithm based on particle swarm optimisation, named as improved particle
swarm optimisation. In this study, the product shelf life was randomly generated from a
uniform distribution, whose lower and upper bound were calculated based on processing
time and travel distance.

Although the vehicle routing problem is common in the integrated
production-distribution planning literature, direct shipment is also popular. Li et al.
(2016) proposed a MILP model to solve the production inventory routing planning.
Seyedhosseini and Ghoreyshi (2014) consider a similar problem. To solve it, the authors
employed an MILP modal and a particle swarm optimisation to solve the problem. In
addition, they considered a shelf life varying between 2 and 3 periods.

More recently, Solina and Mirabelli (2021) applied an optimisation model to solve
an integrated production and distribution problem for an Italian company that produces,
stores, and distributes vegetables. The model minimises distribution, inventory, and
energy consumption costs by deciding how much to produce, store, and deliver to
customers each day. The perishability was covered by the raw materials that must be
processed before their shelf life end. The number of vehicles is also limited.

Fikar et al. (2021) built a decision support system for e-grocery companies. That
system has an agent-based simulation model, which is supported by heuristics. Those
heuristics are responsible for the inventory policy and the customer’s order routing. The
shelf life is a stochastic variable that follows a normal distribution.

This brief review points out that studies on IPDSP-P use exact models, heuristics,
and metaheuristics to solve the problem. Thus, understanding the influence of shelf
life on the difficulty of solving the IPDSP-P will help choose a proper technique. We
also observed a lack of a standard metric when selecting the parameters to distinguish
between short or long shelf life in an operational planning context.

3 Problem statement and model formulations

In this section, we present a mathematical formulation for the IPDSP-P as presented
by Dantas (2022). This problem consists of a single machine or plant, which produces
a particular perishable product whose quality starts to decay right after the production
starts. This product must be delivered to a set of |N | customers. The delivery can occur
only while the product still has some shelf life and there is available capacity in one of
the |K| identical fixed capacity vehicles. Following the common representations of this
problem (e.g., see Dantzig and Ramser, 1959), those vehicles must be routed through a
set A of arcs contained in a directed graph G = (V,A). The clients and the plant represent
the vertices of this graph (V), V = N ∪ {0, n+ 1}. Two vertices 0 and n+ 1 represent
the plant (i.e., initial and final points of the route). Figure 1 illustrates the problem.

The notation adopted for this IPDSP-P model is:

• Indices

(c, d) ∈ N customers

k ∈ K vehicles.
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• Parameters

demc demand at customer c (units)

pi processing time for the customer i order

CapV vehicle capacity

ctcd cost to transport products from customer c to d

ttcd travel time to transport products from customer c to d

ft fixed cost associated to each vehicle k

sl product’s shelf life.

• Variables

xk
cd equals to 1, if vehicle k depart from customer c to customer d

(0 otherwise)

wk
c starting time at which customer c is serviced by vehicle k

Vcd equals to 1, if customer d order is produced right after customer c
order (0 otherwise)

Ctc completion time for customer c order.

Figure 1 A graphical example of IPDSP-P

Based on those elements, the IPDSP-P may be formulated as follows:

Min ft
∑
k∈K

(1− xk
0,n+1) +

∑
k∈K

∑
c,d∈N

ctcdx
k
cd (1)

Subject to

Ct0 = 0 (2)∑
c∈N

Vcd = 1 ∀d ∈ N (3)∑
d∈N

Vcd = 1 ∀c ∈ N (4)

Ctd ≥ Ctc + pd −M(1− Vcd) ∀
{

d ∈ N
c ∈ N/{0, d} (5)
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k∈K

∑
d∈N

xk
cd = 1 ∀c ∈ N (6)∑

d∈N

xk
0d = 1 ∀k ∈ K (7)∑

c∈N

xk
cd −

∑
c∈N

xk
dc = 0 ∀k ∈ K; d ∈ N (8)∑

c∈N

xk
c,n+1 = 1 ∀k ∈ K (9)

wk
d ≥ wk

c + ttcd −M(1− xk
cd) ∀k ∈ K; c, d ∈ N (10)∑

c∈N

demc

∑
d∈N

xk
cd ≤ CapV ∀k ∈ K; c ∈ N (11)

Ctc − pc + sl −
∑
k∈K

wk
c ≥ 0 ∀c ∈ N (12)

wk
0 ≥ Ctc −M

(
1−

∑
d∈N

xk
cd

)
∀k ∈ K; c ∈ N (13)

wk
d , Ctc ≥ 0;xk

cd, Vcd ∈ {0, 1} (14)

The objective function (1) minimises the distribution costs, which are composed of
variable and fixed costs, based on total travel time and the number of vehicles used,
respectively. The objective function does not consider production costs.

