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Abstract: Given the extremely complex working environment of the shield machine, precise 
control of the digging parameters is the guarantee for the shield operation’s safety. Therefore, the 
paper presents a sparrow search algorithm-gate recurrent unit (SSA-GRU) based online 
prediction approach for shield machine propulsion speed. Firstly, the construction data are 
correlated based on the Pearson correlation coefficient, to obtain the boring parameters that are 
highly correlated with the propulsion speed and are considered as input variables for prediction 
model. Secondly, SSA is utilised to find the optimal hyperparameters of model. Finally, a 
prediction model is established based on optimal hyperparameters found by SSA, which more 
precisely exploits the nonlinear relationship from input features with propulsion speed, and 
accurately predicts propulsion speed. Simulation findings demonstrate that SSA-GRU model can 
precisely predict propulsion speed, and the prediction performance is superior to that of other 
models, effectively maintaining the stability of the excavation surface. 

Keywords: sparrow search algorithm-gate recurrent unit; SSA-GRU; propulsion speed; online 
real-time prediction. 
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1 Introduction 
Earth pressure balance (EPB) shield machine is extensively 
used in subway and other tunnels by virtue of its high 
efficiency, security, and other construction characteristics 
(Kongshu et al., 2011; Yu et al., 2021). The shield machine 
manually adjusts the digging parameters as the main 
manipulation pattern, but the working environment for the 
shield machine is extremely complicated, resulting in 
pressure imbalance on the excavation surface due to the 
manual inability to adjust the digging parameters in time, 
which causes safety accidents such as deformation of the 
ground surface to occur (Chen et al., 2019a). The EPB state 
is depicted in Figure 1. Therefore, it is meaningful to 
control the propulsion speed for the shield machine in a 
scientific and reasoned way (Li and Gong, 2020). 

 

Figure 1 Shield machine earth pressure balance illustration  
(see online version for colours) 
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Precise controlled sealed cabin pressure and its dynamical 
equilibrium with excavation surface pressure are 
prerequisites for safe tunnelling. Adjusting the digging 
parameters by manual experience has many uncontrollable 
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factors, which can’t timely adapt to the complicated and 
changeable environment in digging, and then it is very easy 
to cause safety accidents. It is evident that a scientific and 
precise prediction for shield tunnelling parameters has 
become a hot issue for scholars at home and abroad to carry 
out research (Guo et al., 2023; Huang et al., 2022; Hussaine 
and Mu, 2022). Yeh (1997) applied back propagation (BP) 
network to the prediction of sealed cabin pressure for an 
initial time, pioneering data-driven prediction in the shield 
machine area. Li and Gong (2019) established a prediction 
model for sealed cabin pressure on the basis of a diagonal 
recurrent neural network (DRNN). Liu et al. (2022b) 
established a multi-point sealed cabin pressure prediction 
model of discrete wavelet transform-deep convolutional 
neural network-long short-term memory (DWT-DCNN-
LSTM), which realised the prediction of sealed cabin 
pressure. An intelligent prediction model of screw machine 
rotational speed based on convolutional neural  
network-gated recurrent unit (CCN-GRU) was proposed by 
Liu et al. (2022a) to predict screw conveyor speed. Zhang  
et al. (2023) proposed a thrust forecast method using  
SSA-LSTM for controlling sealed cabin pressure by 
adjusting the thrust magnitude. Song et al. (2019) 
constructed a thrust prediction model based on support 
vector regression (SVR) to accurately regulate the shield 
machine thrust. Armaghani et al. (2019) established a 
digging speed prediction model based on two hybrid 
optimisation methods. Chen et al. (2019a) proposed a blade 
torque and thrust prediction approach by LSTM. The above 
prediction model, based on basic data-driven approaches, 
typically utilises raw construction data to complete 
prediction tasks. However, due to the complex and variable 
geological environment ahead of the shield machine, the 
model trained on historical data struggles to capture the 
intricate influence of geological environment changes on 
propulsion speed, resulting in a lack of real-time prediction 
parameters. Additionally, the network structure parameters 
cannot be optimally adjusted, and the model fails to 
accurately capture data characteristics, leading to 
insufficient prediction accuracy. In addition, literature (Li 
and Gong, 2019; Yeh, 1997), the two models have a simple 
network structure and cannot effectively capture key 
features. In addition, the two models are prone to gradient 
disappearance or gradient explosion during training, 
resulting in the model unable to effectively learn the 
characteristics of the data, resulting in poor prediction 
accuracy. Furthermore, artificial intelligence methods are 
not only widely applied in other areas of shield tunnelling 
machines (Chen et al., 2023; Pan and Zhang, 2022; Qin  
et al., 2022), but also have significant achievements in 
materials and new instruments. Ma et al. (2023) proposed a 
prediction model for the remaining life of supercapacitors 
based on Harris hawks-long-short term memory  
(HHO-LSTM). Liu et al. (2023) used different principles to 
classify Electrochemical impedance spectroscopy (EIS) 
measurement methods and further explored the mechanism 
relationship between EIS and Lithium-ion batterie (LIB) 
aging effect. Yi et al. (2023) introduced a variety of 

