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Abstract: To address the problem that most enterprises still use the manual packaging bag seal 
detection method with low efficiency and poor stability, we propose an automatic detection 
method, which is based on knowledge transfer, to detect with thermal imaging the packaging bag 
sealing. Firstly, the thermal image of packaging bag seal is obtained by a thermal imager, random 
forest (RF) and support vector machine (SVM) are trained by small sample labels, and the two 
classifiers are fused to build an expert labelling system for labelling unlabelled samples. Then, 
the enhanced samples are created by combining the predicted samples and the labelled samples, 
and input into the fine-tuned VGG16 (visual geometry group) for training and testing. Finally, 
the experiment shows that the prediction accuracy of this method reaches 96.25%, which verifies 
the effectiveness and feasibility of the proposed method instead of manual detection method. 

Keywords: defect detection; expert labelling system; fine-tuned VGG16; knowledge transfer; 
thermal imaging. 
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1 Introduction 
Packaging bags are an important part of industrial 
development, and products in the form of packaging bags 
are widely used in daily life and industrial production 
(Mirza et al., 2021). The sealing performance of packaging 
bags is an important index of packaging quality, which is 
related to the quality of the packaged products and affects 
their transportation, storage, and sales (Beshai et al., 2020). 
The traditional method of detecting defects in the sealing of 
packaging bags with the human eye cannot continuously 
and stably complete this highly repetitive and intelligent 
task. In recent years, with the continuous development of 
packaging intelligence, computers have been used to 
simulate human visual mechanisms to obtain and process 
information and realise target recognition, tracking, and 
measurement. Such methods have been widely used in 
various industrial fields (Chai, 2020; Chai et al., 2022). In 
the packaging field, using machine vision to quickly, 
accurately, and non-destructively detect sealing defects in 
packaging bags has become an important problem that is 
very concerning and needs to be urgently solved (Rodrigues 
et al., 2021). However, each network requires a large 
number of datasets to train, and different products require 
different datasets. The difficulty of obtaining datasets makes 
the compatibility of detection networks low. 

Many scholars have conducted in-depth research on 
accurate image recognition based on vision. Zhou and Li 
(2022) used machine learning basis functions to process the 
texture images of packaging seals and achieved good 
detection results. Sun et al. (2020) proposed an image 
detection method of cigarette packaging defects based on 
support vector machine, which can efficiently identify 
cigarette packaging defects, has universal and real-time, and 
can meet the requirements of abnormal situation detection 
of cigarettes. Zeng (2022) realised the detection of different 
types of defects in packaging by using improved SVM 
classifier, which laid a foundation for subsequent research. 
Wang and Ma (2022) proposed an improved YOLO-v5 (you 
only look once) method for damage detection of medical 
waste packaging bags, which has higher detection accuracy 
and faster reasoning speed in the task of damage detection 
of medical waste packaging bags. Chen et al. (2020) used 
the improved VGGNet and the material field model tool in 
TRIZ innovation theory to classify the defects of carton 
yolk, achieving the purpose of high precision and meeting 
the requirements of real-time sorting. Chen et al. (2021) 
proposed a fast packaging defect detection method based on 
the improved MobileNet-V2 lightweight network of transfer 
learning, which effectively detected four surface defects 
existing in the packaging link of candy production line, and 
verified the feasibility of automatic defect detection. Sa  
et al. (2020) proposed a fast, accurate, effective and 

intelligent packaging inspection system based on ResNet, 
which combines a highly portable deep learning framework 
and can be widely used in production processes. Wu et al. 
(2023) fused the DarkNet-53 backbone network in  
YOLO-v5 with SE-Net to detect defects in potato chip 
packaging, improving the recognition speed and accuracy. 
Vu et al. (2023) proposed a real-time packaging defect 
detection system based on the YOLO algorithm, which can 
be integrated into factories and assembly lines to improve 
production efficiency and save operating costs. 