Constraints (2) to (4) are used to set the production sequence of customers’ orders
and constraint (5) establish when each order is completed.

Constraints (6) to (11) refer to distribution process. Constraint (6) ensures that each
origin has only one destination and is visited only by one vehicle. Constraints (7) and
(9) establish that each vehicle departing from the plant has only one destination and each
vehicle returning to the plant has only one origin, respectively. Constraint (8) ensures
that if a vehicle visits a client c, this node will be the next origin. Constraint (10)
establishes the time when a vehicle that departs from c to d will arrive at node d.
Constraint (11) enforces that vehicle capacity is respected. As stated in Amorim et al.
(2013a), xk

0,n+1 = 1 means that the vehicle was not used.
Finally, constraint (12) enforces the product is delivered while it still has some shelf

life, constraint (13) links the production to the distribution problem. The domain of
variables is stated in equation (14).

4 Solution approach

4.1 Simplifying the IPDSP-P

In this section, structural properties, used subsequently to simplify the model formulation
of the IPDSP-P are analysed. We found that if any production sequence is feasible
for a given distribution route, then the production sequence that has the same order as
the distribution route is also feasible. As the production schedule does not impact the
objective function, our goal is solely find a production schedule that satisfies the shelf
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life constraints for the optimal distribution route. This simplification is possible if the
following assumptions are true:

• single machine environment

• the lot-size for each job is given

• single product with a single shelf life length

• no sequence dependent setup time or costs

• the product’s quality starts to decay at the starting time of the production.

Lemma 1: Let σk ⊂ A be a feasible route for of vehicle k for the distribution part of
IPDSP-P. The route for vehicle k will be feasible only if Ei ≤ SLi ∀i ∈ |σk|, where
SLi = TSL− Traveli. Ei is the time between the start of the production of order i
and its departure from the plant, TSL is the total shelf life of the perishable product,
and Traveli is the time elapsed between the departure from the plant and the delivery
to the customer for the given route.

Figure 2 A graphic representation of the theorem’s variables and parameters
(see online version for colours)

Proof: The route σk will IPDSP-P will be feasible only if the total elapsed time between
production and delivery for every customer order is lower than the total shelf life, i.e.,

Ei + Traveli ≤ TSL ∀i = 1, 2, ..., |σk| (15)

Rearranging equation (15), we prove that IPDSP-P will be feasible only if Ei ≤ SLi.
Figure 2 presents a graphical illustration of variables Traveli, Ei, SLi and TSL.�

Lemma 2: If the route σk ⊂ A and the production sequence S = {x1, x2, ..., x|σk|}
provide a feasible solution for IPDSP-P, then Ei ≤ SLi for the jobs i = 1, 2, ..., x1 in
sequence S′ = {1, ..., x1, ..., |σk|}
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Proof: As the route is given and follows the order 1, 2, ..., |σk|, we may conclude that:

Travel1 ≤ Travel2 ≤ ... ≤ Travel|σk| (16)

Since TSL is constant, the following relationship can be stated:

SL|σk| ≤ SL|σk|−1 ≤ ... ≤ SL1 (17)

Denoting Eoi and E′
i as the Ei variable for S and S′, respectively, and as x1 is the

first job of the sequence S, and S is feasible, we may assure that:

Eox1 =

|σk|∑
i=1

pi ≤ SLx1 ≤ SLx1−1 ≤ SLx1−2 ≤ ... ≤ SL1 (18)

where pi is the processing time of any job i.
As S and S′ have the same number of jobs, and job 1 is the first job of sequence

S′, we may affirm that E′
1 = Eox1 , and for any other job in S′, the following is true:

E′
j = E′

j−1 − pi ∀j > 1 (19)

As pi ≥ 0 then:

E′
|σk| ≤ E′

x1
≤ E′

x1−1 ≤ ... ≤ E′
1 = Eox1 =

|σk|∑
i=1

pi (20)