measurement methods for the above parameters of various 
new energy storage devices, and summarised the advantages 
and disadvantages of the current research. Yu et al. (2023) 
expounded the feasibility of the application of 
nanogenerator technology in the field of acoustics and the 
flexibility of the combination of nanogenerator and acoustic 
equipment, and promoted the development of new energy 
storage devices and evaluation methods. 

Aiming at the lack of real-time tunnelling parameters 
and the lack of model prediction accuracy, this paper 
proposes an online real-time prediction model of shield 
propulsion speed based on SSA-GRU, which realises online 
real-time prediction of propulsion speed according to 
tunnelling parameters collected by the host computer, and 
then accurately controls the sealed cabin pressure. Firstly, 
the construction data of the first two rings are temporalised 
to constitute a new time-series dataset. Secondly, SSA 
searches for the best hyperparameters of the GRU model 
obtained by global optimisation. This results in more stable 
training of the prediction model, faster convergence, and 
maximises the predictive performances in the model. 
Finally, the SSA-GRU propulsion speed prediction model is 
constructed based on the best hyperparameters found by 
SSA. The SSA-GRU model predicts the propulsion speed 
based on 6-dimensional input feature variables and conducts 
online rolling prediction based on the real-time tunnelling 
data. This greatly improves the predictive precision of the 
model and effectively avoids security incidents resulting 
from time-lag and inaccuracies in the digging parameter. 

2 Basic theory 
2.1 Gated recurrent unit 
GRU is a variant of recurrent neural network (RNN) that 
solves the RNN gradient vanishing and gradient explosion 
problems and can capture long-term dependencies in 
sequences by introducing a gating mechanism. GRU has an 
update gate and a reset gate, which control the network’s 
information transfer and update state to better capture the 
dependency of the time-step distances in the time-series 
data. Figure 2 shows the interior architecture of the GRU. 

Figure 2 GRU network interior architecture (see online version 
for colours) 
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The reset gate is mainly used to determine the proportional 
weight of the hidden state from the previous time step as an 
input. A Sigmoid function is utilised to transform the hidden 
state ht–1 of the previous time step into the range [0, 1], 
which represents the proportion of the previous time state 
retained. The formula for the reset gate is: 

[ ]( )1,t r t t rr σ W h x b−= ⋅ +  (1) 

Based on equation (1), the candidate state th  of the hidden 
layer at the current time step can be calculated using the 
Tanh function with the formula: 

[ ]( )1,t h t t hh tanh W h x b−= ⋅ +  (2) 

The update gate is used to integrate the new input xt in the 
current time step and the state ht–1 of the previous time. The 
data is converted to the range of [0, 1] by the Sigmoid 
function, which is used to determine the forgetting ratio of 
the information at the previous time and the retention ratio 
at the current time. The calculation formula is: 

[ ]( )1,t z t t zz σ W h x b−= ⋅ +  (3) 

( ) 11 * *t t t t th z h z h−= − +   (4) 

Among them, Wr, br are the weighing and bias matrices of 
the reset gate, xt represents input vector, Wh, bh are the 
weight matrix and bias matrix of the hidden layer, th  is the 
candidate state of the hidden layer, Wz, bz are the weight 
matrix and bias matrix of the update gate, rt, zt are the input 
of the reset gate and the update gate respectively, ht is the 
output value, * is the multiple operations of the 
correspondent components in the matrices. 