These studies mainly focus on the construction of 
detection and classification models, and pay less attention to 
the construction of datasets. However, deep learning 
requires a large number of labelled datasets for training, and 
different products require different datasets. Therefore, 
aiming at the problem of dataset establishment and defect 
detection, this paper proposes a thermal imaging detection 
method for packaging sealing pockets based on knowledge 
transfer. An expert labelling system is constructed by fusing 
RF and SVM, and the expert labelling system is used to 
label unlabelled samples, to obtain large datasets quickly. 
The knowledge learned by the expert labelling system is 
transferred to the fine-tuned convolutional neural network 
for training, classification and recognition, so as to realise 
the fast and accurate detection of thermal imaging 
packaging bag sealing defects. This method reduces the 
time of establishing the dataset in the early stage, meets the 
defect detection of different packaging, and has high 
recognition accuracy and efficiency. It provides a reference 
for the large-scale practical application of automatic defect 
detection systems.  

2 Packaging bag sealing defect detection 
algorithm  

2.1 Algorithm flowchart 
In order to improve the speed and accuracy of defect 
detection in thermal images of packaging bag seals, a 
method for this based on knowledge transfer was studied, 
and a flowchart thereof is shown in Figure 1. 

It can be seen in Figure 1 that the packaging bag sealing 
defect detection method based on knowledge transfer was 
mainly divided into three steps: First, a small number of 
labelled packaging bag defect image samples were used to 
train a random forest (RF) and support vector machine, and 
they were fused to build an expert system. Then, the expert 
system was used as a marker to mark a large number of 
unlabelled samples to obtain a large number of labelled 
samples. Finally, the labelled samples and labelled 
prediction samples were used to create an enhanced training 
set, which was input into a convolutional neural network for 
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training, and the prediction and classification results were 
obtained. 

Figure 1 Schematic diagram of the detection algorithm 
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2.2 Feature selection 
In order to intuitively judge defect images, a Hikvision 
thermal imager was used to illuminate common defective 
packaging bags to form thermal images. For non-defective 
packaging bags, when the heat flux was injected evenly, it 
could be evenly diffused on the surfaces of the bags, and the 
temperature field on the surface was evenly distributed. 
However, when a packaging bag had heat insulation or heat 
conduction defects, it locally formed a hot zone or a cold 
zone. Because of the different colours of the defective parts 
on the thermal imaging map, the colour features were used 
to extract the features of the images of packaging bag 
defects (Hu et al., 2021). 

According to the principle of optical imaging, when a 
lens focuses on an object, its image is clearer in the image 
plane, while objects located in other positions will appear to 
be blurred to varying degrees. In actual production, the 
thermal images of defects in packaging bag seals  
mainly include half-package, linear-mezzanine, and  
dotted-mezzanine defects, as shown in Figure 2. Hue, 
saturation, value (HSV) can perceive colours more 
accurately than the traditional red, green, blue (RGB) colour 
space and remain computationally simple. Therefore, HSV 
features are used in this paper. 

Figure 2 Schematic diagram of sealing defect of packaging  
bags, (a) half-package (b) linear-mezzanine  
(c) dotted-mezzanine (d) normal (see online version  
for colours) 

 
(a)   (b) 

( ) ( )

 
(c)   (d) 

The steps of the operation of HSV colour feature extraction 
were as follows: first, the labelled and unlabelled  
sample files were read, the RGB colour space of each 
picture was converted into the HSV colour space by  
using the translating algorithm, and then each channel was 
divided into 8 groups to calculate histograms. Then,  
multi-dimensional arrays are flattened into one-dimensional 
arrays, which was the HSV feature of the image sample. 
Finally, the HSV features of each image sample were 
combined in a large matrix. Through the flow of this 
algorithm, spatial HSV histogram pixels of different  
kinds of defect images could be obtained, as shown in 
Figures 3–5. 