Figure 3 A graphic representation of Lemma 2 (see online version for colours)
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Figure 4 A graphic representation of Lemma 3 (see online version for colours)

According to (18) and (20):

E′
|σk| ≤ E′

x1
≤ E′

x1−1 ≤ ... ≤ E′
1 = Eox1 ≤ SLx1 ≤ SLx1−1 ≤ ... ≤ SL1 (21)

Therefore,

E′
i ≤ SLi ∀i ≤ x1 (22)

Figure 3 presents a graphical illustration of the lemma. �

Lemma 3: If the route σt = {1, 2, ..., |σk|} and the production sequence S =
{x1, x2, ..., x|σk|} provide a feasible solution for IPDSP-P. Then, Ei ≤ SLi for any
job i that x1 + 1 ≤ i ≤ y in sequence S′ = {1, ..., x1, ..., y, ..., |σk|}, where y is the
next job in S that y > x1.

Proof: Since y > x1, there will exist no job y′ scheduled after x1 and before y that
y′ > x1. Thus:

Eoy = γ +

|σk|∑
i=x1+1

pi ≤ SLy (23)

Also,

E′
x1+1 =

|σk|∑
i=x1+1

pi ≤ SLx1+1 (24)
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γ is a real number ≥ 0 and, from equations (23) and (24), E′
x1+1 ≤ Eoy . Figure 4

provides a graphical support to prove that (24) is true. Finally, by the same logic
presented in (21):

E′
|σk| ≤ E′

y ≤ E′
y−1 ≤ E′

x1+1 ≤ Eoy ≤ SLy ≤ SLy−1 ≤ ... ≤ SLx1+1 (25)

Therefore,

E′
i ≤ SLi ∀ x1 + 1 ≤ i ≤ y (26)

�

Theorem 1: If the route σk = {1, 2, ..., |σk|} and the scheduling sequence S =
{x1, x2, ..., x|σk|} provide a feasible solution for IPDSP-P, then the route σk and the
production sequence S′ = {1, 2, ..., |σk|} will also be feasible.

Proof: Lemma 2 proves that the production sequence S′ is feasible for all jobs i < x1.
Then, by repeating Lemma 3 until y = |σk|, the theorem is proved. �

The following corollary then follows immediately.

Corollary 1: If the route σk = {1, 2, ..., |σk|} and the scheduling sequence S =
{x1, x2, ..., x|σk|} provide the optimal solution for IPDSP-P, then the route σk and the
production sequence S′ = {1, 2, ..., |σk|} will also be optimal.

Proof: As the production sequence does not directly influence the objective function of
IPDSP-P, the objective function will be the same for S and S′. Thus, S′ is optimal. �

4.2 Logic-based Benders decomposition approach to solve the IPDSP-P

From the theorem presented in the previous subsection, we found an opportunity to
create a model based on the decomposition of the integrated problem. For this reason,
we came up with a model using the logic-based Benders decomposition (LBBD). Our
expectation for this model is that it can solve larger instances of IPDSP-P in comparison
to the MILP model.

As presented in Hooker and Ottosson (2003), the LBBD approach extends Benders
decomposition strategy of ‘learning from one’s mistake’ to a broader class of
problems. This approach partitions the problem into a master problem and one or
more subproblems. The subproblems are easier to solve, and their solution provides
information to the master problem, making it easier to solve.

To apply the LBBD to the IPDSP-P, we consider as the master problem a relaxed
version of the model presented in Section 3, dropping all constraints related to the
production scheduling (2)–(5), and solve it using a commercial MILP solver. When
a solution is found, we evaluate if the IPDSP-P is feasible, considering the same
production schedule as the vehicles’ routes, which is based on the theorem presented in
Subsection 4.1. If the evaluation turns that the solution (set T ) is infeasible, we add cuts,
presented in equation (27), that forbids any infeasible sub-tour (set NT ⊂ T ) and the
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solution procedure of the master problem resumes. Algorithm 1 presents the described
process.∑

xijk < |NT | ∀ k ∈ K (27)

Algorithm 1 Logic-based Benders decomposition for IPDSP-P

1: repeat
2: Run a MILP model considering just the distribution part (VRP problem) of IPDSP-P

until a solution is found
3: if solution is found then
4: for all route in solution do
5: ProductionScheduling = route
6: for all customer in route do
7: TotalTime ← Time elapsed between the start of the production and the

delivery of the customer order
8: if TotalTime > Available shelf life then
9: Create a constraint to eliminate the route
10: end if
11: end for
12: end for
13: end if
14: until Solution - LowerBound ≤ Maximum GAP

return OptimalSolution

According to Chu and Xia (2004), our algorithm will finitely converge to the optimality
of the original problem if the cut we introduce satisfies two conditions:

1 if an infeasible solution is found in the master problem, the cut must exclude at
least that solution

2 the cut must not exclude any feasible solution for the IPDSP-P.