Figure 3 SSA-GRU propulsion speed prediction scheme  
(see online version for colours) 

 

3 Prediction scheme 
The prediction model is built based on SSA and GRU for 
shield machine propulsion speed to realise the online 
prediction and control of the propulsion speed. This 
prediction approach could precisely predict the propulsion 
speed on the basis of the historical parameter information. 

The predictive program is illustrated in Figure 3, and 
consists of three sections:  

1 Perform data process for constructional data, determine 
input characteristic variables based on Pearson 
correlation analysis, and construct the time series. 

2 Establish the GRU propulsion speed prediction model, 
and optimise the hyperparameters of the GRU model 
using SSA. 

3 Examine the prediction performance of SSA-GRU from 
multiple angles based on actual construction data. 

4 Data selection and processing 
4.1 Selection of input data 
In order to ensure excellent correspondence from input 
variables to propulsion speed and to make the prediction 
results more accurate, this paper analyses the construction 
databased on Pearson’s correlation coefficient to determine 
the degree of correlation between each parameter of the 
shield machine and the propulsion speed, which enables an 
effective assessment and quantification of the degree of 
correlation between these parameters and the propulsion 
speed, and thus improves the accuracy of the prediction 
results. 
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where R∈(–1, 1) is the Pearson correlation coefficient. N 
represents sample; Y represents propulsion speed; and X 
represents the value of the relevant variable in  
10 dimensions. Pearson relation result among each 
parameter and propulsion speed is illustrated in Figure 4. 

Figure 4 Thermogram of correlation coefficient (see online 
version for colours) 
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The results of Pearson’s correlation analysis can be 
concluded that the correlation coefficients of FA (A-zone 
thrust), FB (B-zone thrust), FC (C-zone thrust), FD (D-zone 
thrust), screw conveyor rotary speed n0, and cutter motor 
total torque T with propulsion speed are all above 0.35, 
which means that they show medium-strong correlation, and 
therefore, the above six-dimensional variables are served 
input features for predictive model. Shield machine thrust 
partition is shown in Figure 5. 

Figure 5 Shield machine thrust partitioning schematic diagram 
(see online version for colours) 
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Figure 6 Data timing results (see online version for colours) 

 

 

 

4.2 Constructing time series 
Time series are compatible with the characteristics of the 
GRU model, which can utilise the recursive structure to 
efficiently process sequential data, thus better capturing the 
time dependency in the data. On the basis of this, this 
section temporalises the shield machine construction data 
into the input data form required by the GRU prediction 
model. The time-series building results are illustrated in 
Figure 6. 

Each sequence consists of data over a range of time 
periods and input feature variables for the next moment, 
which are used to predict the propulsion speed. As an 
example, for time series 1–3, the first time series consists of 
data at times 1–11 and input feature variables at time 12 for 
predicting the shield machine propulsion speed at time 12. 
The second time series consists of data at times 2–12 and 
input feature variables at time 13 for predicting the shield 
machine propulsion speed at time 13. The third time series 
is composed of data for times 3–13 and input feature 
variables for time 14 to predict the shield machine 
propulsion speed for time 14. In this rolling way, multiple 
time series are gradually established, in which the input data 
of each sequence covers the data value of the previous 
moment and the input characteristic variables of the current 
moment, so as to predict the propulsion speed at the current 
moment and provide an accurate basis for subsequent 
analysis and prediction. The corresponding predictive model 
formulation is depicted as equation (6). 
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( ) ( ) ( )) ( 11), 10 , 9 , , 1v k v k v k v k− − − −

 (6) 

where k is the predicted moment; FA(k), FB(k), FC(k), FD(k) 
are the four regions thrust values of the shield machine for 
the training sequence; v(k–11), v(k–10), v(k–9), …, v(k–1) 
are the propulsion speed for training sequence; n0(∙), T(∙) 
represent the screw conveyor speed and the total torque of 
the cutter disk, respectively. 