The features of the HSV images were composed of three 
parts: hue, saturation, and value. Figures 3–5 show the 
statistics in histograms of pixels of different kinds of defect 
images. In the above figures, it can be seen that in the HSV 
space, the main distribution interval of pixels in the H 
channel was 11, that of the pixels in the S channel was 22, 
and that of pixels in the V channel was 33. The distributions 
of the S channel and V channel pixels were obviously 
different for the different defect types. For example, the 
peak value in the S channel in the infrared image of a half-
package defect appeared near the pixel value of 175, while 
the peak value in the S channel in the linear-mezzanine 
image appeared near the pixel value of 200. The obvious 
differences in different kinds of defect image features 
verified the effectiveness of HSV features in infrared 
feature extraction for defect detection, which laid the 
foundation for building an expert system by fusing a RF and 
support vector machine under the condition of small 
samples. 

2.3 Construction of the expert system 
In actual industrial production processes, a large number of 
image samples are often unlabelled, and the number of 
defect pictures that have been manually labelled is  
limited. However, the improvement of the classification 
performance of a deep neural network often depends on a 
large number of labelled image samples. Therefore, it is 
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very important to construct an expert system with excellent 
classification performance by reasonably utilising the prior 
information in a small number of labelled defect image 
samples. 

Figure 3 The distribution of pixels for the hue channel,  
(a) half-package (b) linear-mezzanine  
(c) dotted-mezzanine (d) normal (see online  
version for colours) 
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Figure 4 The distribution of pixels for the saturation channel,  
(a) half-package (b) linear-mezzanine  
(c) dotted-mezzanine (d) normal (see online  
version for colours) 
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Figure 5 The distribution of pixels for the value channel,  
(a) half-package (b) linear-mezzanine  
(c) dotted-mezzanine (d) normal (see online  
version for colours) 
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2.3.1 Training the RF with small samples 
In order to improve the generalisation ability of the  
semi-supervised model when labelling small samples, it was 

necessary to make rational use of the prior information 
contained in a small number of labelled samples. Therefore, 
with the help of an existing small-sample classifier used for 
traditional machine learning, an expert system was 
constructed before the deep model, and a convolutional 
network assisted in realising the effective training of a large 
number of parameters. A RF and support vector machine 
were selected for the small-sample image classifier. 

RF is a machine learning algorithm based on ensemble 
learning (Li et al., 2021). Each tree in the RF is trained with 
a subset of the data. The basic idea behind it is combining 
multiple decision trees when determining the final output, 
rather than relying on a single decision tree. Voting on the 
predicted values of each decision tree makes RF a powerful 
classification algorithm. It is much stronger than a single 
decision tree, and its generalisation ability is greatly 
improved. The algorithm’s steps are as follows. 

Its parameters are set in the following way. 
The number of decision trees generated was set to 

n_estimators = 400, the maximum depth of the tree was set 
to max_depth = 7, a node divided into several types of 
samples was set to min i_samples_split = 2, and random 
seeds were set to random_state = 5. 

The HSV colour feature combination training set  
L = {(x1, y1), (x2, y2), …, (xj, ym)} was extracted from m 
labelled samples. 

Firstly, a new training set of m′ samples (m′ ≤ m) was 
formed with the boostrap method for random samples, and n 
training sets Sn were obtained by repeating n operations. 
The purpose of this was to ensure that the training decision 
trees were not exactly the same, but also had certain 
similarities to improve the generalisation and accuracy. 

Secondly, n base classifiers Cn were independently 
trained on each training set Sn by using decision trees. 

Then, for the test sample x, n classification results Cn(x) 
were obtained with the n classifiers mentioned above. 

Finally, for each x, the final prediction result C′(x) was 
obtained by voting:  

( )
1

( ) arg max ( )
k

i
i

C x I C x y
=

′ = =  (1) 

where C′(x) is the final output, Ci(x) is the result of a single 
decision tree, I is the sigmoid function, and y is the output 
variable. 