While we do exclude the infeasible route, our cut will not exclude any feasible solution.
It is true because, based on the theorem in Subsection 4.1, it is impossible to exist any
other production schedule that turns the IPDSP-P feasible when the schedule that uses
the same sequence of the vehicles’ routes turns the IPDSP-P infeasible.

4.3 Evolutionary approach to solve IPDSP-P

As seen in the literature review, evolutionary approaches are popular methods to solve
the IPDSP-P because they can obtain high-quality solutions in a short amount of
computational time (Devapriya et al., 2017). Thus, we also propose a genetic algorithm,
taking into account the theorem presented in Subsection 4.1 to support our study.

To tackle the obstacles created by both the vehicle’s capacity and the product’s shelf
life, we included the Split algorithm to produce feasible solutions for the problem.
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Figure 5 A graphical example of split algorithm (see online version for colours)

Note: Icons made by Monkik and Surang from flaticon.com.
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4.3.1 Split algorithm for IPDSP-P

The split algorithm was introduced by Prins (2004). As the problem consists in
allocating and creating routes to serve customers using several capacitated vehicles,
the algorithm choose the solution with the best overall result after building several
options of feasible sub-tours, i.e., sub-tours that satisfies both vehicle capacity and shelf
life constraints. In this process, the number of vehicles, the vehicles’ routes and how
customers will be served are the decision variables of the problem. Figure 5 illustrates
this process.

Figure 6 A graphical example of one chromosome and its solution for a problem with
nine customers/orders

Figure 7 Illustration of the crossover and the mutation operations used in this study

Referring to the production component of the problem, we propose that customers’
orders must be scheduled in the same order as sub-tours, based on the theorem
presented in Subsection 4.1. For example, consider a IPDSP-P with three vehicles K =
(k1, k2, k3), and each vehicle k depart from depot at time W k

0 , where W k1
0 < W k2

0 <
W k3

0 . If vehicle k1 serves customers a, b and c in that order, i.e., σk1 = (a, b, c);
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and σk2 = (d) and σk3 = (e, f). Then, production schedule sequence will be seq =
(a, b, c, d, e, f).

4.3.2 Genetic algorithm for IPDSP-P

The genetic algorithm is a family of models based on the population evolution
process. Its implementation starts with a population of random chromosomes. Those
chromosomes are data structures that represent a solution to the target problem. The
evolution process occurs by combining those chromosomes to produce new (and
possibly better) solutions. This combination process is called crossover. Another form
to obtain new solutions is through random changes in an existing chromosome called
mutation. This process runs until a user-defined limit of generations is achieved.

Considering our particular problem, a chromosome (σ) is a complete tour containing
all customers, and each customer is a gene. When a chromosome is generated, the Split
algorithm, presented in Subsection 4.3.1, is employed to create feasible sub-tours (σj),
and consequently, a feasible solution for IPDSP-P. The fitness value is given by the total
distribution cost, as stated in equation (1) in Section 3. Figure 6 provides a example of
a chromosome and its solution obtained from split algorithm.

The first-generation chromosomes are randomly generated. For the following
generations, the roulette wheel selection process based on relative fitness selects a
set of parents. Each couple of chromosomes generates two children by single-point
crossover operator based on a crossover probability. Every child has a chance, given by
mutation probability, to suffer mutation, performed by the SWAP algorithm. We used
two stopping criteria:

1 a fixed number of generations

2 the number of iterations without improvement.

Figure 7 ilustrates the crossover and the mutation operators.