5 Model establishment and training 
5.1 Establishing SSA-GRU predictive modelling 
The propulsion speed prediction model is composed of four 
parts: input layer, hidden layers 1 and 2, and output layer. 
Figure 7 shows network structure. Input layer is the  
6-dimensional input characteristic variable selected in 
Section 4.1, and output layer is propulsion speed. 
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Figure 7 SSA-LSTM prediction model network structure 
diagram (see online version for colours) 

 

where Xi(t) is a 6-dimensional input feature variable, i = 6. 
Y(t) is the predicted value of the propulsion speed. t is a 
time series value. The number of neurons in hidden layer 1 
and hidden layer 2, the learning rate of the prediction 
model, and the number of iterations are obtained by the 
global optimisation search of the SSA algorithm. 

5.2 Determination of hyperparameters for GRU 
model 

SSA is an intelligent bionic optimisation algorithm based on 
the foraging and anti-predator behaviour of the sparrow and 
categorises it into producers and dabblers based on their 
biological characteristics. The producers usually have a high 
level of energy reserves and provide foraging direction to all 
foragers, whose position changes as:  

*
,1

,
*
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X M
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where t is iterations. i is the number for individuals. j 
represents the population dimension. ,

t
i jX  represents the 

position in the jth dimension at iteration t for the ith sparrow 
individual. α is random number. M is maximum iteration 
number. R* represents alarm value. ST represents the safety 
threshold. Q represents the random number. L denotes the  
1-dimensional matrix. 

In natural state, dabblers follow the producer who 
provides the best food in search of food, and in the process, 
dabblers constantly monitor the producer and compete for 
food to increase their predation rate. Its position changes as 
follows: 

,
1 2
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1 1
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t
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i j
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 (8) 

where XP represents the best position occupied by the 
producer. Xw represents the current global worst position. A 
represents a one-dimensional matrix. A+ = AT(AAT)–1. 

When the vigilantes realise the danger, they will 
immediately sound the alarm, and sparrows located around 
the margins of the flock would move to safety rapidly for a 
better place, whereas those located at the centre would 
randomised to move closer to the other sparrows. The 
position changes are: 

( )

,

1
, ,

,

t t t
i j i gB B

t ti j w i jt
i j i g

i w

X X X if f f
X X X

X K if f f
f f ε

+

 + ⋅ − >


=  − + ⋅ =   − + 

β
 (9) 

where β is the step control parameter. K∈(–1, 1). fg 
represents the best-adapted value of authority. fw represents 
the worst adapted value of the authority. ε is the smallest 
constant that avoids division by zero. t

BX  represents the 
safest centre position. 

Based on the SSA algorithm, the four hyperparameters 
of the GRU prediction model, namely, the number of 
iterations, the learning rate, the number of neurons in the 
hidden layer 1 and the hidden layer 2, are used for global 
optimisation, in which the search ranges of the four 
hyperparameters are, respectively, [1, 100], [0.001,0.01],  
[1, 100], [1, 100]. The parameters used in the SSA 
algorithm are depicted in Table 1. The process for SSA 
searching for optimal GRU model hyperparameters is: 

• Input: M: iteration number of SSA algorithm. pop: 
sparrow population sise. P_: sparrow population 
proportion accounted for by producers. dim: merit 
seeking dimension, search interval. 
1 SSA identifies the GRU network topology. 
2 Real-time construction data input to SSA 

algorithm. 
3 Initialise the weights and biases of the GRU. 
4 Calculate fitness values for the area in which the 

stock is found. 
5 Continuously update location information of 

producers, dabblers, and alarms based on equations 
(7)–(9). 

6 Determine whether the fitness value satisfies the 
termination condition; if it does, output the best 
hyperparameters; otherwise, continue iterating. 

• Output: The best hyperparameters of the model: The 
optimal hyperparameters found by SSA for the 
prediction model are listed in Table 2. 