Table 1 The RF’s classification and recognition accuracy 

Type Precision 
(%) 

F1-score 
(%) 

Accuracy 
(%) 

Half-package 95.24 97.56 100 
Linear-mezzanine 95 95 95 
Dotted-mezzanine 93.75 83.33 75 
Normal 82.61 88.37 95 
Average 91.65 91.07 91.25 

From the above steps, the RF classifier model MRF could be 
obtained. The classification model MRF was called by the 
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predict_proba function to predict the test set. Each sample 
confidence level [ ]0 1 2 3, , ,iu

RFQ Q Q Q Q=  was output, and 

max( )iu
RFQ  was taken to obtain a prediction label.  

Figure 6 Confusion matrix for the RF (see online version  
for colours) 

 

A small number of defect image samples that were 
manually labelled were divided into a training set and test 
set with a ratio of 2:1. The total number of labelled samples 
was 240, and there were four types of defect image samples, 
which were half-package defect samples, linear-mezzanine 
defect samples, dotted-mezzanine defect samples, and 
normal image samples. There were 40 image samples in 
each class in the training set and 20 image samples in each 
class in the test set. When the sampling ratio was 4:1, about 
20% of the data were not sampled in each bootstrap 
sampling, and the RF used this part of the data to estimate 
the internal error. The trained RF classifier was verified on 
the test set, and its classification and recognition results are 
shown in Table 1; a confusion matrix of the visual accuracy 
is shown in Figure 6. The precision was the proportion of all 
predictions that were positive, the F1-score was the 
weighted harmonic average of the precision and recall, and 
the accuracy was the proportion of all predictions that were 
correct (including positive and negative). 

It can be seen in Table 1 that the average accuracy of the 
RF’s prediction was 91.25%. The precision for normal 
images was at least 82.61%. The accuracy for dotted-
mezzanine defects was at least 75%. According to the 
analysis, defects in the point interlayer were small, and the 
overlap between the pixel interval in the histogram and that 
in normal images was relatively large. RF classifiers can be 
confusing. The pixel intervals in the histograms of the semi-
sealed and line interlayer defects were quite different from 
those of the other two defect images, so the precision 
reached 95.24% and 95%, respectively. 

2.3.2 Training the small-sample support vector 
machine 

SVM is a new structured learning method based on 
structural risk minimisation. It aims to find the maximum 
margin for solving the normal vector W and displacement b 
to construct a decision boundary and classify the classifier 
with the decision boundary. The SVM classifier has the 
following training steps. 

The HSV colour feature combination training set  
L = {(x1, y1), (x2, y2), …, (xj, ym)} is extracted from m 
labelled samples. 

A linear kernel and RBF kernel are generally used, and 
kernel functions are selected according to Andrew Ng’s 
guidelines:  

1 If the number of features is large and is similar to the 
number of samples, a linear kernel is chosen for the 
SVM. 

2 If the number of features is small and the number of 
samples is average (neither big nor small), a Gaussian 
kernel is chosen for the SVM.  

3 If the number of features is small and the number of 
samples is large, it is necessary to manually add some 
features for the first case to be true. 

The kernel function selected according to the above rule 
was  and the penalty coefficient was C = 2.0. 

Firstly, the appropriate kernel function K(x, z) and 
penalty coefficient C were selected to construct and solve 
the optimisation problem: 

( )
1 1 1

1min ,
2

i i i

m n m n mm n
a

m n m

a a y y K ax x
= = =

−   (2) 

1
0 , 1,2, ,

. 0

m

i

m m
m

a C m j

s t a y
=

≤ ≤ = ⋅⋅⋅

=  (3) 

The optimal solution 1 2( , , , )ia a a a′ ′ ′ ′=   was obtained. 
Then, a positive component 0 < a′n < C of a′ was selected to 
calculate the following: 

( )
1

,
i

n m m m n
m

b y a y K x x
=

′ ′= −  (4) 

Finally, the decision function was constructed: 

( )
1

( ) ,
i

m i m
m

f x sign a y K bx x
=

 
′ ′= +  

 
  (5) 

From the above steps, the RF classification model MSVM 
could be obtained. The classification model MSVM was called 
by the predict_proba function to predict the test set.  
Each sample confidence level [ ]0 1 2 3, , ,iu

SVMQ Q Q Q Q=  was 
output, and max( )iu

SVMQ  was taken to obtain a prediction 
label. 
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When this method was used to classify and identify the 
test set, the experimental training set and the test set were 
the same as those obtained with the RF classifier. The 
classification and recognition results are shown in Table 2, 
and a confusion matrix of the visual accuracy is shown in 
Figure 7. 