5 Computational study

5.1 Data generation

Random instances were generated by varying the number of customers and the
normalised shelf life. Regarding the number of customers, both small and large instances
were tested: 5, 7, 10, 15, 30 and 50 customers. The normalised shelf life was chosen
based on the analysis presented in Subsection 5.2. Then, five random instances were
generated for each combination of the number of customers and normalised shelf
life, resulting in 90 distinct instances. The runtime was limited to simulate a realistic
planning situation in which time limitation is present. The other parameters were
randomly generated by the same procedure used in Amorim et al. (2013a). Tables 1 and
2 summarise the parameters considered for this study.
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Table 1 Instances’ parameters

Number of customers 5, 7, 10, 15, 30, 50
Execution time limits (s) 30, 60, 300 and 1,800 seconds
Normalised shelf life short = 1.55

long = 4.56
very long = 10

Table 2 Procedure to generate the instances

Symbol Parameter Generation method

K Number of vehicles Equals to N (number of customers)
demc Customer’s demand 75% of demand follows a uniform distribution in the

interval U[40, 60] and 25% is set to 0
ptc Production time (unit) 1
CapV Vehicle capacity 0.5 ∗

∑
c demc

c, d Node locations Customers were positioned randomly in x-y plane
from (0, 0) to (100, 100) and the plant is located at
position (50, 50)

ttcd Travel times Travel times were determined by the Euclidean
distance between nodes

ctcd Variable costs Variable costs are the same as the travel times
ft Fixed cost 250 for each vehicle used

5.2 Normalised shelf life definition

The shelf life of a perishable product may vary from hours to weeks. In fact, the shelf
life in operational planning is relative and it is possible that a product that expires in
two days can be considered less perishable than a product that expires in a week. For
example, considering that the former product is delivered across the neighbourhood and
the second is delivered all over the state, passing through several distribution centres,
the product that expires in two days may be considered less perishable in an operational
planning process.

Therefore, time is not sufficient to characterise the shelf life length in operational
planning. Also, as we presented in Section 2, there are several different ways to
formulate and define this parameter, which makes the distinction between a short and
a long shelf life more confusing. As we did not found in the literature any common
standard to characterise the shelf life across different researches, this study evaluated
several forms to came up with a metric, the normalised shelf life, that could assist the
characterisation of those (and further) scenarios containing perishable products.

To come up with that standard metric, we tested several candidates like the ratio
between shelf life and the planning horizon, and the ratio between shelf life and the time
of an average route, i.e., the average trip time, but we discarded both options because
the variation of the planning horizon should not affect the perishability degree of the
product and it should not be related to a decision variable of the problem.

Thus, we propose the following way to calculate the normalised shelf life:

Normalised shelf life =
ShelfLife

AvgTT
(28)
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where AvgTT is the average travel time from the depot (or plant) to customers. This
is a good alternative to calculate the normalised shelf life because the travel time is a
model’s parameter and it shows how long a product can be stored in the most favourable
case, which is when the product goes directly from depot to customer. Set AvgTT as the
travel time between customers was also an option. However, that option was discarded
because if all customers are far from the depot but close to each other, that could result
in a false assumption of long normalised shelf life.

Equation (28) fits situations where the shelf life starts to count after the production
finishes, however there are cases when the shelf life starts to count right after the
production starts (Amorim et al., 2013a). In those cases, we also must consider the
average processing time (AvgPT), as shown below:

Normalised shelf life =
ShelfLife

AvgTT +AvgPT
(29)

To validate these metrics and to understand what is a short and what is a long shelf
life, equations (28) and (29) were tested on several works in the literature, considering
models containing either the vehicle routing or the direct shipment for the distribution
component of the problem. The procedure to convert the shelf life to normalised shelf
life for each paper is described in the following paragraphs. Table 3 summarises the
obtained values after applying the equations.

Table 3 Normalised shelf life for several models in literature

Reference Short shelf
life

Long shelf
life AvgTT AvgPT

Short
normalised
shelf life

Long
normalised
shelf life

Amorim et al.
(2013a)

112.5 187.5 39 37.5 1.47 2.45

Amorim et al.
(2012)

2 8 1 - 2 8

Li et al. (2016) 1 5 1 - 1 5
Li et al. (2020) 1 5 1 - 1 5
Marandi and
Zegordi (2017)

96.92 241.53 69.80 - 1.39 3.46

Seyedhosseini and
Ghoreyshi (2014)

2 3 1 - 2 3

Coelho and
Laporte (2014)

2 5 1 - 2 5

Average without outliers 1.55 4.56

The models proposed by Amorim et al. (2012), Li et al. (2016, 2020), Seyedhosseini and
Ghoreyshi (2014) and Coelho and Laporte (2014) considered a direct shipment delivery,
and there was no delay between the decision and the delivery of the product. Thus, the
AvgTT on those cases were set as 1.