Table 1 SSA algorithm parameters 

Iteration number 20 
Sparrow population 10 
Search for optimisation dimensions 4 
Producers as a proportion of population 0.2 
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Table 2 Optimal hyperparameters for the prediction model 

Iteration number 96 
Learning rate 0.0089 
Neuron number in hidden layer 1 70 
Neuron number in hidden layer 2 55 

The GRU model applies the best hyperparameters found by 
SSA and observes the trend in loss function curve of the 
model during its training process as a way to calibrate the 
reasonableness of the best hyperparameters found by SSA. 
Figure 8 illustrates the loss function variation curve for the 
predictive model. 

Figure 8 Loss function variation curve (see online version  
for colours) 
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It can be observed from Figure 8 that within 1–10 iterations 
of the loss function curve, the fluctuation of the loss 
function is large and gradually decreases, but after 10 
iterations, the loss function is gradually smoothed and tends 
to stabilise, and finally, the loss function converges to 0. It 
can be illustrated that the optimal hyperparameters found 
based on SSA for the GRU model can reach convergence 
quickly and the training process is stable. 

5.3 SSA-GRU model prediction process 
The prediction process is illustrated in Figure 9. By 
temporising the real-time construction data transmitted from 
the host computer and splitting it into the training set and 
test set, the SSA algorithm obtains the optimal 
hyperparameters of the GRU model through a global 
optimisation search. In the training process, iterates based 
on the training set and the optimal hyperparameters by 
continuously updating the weights and biases, thus 
completing the model training process. The trained 
prediction model is tested based on the test set, and the 
prediction performance is examined by analysing and 
comparing the relationship of predicted outcomes to actual 
values, so as to realise the online real-time prediction of the 
shield machine propulsion speed. The process is described 
below: 

 

• Input: optimal hyperparameters for GRU model. 
1 Time-series the construction data transmitted from 

the host computer. 
2 Split the temporalised construction data into the 

training and test sets. 
3 Based on training set, train the GRU by continuously 

updating the weights and biases. 
4 GRU model training is completed. 
5 Test the trained GRU model based on the test set. 

• Output: Shield machine propulsion speed. 

Figure 9 SSA-GRU model prediction process (see online 
version for colours) 
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6 Analysis of simulation result 
Experiments are carried out on a segment of Beijing Metro 
Line 10. This segment is a typically soft sandy rock layer. 
Tunnel geological section is shown in Figure 10. In this 
paper, PyCharm is used as the tool, and Python 3.8 and 
Tensorflow2.7.1 are used as the programming environment. 

In the simulation, predictive model is trained using 
construction data from 202 and 203 rings, and the 204-ring 
data is used as the test. The model is tested in terms of 
prediction performance, predictive precision for the  
SSA-GRU model, and the effectiveness of the predicted 
data in controlling the sealed cabin pressure values. 
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Figure 10 Geological profile of tunnel (see online version  
for colours) 
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6.1 The prediction accuracy test of SSA-GRU model 
Based on the prediction model established and trained in 
Section 5.1, the change in the shield machine’s propulsion 
speed is predicted. The predictive accuracies of the 
prediction models were tested by comparing the prediction 
curves from the prediction models with the realistic curves. 
Figure 11 depicts the predicted outcome. The prediction 
error of propulsion speed is shown in Figure 12. 

Figure 11 Prediction results of shield machine propulsion speed 
(see online version for colours) 
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Figure 12 Prediction error of shield machine propulsion speed 
(see online version for colours) 

0 10 20 30 40 50 60 70 80 90 100
Sample

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
op

ul
sio

n 
Sp

ee
d 

Er
ro

r/m
m

/m
in

 

Figure 11 illustrates the real propulsion speed value curve 
and predictive value profile for SSA-GRU model. It can be 
evident from Figure 12 that the actual propulsion speed 
value curve has a good fitting degree with a predictive value 
profile, and the two are approximately coincident. It is clear 
from the prediction errors plot for shield propulsion speed 
that the deviation from the predicted and actual values is 
stabilised within the range of 0–0.6 mm/min, and the 
maximum error value of 0.6mm/min is within the allowable 
error range of the actual working condition. Consequently, 
the predictive model could fulfil the prediction task well. 