Table 2 The SVM classifier’s recognition accuracy 

Type Precision 
(%) 

F1-score 
(%) 

Accuracy 
(%) 

Half-package 100 97.44 95 
Linear-mezzanine 86.96 90.70 100 
Dotted-mezzanine 85.71 87.80 90 
Normal 94.12 86.49 80 
Average 91.70 91.19 91.25 

Figure 7 Confusion matrix for the SVM (see online version  
for colours) 

 

It can be seen in Table 2 that the average accuracy of 
prediction with the SVM was 91.25%. The precision for 
dotted-mezzanine defects was at least 85.71%. At the same 
time, the F1-scores for the normal and dotted-mezzanine 
images were lower than those for the other two types. The 
analysis showed that the dotted-mezzanine defects were 
small, and the overlap between the pixel intervals in their 
histograms and those of the normal images was large. SVM 
classifiers can be confusing. Comparing Figure 6 and  
Figure 7, it can be seen that both the SVM classifier and the 
RF classifier showed good classification characteristics for 
the half-package and linear-mezzanine defect images. 
However, for the dotted-mezzanine and normal image 
samples, the classifiers showed different advantages. The 
accuracy of RF in predicting dotted-mezzanine defects was 
only 75%, while the SVM classifier had a prediction 
accuracy of 90% for this class. For images of normal 
categories, the classification ability of RF was better than 
that of the SVM, and the classification accuracies were 90% 
and 80%, respectively. 

Because the classification accuracies of the RF and 
SVM could reach a certain precision and the dominant 
defect images in the classification were different, the trained 
RF model and SVM model were combined to build an 
expert system to prepare for the next marking process. 

2.4 Expert system marking 
Because different classifiers have different mechanisms, 
they are good at different fields of image classification. 
Therefore, these two classifiers with different performances 
were fused, and the fused model was used as an expert 
system to mark a large number of unlabelled defect image 
samples. Samples that were marked by the assignment were 
called labelled prediction samples. Predicting the label 
accuracy of the labelled samples is very important when 
training a neural network. The fused expert system had 
higher confidence than when labels were assigned by a 
single classifier. The specific fusion steps were as follows. 

The expert system was constructed by using the trained 
RF classification model MRF and the support vector 
machine classification model MSVM, and the unlabelled 
sample set U was input into it for prediction. If the 
prediction tags were the same, the following was obtained: 

i iu u
RF SVMy y=  (6) 

where ui is a subsample of the sample set; iu
RFy  is the ith 

sample of the candidate sample set U for predicting tags in 
the RF classifier (likewise with iu

SVMy  for the SVM 
classifier). This formula indicates that the prediction tags in 
the two classifiers were the same, but if the prediction tags 
were different, the following could be obtained: 

i iu u
RF SVMy y≠  (7) 

If the two prediction labels were different, it was necessary 
to calculate the confidence of both, and the following could 
be obtained: 

( ) ( )
( ) ( )

max
max

i i

i i

u u
RF RF

u u
SVM SVM

A SecondQ Q
B SecondQ Q

 = −
 = −

 (8) 

where max( )iu
RFQ  is the maximum prediction confidence 

of the RF classifier, ( )iu
RFSecond Q  is the second largest 

prediction confidence of the RF classifier, A is the 
difference between them, and max( ), ( ),i iu u

RF SVMQ Second Q  
and B apply in the same way to the SVM classifier. It was 
necessary to compare the differences in confidence, and the 
following could be obtained: 

, if
, if

i

i

u
RF

u
SVM

y A B
Y

y A B
≥

=  <
 (9) 

where Y is the selection tag, and the difference in the RF 
classifier’s prediction confidence is greater than the 
difference in the SVM classifier’s prediction confidence. 
The RF prediction tag is selected; otherwise, the SVM 
prediction tag is selected. Here, the confidence difference is 
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used for comparison. In order to highlight the difference in 
predictions, instead of simply comparing the highest 
confidence, a specific flow of the algorithm was used, as 
shown in the following flowchart. 