To calculate the normalised shelf lives for (Amorim et al., 2013a; Marandi and
Zegordi, 2017), we have generated a random instance following the instructions in the
paper and calculated the shelf life, the AvgTT, and AvgPT based on the generated
instance.
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The short and long normalised shelf lives used in computational experiments (1.55
and 4.56, respectively) were obtained from the average of normalised shelf lives
calculated from literature.

5.3 Parameter tuning for genetic algorithm

The selection of the genetic algorithm parameters may highly influence its performance.
Because of that, the tuning of the parameters is necessary. In this study, we used
the IRACE package (López-Ibáñez et al., 2016), which is an automatic procedure that
selects the best set of parameters for a given experiment. The configuration of the
IRACE was: the number of chromosomes, parents, and generations were selected from
a range between 100 and 1,000. The crossover and mutation chances were selected from
a range between 0 and 1. To feed the IRACE algorithm, a set of random instances were
generated using the same procedure provided in Subsection 5.1. The tuned parameters
provided by the algorithm are presented in Table 4.

Table 4 Parameters selected by IRACE package for genetic algorithm

Parameter Value

Max population 790 chromosomes
Stopping criterion 87 generations
Crossover probability 73.86%
Mutation probability 01.27%

5.4 Computational results

5.4.1 Experiments setup

The MILP model and the LBBD were implemented with CPLEX 20.1 and were run on
a PC with an Intel Core i5 8265U @ 1.6 GHz 1.8 GHz CPU and 8.0 GB of RAM.
The genetic algorithm was run in the same PC, was implemented in Python, and each
instance was run 30 times to assure statistical relevance of the results. The results are
presented in two subsections. Subsection 5.4.2 is reserved for the smaller instances (5, 7,
10 and 15 customers), while Subsection 5.4.3 describes the results for the large instances
(30 and 50 customers).

5.4.2 Small instances results

Since there were several instances for which both exact models could not find any
feasible solution and the genetic algorithm found feasible solutions for every instance,
we decided to present the results of the exact models separated from the genetic
algorithm results. That visualisation provides a better understanding of how the shelf
life impacts the expected performance of the exact solution methods.

For the exact approaches, i.e., the MILP and the LBBD models, we computed how
many times the models could find the optimal solution, how many times they found
any solution and how many times they found no solution. This result is presented in
Table 5. As we are interested in the impact of the shelf life in those models, we grouped
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the data by the normalised shelf life and time limit. Thus, for each normalised shelf life
and each time limit, 20 instances were solved (5 random instances * 4 different number
of customers).

Table 5 MILP and LBBD results categorised by solution status, and grouped by normalised
shelf life and time limit

Normalised
shelf life

Time
limit (s)

MILP Logic-based Benders decomposition

No
solution
found

Solution
found

Optimal
solution
found

No
solution
found

Solution
found

Optimal
solution
found

1.55 30 10 5 5 10 5 5
60 10 5 5 10 2 8
300 10 5 5 6 4 10
1,800 10 4 6 5 5 10

4.56 30 5 6 9 14 6
60 3 7 10 13 7
300 3 7 10 10 10
1,800 3 7 10 10 10

10 30 10 10 15 5
60 10 10 13 7
300 10 10 10 10
1,800 8 12 10 10

Table 6 Results for small instances using the genetic algorithm

Number of customers Normalised shelf life GAP (%)

30 s 60 s 300 s 1,800 s

5 1.55 0.00 0.00 0.00 0.00
4.56 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00

7 1.55 29.01 29.01 29.01 29.01
4.56 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00

10 1.55 87.51 87.51 87.51 87.51
4.56 26.33 26.32 26.30 26.30
10 21.62 21.62 21.61 21.61

15 1.55 78.50 78.50 78.50 78.50
4.56 21.11 20.95 20.67 20.47
10 20.65 20.46 20.26 20.06

Regarding the genetic algorithm, we computed the gap between the average solution
from all runs and the instance lower bound provided by CPLEX after running the solver
for 3,600 s. Equation (30) shows how the GAP was calculated, and Table 6 summarises
the results.