Based on the above analysis, the error between the 
predicted value of the SSA-GRU model and the actual value 
is small, and the error is within the allowable range of the 
actual working conditions. It has high prediction accuracy 
and could fulfil the prediction mission well, so as to offer 
accurate and scientific reference for shield machine drivers. 

6.2 The superiority test of SSA-GRU model 
predictive effectiveness 

For testing the predictive effect of SSA-GRU, it is 
compared with the prediction effect of the MLP model, 
GRU model, and LSTM model based on the same dataset. 
As illustrated in Figure 13, the predictive effectiveness of 
SSA-GRU is compared with that of other models. The 
prediction error pairs are depicted in Figure 14. 

Figure 13 Comparison chart of prediction effect (see online 
version for colours) 
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Figure 14 Comparison chart of prediction error (see online 
version for colours) 
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Table 3 The specific error data table of each model 

Model error 
Sample 

SSA-GRU MLP GRU LSTM 

0 0.216045 1.480675236 0.953663 0.855934 
1 0.336922 1.435157129 0.602837 0.88549 
2 0.419333 –11.48477739 –7.395472 –5.210402 
3 0.238134 –2.485767691 –1.322615 –3.007607 
4 –0.035597 –1.074735561 –2.93284 –1.020491 
5 0.221024 –2.522471087 –1.386417 –1.734568 
6 0.328327 –1.778006103 –0.645502 –1.990347 
7 0.242517 –0.577642881 –0.554783 –1.365452 
8 0.2796 –0.290796512 –0.56716 –1.480667 
9 0.292292 –0.105509814 –0.785543 –1.423479 
10 0.215498 0.670341514 –0.127047 –0.419502 
11 0.288824 0.093568484 –0.412762 –1.341349 
12 0.228882 0.414070946 –0.363998 –0.820961 
13 0.252077 0.165535967 –0.155552 –0.79727 
14 0.287579 –0.055242798 –0.147415 –1.070702 
15 0.317526 –0.151018773 –0.484133 –1.436188 
16 0.394104 –0.782305414 –1.52619 –1.712334 
17 0.246199 –1.487585203 –1.536921 –1.583443 
18 0.518871 –2.453326161 –0.804459 –2.385826 
19 0.378012 –1.462304572 –1.830719 –2.403313 
20 0.082451 –3.855466893 –2.588327 –1.965855 
21 0.154573 –0.03506709 0.868782 –0.643406 
22 0.332239 –0.40380823 0.040115 –1.473625 
23 0.161232 2.03782225 0.917246 –0.188763 
24 0.265751 0.423717279 –0.290834 –1.188358 
25 0.251358 0.363502358 –0.25795 –0.801533 
26 0.225866 –0.072433864 0.184595 –0.679876 
27 0.325502 –0.447820853 0.038019 –1.332609 
28 0.259413 0.364001078 0.25433 –0.878769 
29 0.291817 –0.096428539 –0.112684 –1.125235 
30 0.171047 0.978810212 0.986423 –0.061544 
31 0.242144 1.081705613 0.670765 –0.650314 
32 0.282633 –0.005990059 –0.888323 –1.261 
33 0.383543 0.592022926 0.410868 –0.59164 
34 0.296421 1.002882801 1.044579 –0.454037 
35 0.242361 1.206804589 1.066114 –0.162722 
36 0.305056 0.336077878 1.009396 –0.703554 
37 0.293406 1.220987256 1.485083 –0.537399 
38 0.27527 1.184345497 0.92421 –0.666058 
39 0.20854 1.673229721 1.11754 0.026472 
40 0.252878 1.147268009 0.97575 –0.296717 
41 0.308531 0.475262097 0.306021 –1.211391 
42 0.238909 1.07483919 0.500557 –0.172665 
43 0.252165 1.125893241 0.750298 –0.10161 
44 0.287226 0.784517686 0.704235 –0.758327 
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Table 3 The specific error data table of each model (continued) 