Figure 8 Flowchart of the expert system algorithm 
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The expert system was used to test the classification 
performance on the test set. The experimental conditions of 
the training set and the test set were the same as those for 
the RF classifier. The classification and recognition results 
are shown in Table 3, and the confusion matrix for the 
visual accuracy is shown in Figure 9. The expert system was 
built based on the trained RF and SVM to mark a large 
number of unlabelled defect samples. 

Table 3 The expert system’s classification and recognition 
accuracy 

Type Precision 
(%) 

F1-score 
(%) 

Accuracy 
(%) 

Half-package 100 100 100 
Linear-mezzanine 95.24 97.56 100 
Dotted-mezzanine 85.71 97.80 90 
Normal 94.44 89.47 85 
Average 93.85 93.71 93.75 

It can be seen in Table 3 that the average accuracy of the 
expert system was 93.75%, which was 6.25% and 2.5% 
higher than those of the RF and SVM, respectively. 
Secondly, as shown in the confusion matrix analysis in 
Figure 9, the expert system combined the advantages of the 
RF and SVM to improve the classification accuracy. In 
addition, due to the greater confidence difference of the 
support vector machine for normal types, the classification 
and recognition of the expert marking system for normal 
classes were biased towards the support vector machine, 
which had the accuracy of two separate classifiers. 

Compared with the RF expert marking system and SVM 
expert marking system, the accuracy of the RF + SVM 
expert marking system was improved by 2.5% and 2.5%, 
respectively, which ensured the accuracy of the subsequent 

migration of knowledge to the convolutional neural 
network. 

Figure 9 Confusion matrix for the expert system (see online 
version for colours) 

 

2.5 Training the convolutional neural network based 
on knowledge transfer 

Feature extraction with a convolutional neural network 
CNN) is very powerful, and the CNN is the most commonly 
used network model for defect classification (Tao et al., 
2021; Zhao and Shi, 2021). The training of a deep 
convolutional neural network often requires a large number 
of image samples. A large number of labelled prediction 
samples are obtained by building an expert system based on 
multi-classifier fusion to build and train the neural network. 
The VGG16 (visual geometry group) network structure is 
regular, and its recognition performance can be effectively 
improved by increasing the network’s depth (Xu et al., 
2022). And convolution tandem has fewer parameters and 
more nonlinear transformations than a single convolution 
layer. And after each pooling, the number of convolution 
channels will be doubled, so that more features can be 
retained, more comprehensive and detailed information can 
be provided, and things can be described more accurately, 
which improves the recognition rate to a certain extent. 
Considering the small number of image datasets available 
for experiments, this study used the transfer learning 
method to create the trained VGG16 model, and its network 
structure is shown in Figure 10. 

As shown in Figure 10, first, the size of the image was 
cut to 224 × 224 × 3 (224 was the pixel value of the image, 
and 3 was the colour of the image), and the cut image was 
horizontally turned over according to the probability  
P = 0.5, then normalised. Then, SGD was used to optimise 
the VGG16 network model. Finally, a new fully connected 
network layer was selected at the feature extraction layer, 
where the first and second fully connected layers used 
ReLU as an activation function, and each activation 
function was followed by a dropout connection to prevent 
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model over-fitting. In Figure 10, the black box represents 
the convolution layer for feature extraction. The red box 
represents the pooling layer, which was used to reduce the 
dimensions and extract the main features of the image. The 
blue box represents the fully connected layer, and each node 
in the fully connected layer was connected with each node 
in the previous layer to synthesise the output characteristics 
of the previous layer. The yellow box represents softmax 
layers, which were used to calculate the probability that 
each element was taken. 