GAP =

∣∣∣∣ Avg(GA runs)

CPLEX Lower Bound
− 1

∣∣∣∣ (30)
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Figure 8 Boxplot of random instance ‘1’ with 15 customers for genetic algorithm
computational experiment (see online version for colours)

Figure 9 Relationship between runtime and the number of instances for which the best result
was found

One impact of shelf life on the genetic algorithms is that they converge faster to a single
solution when the shelf life is shorter. This behaviour is observed when we plot the
data from the thirty runs of the same instance in a boxplot. Boxplot is a visualisation
tool that, given a dataset, allows us to identify the middle and how spread out from
the middle the data is (Frigge et al., 1989). Figure 8 shows a boxplot for one of the
instances with 15 customers. In that example, for the short NSL (1.55), it is observed
that almost all runs converge to a single value regardless of the time limit. For longer
shelf lives (NSL = 4.56 and 10), we observed as the time limit increased, the median
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value and the dispersion across runs improved. Similar behaviour can be found for the
other instances.

Finally, we provide a performance comparison among all models developed in this
study. To perform this test, we evaluated all previous tests to get the best result obtained
among the three solution methods for each of the 60 instances. Then, we run the models
one more time and registered the runtime each model took to achieve the best result.
As the genetic algorithm has a stochastic component, we had run it 30 times for each
instance and computed the best and the worst runtime. Also, the runtime was limited to
3,600 s for all models. The results of the performance test are presented in Figure 9.

5.4.3 Large instances results

Regarding the performance of the exact methods for 30- and 50-customer instances, the
MILP could not find a feasible result for any instance at all, while the LBBD only
found feasible results for 30 customers’ instances, however, the optimality could not be
proven for any of them. Table 7 presents the results for the LBBD on large instances.

Table 7 LBBD results for 30 customers’ instances categorised by solution status, and grouped
by normalised shelf life and time limit

Normalised
shelf life

Time
limit (s)

No solution
found

Solution
found

Optimal solution
found

1.55 30 5 0 0
60 5 0 0
300 5 0 0
1,800 5 0 0

4.56 30 4 1 0
60 4 1 0
300 4 1 0
1,800 3 2 0

10 30 4 1 0
60 4 1 0
300 2 3 0
1,800 1 4 0

Table 8 Results for large instances using the genetic algorithm

Number of customers Normalised shelf life GAP (%)

30 s 60 s 300 s 1,800 s

30 1.55 78.71 78.32 77.85 77.45
4.56 20.11 19.42 18.94 18.40
10 14.46 13.69 12.99 12.43

50 1.55 80.62 79.85 78.97 78.35
4.56 23.41 22.74 22.08 21.54
10 13.32 12.97 12.45 11.90
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Regarding the genetic algorithm, we also computed the gap as presented in
equation (30), whose results are summarised on Table 8.

Figure 10 Boxplot of random instance ‘1’ with 30 customers for genetic algorithm
computational experiment (see online version for colours)

Figure 11 Boxplot of random instance ‘1’ with 50 customers for genetic algorithm
computational experiment (see online version for colours)

We also plotted the boxplot to support the understanding of the influence of shelf life
and the time limit on the median and the dispersion of results across all runs from a



The influence of shelf life on the integrated production scheduling 881

same large instance. Figures 10 and 11 show, respectively, an example of an instance
with 30 and 50 customers. When compared to the small instances, the major difference
seem on the genetic algorithm results is that it did not converged to a single value when
the NSL = 1.55. Instead, it has behaviour similar to the other NSL levels, i.e., there
was a improvement both on the median and on the dispersion. This behaviour could be
observed for all large instances experiments.

5.5 Discussion

Although several studies have shown that the integrated approach leverages the results
for products with shorter shelf lives (Amorim et al., 2012; Farahani et al., 2012),
Tables 5 and 7 also show that a shorter shelf life makes the IPDSP-P harder to solve
using exact approaches. This conclusion is based on the increase in the number of
instances for which no solution was found as the shelf life gets shorter, which happens
for both the MILP and LBBD models.