Model error 
Sample 

SSA-GRU MLP GRU LSTM 

45 0.259935 0.975199858 0.796543 –0.353956 
46 0.347021 –0.203765684 0.309174 –1.337194 
47 0.354221 –2.011061314 –1.237219 –2.312471 
48 0.412849 –0.227300729 0.127678 –0.827929 
49 0.292238 0.282565679 –1.224737 –1.4748 
50 0.326359 1.338951057 –0.006866 –0.585651 
51 0.313683 1.099662721 –0.770302 –1.358955 
52 0.268051 2.245702717 –0.160046 –0.663204 
53 0.618073 –1.935512868 –3.88377 –4.995924 
54 0.459711 –0.175859786 –1.038925 –1.913052 
55 0.57666 –3.183932557 –3.112686 –3.48107 
56 0.254948 0.485617181 0.258036 –1.002911 
57 0.353458 1.318779608 –0.060633 –1.387751 
58 0.423853 0.079579457 –1.061836 –1.745846 
59 0.302059 0.314935089 0.211861 –0.650282 
60 0.31716 0.73706901 0.779045 –0.435814 
61 0.287474 0.586578324 0.932001 0.246237 
62 0.344294 0.361799473 1.295473 –0.02323 
63 0.224949 2.949768806 2.103798 0.420481 
64 0.155472 5.885148129 1.928877 0.764717 
65 0.224007 6.042309575 1.335728 0.641376 
66 0.243996 5.546544918 1.809624 0.65753 
67 0.256191 4.524390013 1.807478 0.243723 
68 0.466251 1.435285815 –0.269321 –1.534023 
69 0.326218 4.804987243 1.934311 0.383579 
70 0.173737 7.512054601 2.24086 1.473743 
71 0.141598 7.232467646 2.132191 1.661625 
72 0.208645 6.010298054 1.490185 0.78455 
73 0.199093 5.890180215 1.287075 0.750923 
74 0.220695 6.102881467 1.132732 0.77475 
75 0.146454 6.886984638 1.466965 1.354843 
76 0.232365 5.836946671 0.781944 0.618443 
77 0.127197 6.795007066 1.477226 1.386894 
78 0.269871 5.548194988 0.608028 0.449802 
79 0.15501 6.054871319 1.291756 0.943989 
80 0.142971 6.738349485 1.859783 1.466671 
81 0.234818 5.442827258 0.969124 0.444202 
82 0.113804 6.963150958 1.583977 1.535061 
83 0.507664 2.817022453 –1.468025 –2.097504 
84 0.290867 5.350914462 0.741636 0.212364 
85 0.163609 8.315678614 2.322784 1.62249 
86 0.257847 5.867158047 1.451355 0.793152 
87 0.124352 6.144436277 1.822643 1.147213 
88 0.253338 6.017471015 0.975777 0.549824 
89 0.201561 6.17073301 1.115845 0.635033 
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Table 3 The specific error data table of each model (continued) 

Model error 
Sample 

SSA-GRU MLP GRU LSTM 

90 0.210785 6.915080744 1.175266 0.941723 
91 0.166237 6.815199784 1.479668 1.140095 
92 0.131393 7.071992408 1.242393 1.28521 
93 0.240601 6.0079836 0.838753 0.575165 
94 0.283295 5.064402643 0.477539 –0.13208 
95 0.265877 5.545238285 0.567226 0.169106 
96 0.117832 7.176150898 1.726261 1.436081 
97 0.218517 6.009650896 0.773319 0.479153 
98 0.283394 5.703546137 0.344898 0.155815 
99 0.347649 3.680401637 –0.908474 –1.448376 
100 0.216045 1.480675236 0.953663 0.855934 

 

According to Figure 13 and Figure 14, one can conclude 
that the predicted curve of the MLP deviates significantly 
from actual values, the prediction deviation range is –10–10 
mm/min, the fluctuation range is large, and the prediction 
effect is poor. The prediction curve of the GRU model and 
LSTM model are nearer to the real value than that of MLP 
model, but the deviation still fluctuates in the range of  
–5–2 mm/min, and there is still a problem of poor prediction 
effect. The SSA-GRU model’s predicted values are nearest 
to actual values, and the prediction error is stable between 
0–0.6mm/min. The detailed prediction error data of the 
above models are shown in Table 3. The model has 
excellent predictive precision and superior predictive 
performance. 