Figure 10 Diagram of the network structure of VGG16  
(see online version for colours) 
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VGG16 was composed of 13 convolution layers, five 
pooling layers, and 3 fully connected layers; the size of the 
convolution core was 3 × 3, and the size of the pooling 
layers was 2 × 2. Because this study involved fine-tuning 
VGG16, the parameters were fine-tuned only in the fully 
connected layer as follows: The linear parameters were 
(25088, 512), (512, 256), and (256, 4), respectively, and 
four classification results were output; the dropout 
parameter was set to p = 0.3; the softmax parameter was set 
to dim = 1. 

The convolutional neural network is directly trained 
with small sets of labelled samples. Convolutional neural 
networks have some problems, such as low accuracy and 
slow convergence. Therefore, this study discusses an image 
classification and recognition method using a convolutional 
neural network based on the knowledge transfer of 
classifiers, and the flow used for recognition is shown in 
Figure 11. 

Convolutional neural networks have excellent  
end-to-end characteristics. The convolution layer and 
pooling layer can accurately extract effective information 
from images, and they show good classification 
performance with a classifier. However, neural networks 
have a large number of parameters that need to be trained. 
Therefore, training with a small number of labelled defect 
image samples will cause the over-fitting phenomenon. 
With the help of the expert system, knowledge transfer from 
the fused classifier that was trained with a small number of 
labelled samples to the deep convolutional neural network 
was realised. A bridge was established between the 
traditional machine learning classifier and the convolutional 
neural network model. After knowledge transfer, the fully 

connected layer of the convolutional neural network was 
effectively trained. The fast and accurate detection of 
defects in thermal images of packaging bag seals was 
realised. 

Figure 11 Flowchart of the knowledge transfer algorithm 
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3 Experimental verification 
To verify the effectiveness of the proposed method, a 
simulation experiment was carried out by using packaging 
bags in actual production. To ensure the rigour of the 
experiment, the test set continues to use the above test set, 
The test set includes four categories (half-package,  
linear-mezzanine, dotted-mezzanine defects, and normal) 
with 20 images in each class. The same test set can enhance 
the contrast before and after. Thermal images of sealed 
packaging bags were collected using a Hikvision H10 
thermal imager. The thermal images of the packaging bags 
could be categorised according to four types of defects: 
half-package, linear-mezzanine, dotted-mezzanine, and 
normal. The experiment was based on PyTorch 1.7.1 and 
the Python language, and it was completed in the 
environment of an Intel Core i7-10750H CPU with 16 GB 
of RAM and 64-bit Windows 10. The predicted tagged 
image samples and a small number of tagged samples 
predicted by the expert system were input into the 
convolutional neural network with VGG16 for training. And 
the accuracy rate is used as the evaluation index. 

TP TNAcc
TP TN FP FN

+=
+ + +

 (10) 

where Acc (accuracy) refers to how many judgments are 
correct among all the judgments, that is, the positive 
judgment is positive, and the negative judgment is negative; 
TP (true positive) is the number of positives classified as 
positive; TN (true negative) is the number of negatives that 
were judged as negative; FP (false positive) is the number 



 Detection with thermal imaging for packaging bag sealing based on knowledge transfer 67 

of false positives that are classified as positive; FN (false 
negative) the number of positives misjudged as negative. 

The results are shown in Table 4. 