The same conclusion cannot be drawn for the genetic algorithm. Although the GAPs
get higher as the shelf life gets shorter for both small and large instances (Tables 6 and
8), we also noticed that the algorithm converged faster when the shelf life was shorter
and the instance has a small size (Figure 8). This can indicate one of two things:

1 As can be seen in Table 2, the number of vehicles is not a constraint of the
problem. Therefore, the split algorithm will always find a feasible solution.
However, the solutions may be converging to a local optimum, which explains
why the GAP is higher for the shorter shelf lives and small instances.

2 Since the shorter shelf life makes it harder to find a feasible solution by means of
an exact approach, the lower bound found in CPLEX may be very unrealistic for
the short life situation.

The explanation for the difficulty to find a feasible solution using exact models when
the shelf life is very short may be due to the lower number of feasible solutions,
and any small change in the solution of a relaxed problem can violate the shelf life
constraint, which turns the problem infeasible. This may be the same reason why the
genetic converges so fast to a single solution. Therefore, we may conclude that solution
methods that have good mechanisms to avoid the solutions to get stuck in local optima
are good choices when handling the IPDSP-P with a short shelf life product.

Therefore, the shelf life of a product is an important variable to be taken into
account when deciding between an integrated approach, or a decoupled one, or even an
iterative procedure, like what was done in Farahani et al. (2012) and Seyedhosseini and
Ghoreyshi (2014).

When we compare the exact models and the genetic algorithm, considering both
short and long runtime, the genetic algorithm had found the best results than the other
models, as seen in Figure 9. This result may be explained by the difficulty for the exact
models to find even a feasible solution for instances where the shelf life is short and
for bigger instances. On the other hand, the split algorithm always provides a feasible
solution for the problem studied in this paper, which benefits the genetic algorithm.

Comparing the exact methods: for short running times, the MILP model results were
slightly better than the LBBD approach. However, as the running time increases the
LBBD model had a better improvement in the results. The functioning of the LBBD
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approach may explain that. The LBBD breaks the problem into a master problem
and subproblems, which may cause many infeasible solutions to be considered at the
beginning of the execution. However, as the model runs for more time, the subproblems
eliminate many infeasible solutions, and the master problem’s solution space becomes
more resembling to IPDSP-P’s solution space. However, the master problem still is a
capacitated vehicle routing problem (CVRP), which is already a difficult problem to
solve. That may explain why the genetic algorithm outperforms the LBBD model even
when we let the models running for a long time.

6 Conclusions and future research

In this paper, we investigated the relationship between the shelf life length and
the difficulty of solving the integrated production-distribution scheduling problem
(IPDSP-P). We considered a single machine environment that produces one perishable
product that must be delivered by homogenous vehicles. There are two decisions
regarding the routing strategy: the allocation of client orders to vehicles and the
delivery sequence of each route. This paper proposes and implements a MILP model,
a logic-based Benders decomposition model, and a genetic algorithm to solve this
problem. Several computational experiments were conducted by varying the number of
customers, the normalised shelf life, and the time available to run the model.

The normalised shelf life is a metric we proposed to allow the conversion of the
various forms to calculate the shelf life found in literature into a single comparable
measure. Therefore, this metric may be valuable in future studies about operational
planning for perishable products.

Our experiments showed that when the normalised shelf life is short, the number
of instances for which both MILP and LBBD models could not find a feasible solution
was higher when compared to the instances with long or very long normalised shelf life.
That result contributes to the conclusion that the shelf life influences the difficulty of
solving the IPDSP-P by exact models. Regarding the genetic algorithm, our experiments
showed that the GAP between the lower bound obtained for the objective function and
the genetic algorithm solution was higher for the short shelf life instances. However, we
also found that the solutions converge to a single solution faster, in those cases. This
result may indicate that the genetic algorithm got stuck in a local optimum.

There are still plenty of opportunities for future research. For example, one
hypothesis for why the short shelf life makes the IPDSP-P harder to solve is that even
minor adjustments in a solution may violate the shelf life constraint, which turns the
problem infeasible. That may lead to the conclusion that the feasible solutions are more
scattered over the solution space. Therefore, combining linear programming to heuristics
(or metaheuristics) that turns the solution search process broader over the solution space
could be a good research direction. That model could allow one to find the optimal
solutions for bigger instances of the problem. Another research direction is the analysis
of the influence of shelf life on more complex scenarios (or even empirical situations).
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