From the above-mentioned discussion, the following 
conclusions can be drawn SSA-GRU model offers superior 
predictive precision over the GRU model, the MLP model, 
and the LSTM model, which can complete the shield 
machine propulsion speed prediction task well. 

6.3 Controlling effect of propulsion speed prediction 
value on sealed cabin pressure 

Under the actual working conditions, precisely regulating 
the shield machine propulsion speed is meaningful for the 
stability of the excavation surface. Therefore, a sealed cabin 
pressure control model is built by a neural network, the 
propulsion speed prediction value is used for it, and the 
effectiveness of the propulsion speed prediction value of 
SSA-GRU model is further tested by examining the 
controlling effectiveness of the sealed cabin pressure at all 
monitored stations. Figure 15 presents the spread of each 
monitored spot in a sealed cabin. The controlling 
effectiveness for the propulsion speed predicted value of 
SSA-GRU on the sealed cabin pressure at all monitored 
spots is illustrated in Figures 16–19, and the sealed cabin 
pressure error value at each monitoring point is depicted in 
Figure 19. 

Figure 15 Sealed cabin pressure monitoring point distribution 
(see online version for colours) 
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Figure 16 Pressure control effect for sealed cabin monitoring 
spot A (see online version for colours) 
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According to Figures 16–19, it can be concluded that the 
blue dashed line represents the control curve of prediction 
propulsion speed on sealed cabin pressure at each point 
obtained by SSA-GRU model. The red line represents 
sealed cabin pressure values in practical operating 
situations. The two curves at four monitoring spots, A, B, C, 
and D, are well-fitted, and sealed cabin pressure error values 
at each monitoring point are all within the error allowable 
range in practical operating situations, which could illustrate 
that propulsion speed prediction from the SSA-GRU model 
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allows precisely controlled sealed cabin pressure with very 
little error. 

Figure 17 Pressure control effect for sealed cabin monitoring 
spot B (see online version for colours) 
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Figure 18 Pressure control effect for sealed cabin monitoring 
spot C (see online version for colours) 
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Figure 19 Pressure control effect for sealed cabin monitoring 
spot D (see online version for colours) 

 
0 10 20 30 40 50 60 70 80 90 100

Sample

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

Se
al

ed
 c

ab
in

 p
re

ss
ur

e/
M

Pa

Actual value
SSA-GRU control result

 

Based on the above analysis, it can be obtained that the 
propulsive speed prediction value of SSA-GRU has better 
controlling effectiveness on sealed cabin pressure at each 
monitoring point, which can indicate the effectiveness of the 
propulsive speed prediction value of SSA-GRU. 

 

 

Figure 20 Prediction pressure error values for each monitoring 
point (see online version for colours) 
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7 Conclusions 
This paper proposes a shield machine propulsion speed 
prediction scheme based on SSA-GRU. SSA obtains the 
best hyperparameters of the GRU model through global 
search for optimisation and verifies that the 
hyperparameters searched in SSA allow for fast 
convergence in the predictive model via observation of the 
variation in the loss function of SSA-GRU during the 
training process. The simulation findings demonstrate:  

1 SSA-GRU propulsion speed prediction model has high 
prediction precision, and the error between prediction 
value and actual value is small, which can fulfil the 
prediction task well. 

2 Compared with other prediction models, the SSA-GRU 
model has a better predictive effect, smaller error value, 
and higher prediction performance. 

3 The prediction propulsion speed obtained by the  
SSA-GRU model can accurately regulate sealed cabin 
pressure at each monitoring point. This study offers 
references for shield machine drivers in accurately 
regulating the propulsion speed and realises the 
coordinated control for multiple systems of the shield 
machine, which improves the working efficiency and 
intelligence level. 
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This research has successfully applied deep learning 
technology in the field of predictive control of  
earth-pressure-balanced shields, realising real-time 
prediction of shield tunnelling speed. It provides a new path 
for the development of AI technology in tunnel 
construction. 
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