Table 4 Classification and recognition accuracy of VGG16 

Number of samples Accuracy (epoch = 25) Loss 

160 78.75% 0.9573 
400 90.00% 0.8346 
800 93.25% 0.8126 
2,000 96.25% 0.7832 

As shown in Figure 4, when the number of samples was 
160, this meant that the neural network had no training set 
of labelled prediction samples. The accuracy when there 
were 25 rounds of training with the original small labelled 
sample set was only 78.75%. When the number of samples 
involved in knowledge transfer reached 400, great changes 
took place, and the accuracy increased by 11.25% to 90%. 
With the increase in knowledge transfer, the accuracy was 
93.25% when the number of samples was 800. When the 
number of samples was 2,000, the training time was about 
two hours, the average time taken to identify a single image 
was 0.1223 seconds, the accuracy was improved to 96.25%, 
and the loss function value was reduced from the initial 
0.9573 to 0.7832. Therefore, it could be ascertained that the 
number of samples in the training set had a great influence 
on training. With the increase in knowledge transfer, the 
accuracy of fine-tuning VGG16 with the test set 
continuously increased. This showed that the fused 
knowledge of the RF and SVM with the small sample was 
successfully transferred to the convolutional neural network, 
which improved the low classification accuracy and 
mitigated the over-fitting phenomenon of the neural 
network when using small labelled sample sets. 

In order to more intuitively observe the changes in the 
loss function and accuracy in the training process of VGG16 
under the conditions of a small sample and knowledge 
transfer, curves of the training process were obtained and 
are shown in Figures 12–14. 

It can be seen in Figures 12–14, that the condition of 
160 dataset capacity and 25 rounds of training, the accuracy 
rate is only 78.75%, and there is no convergence. When the 
training times are 50 rounds, the training gradually 
converges, and the accuracy rate is 87.50%. The VGG16 
network has converged under the condition of 2,000 dataset 
capacity and 25 training rounds. The accuracy was 
improved by 9% to 96.25%. It can be seen that the expert 
marking system constructed with the RF and SVM 
successfully migrated the knowledge learned with a small 
sample of data to a convolutional neural network and 
improved the network. 

In order to further verify the effectiveness of this 
method, a comparative experiment was carried out together 
with the methods used in Wang and Li (2021) and Cai et al. 
(2022), and the recognition accuracy is shown in Table 5. 

Figure 12 The training process of the VGG16 network with a 
sample size of 160 (epoch = 25) (see online version 
for colours) 

 

Figure 13 The training process of the VGG16 network with a 
sample size of 160 (epoch = 50) (see online version 
for colours) 

 

Table 5 Comparison of the accuracy 

Method Accuracy (%) 

Wang and Li (2021) 93.75 
Cai et al. (2022) 78.75 
The proposed method 96.25 

It can be seen in Table 5 that the knowledge learned by the 
expert marking system constructed with the RF and SVM 
with a small sample of data was transferred to VGG16. The 
accuracy rate was 96.25%, while the accuracy of the 
classifier in Wang and Li (2021) was 93.75%. Cai et al. 
(2022) had an accuracy of 78.75% with the original sample. 
Thus, it was verified that the method in this study is 
effective and feasible. 
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Figure 14 The training process of the VGG16 network with a 
sample size of 2,000 (epoch = 25) (see online version 
for colours) 

 

4 Conclusions 
In order to realise the intelligent production of packaging 
bags, this paper studies a packaging bag sealing defect 
detection algorithm based on knowledge transfer. This 
paper combines traditional machine learning with deep 
learning, and proposes a convenient way to establish 
datasets. RF and SVM are trained with supervised training 
using a small number of labelled samples, and an expert 
system is constructed by fusing the two classifiers to 
accurately obtain a large number of prediction samples. At 
the same time, the expert system can easily expand the team 
training set and strive to expand different products into a 
suitable dataset. On this basis, the knowledge was 
transferred to the deep convolutional neural network 
(VGG16) for training to realise the fast and accurate 
detection of packaging bag sealing defects. The accuracy of 
the RF and SVM classifier is 91.25%, and the accuracy of 
the expert system is 93.75%, which shows the effectiveness 
of the expert system. The accuracy of the neural network 
trained by 2,000 samples is 17.50% higher than that of 160 
samples, which shows the necessity of the expert system. 
This provides a new idea for the rapid establishment of 
defect detection systems for different products in the future, 
and can effectively improve the training rate, compatibility 
and detection accuracy of packaging defect detection 
systems. 
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