
Solving the Repeated Partition
Scheduling Problem Using

Metaheuristics

Zvi Goldstein

Zvi Drezner

California State University Fullerton

In this paper we solve the repeated partition scheduling problem by the three
metaheuristics: simulated annealing, tabu search, and genetic algorithms.
The procedures are described and particular parameters for each of the
procedures are established. Computational experiments on twenty-two test
problems show that the best procedure is the tabu search.

The repeated partition scheduling (RPS) problem was presented in Drezner (1998).
The problem is based on a group of objects (persons) who repeat scheduled meetings
in smaller groups for several days. A group of nk objects is to be divided into k groups
of n members each. Different partitions are scheduled for different days and the
complete schedule spans over d days. Our objective is that each pair of objects meets
about the same number of times.

Applications for tournament scheduling, personnel assignment, production
scheduling, advertising, experimental design, and others are described in Drezner
(1998). The problem was motivated by a golf tournament organizer. Twelve players are
participating in a tournament for seven days. They are divided into three groups of
four players each. The grouping usually changes from one day to another. It is
important that each player meets every other player (i.e. be with him/her in the same
group) at least once. Also, it is desirable that each pair meets about the same number
of times. For this particular problem there are sixty-six pairs and 126 pair-wise
meetings throughout the seven days. The best possible solution is having sixty pairs
meet twice and six pairs meet once. However, such a solution has not been found yet.

37Goldstein and Drezner



After a long manual effort for some years, the organizer found a solution with 12
pairs meeting three times, thirty-six pairs meeting twice, and eighteen pairs meeting
once. By randomly generating computerized solutions and applying crude
improvement procedures a solution with nine pairs meeting three times was found.
The best known solution (see Drezner (1998) and the example described below)
involves only three pairs meeting three times, fifty-four pairs meeting twice, and nine
pairs meeting once, quite an improvement compared to the original schedule.

An example of a solution is given in the following table. Note that this is actually
the best known solution. It was implemented by the organizer for the golf problem
where twelve players are playing a tournament over a seven-day period with three
groups playing each day.

Table 1: Solution to the Problem

The table demonstrates the characteristics of the problem. Every day all twelve
players are assigned to groups with no repetition. If we check all sixty-six pairs we find
only three pairs that meet three times. Players 3 and 10 meet on days 3, 4, and 6;
players 5 and 12 meet on days 3, 5, and 7; and players 7 and 8 meet on days 1, 2, and
3. All other sixty-three pairs meet either once or twice. Nine pairs meet once and fifty-
four pairs meet twice. The nine pairs meeting only once are listed in Table 2 below.

Table 2: Pairs Who Meet Only Once

An identical formulation can be applied to workers in a very stressful environment.
The task requires dividing the workers into k groups of n workers to perform d sets of
k activities each. If two workers are assigned to the same team too many times, they
may experience negative outcomes, for example, they may “get on each other's
nerves.” The objective is therefore to arrange a schedule such that every pair meets

38 Journal of Business and Management – Vol. 13, No. 1, 2007



about the same number of times. When twelve workers need to be divided into three
groups of four workers in each group for seven activities, then the solution in Table 1
can be used for such a scheduling problem.

Another application is planning a schedule for nk machines (or workers or types of
resource) that requires dk tasks to be completed in one day. Each task requires n
machines, so k tasks can be performed simultaneously and d periods are required for
the completion of the whole project. The schedule is planned ahead of time so no
changes are possible during the day. If one machine is out of order for a task (or a
worker does not show up or a resource is unavailable), the task can be completed but
some extra cost is incurred. However, if two machines are out of order for the same
task, the task cannot be completed, which adds a significant cost to the operation. We
would therefore wish to design a schedule such that the number of times that each pair
of machines is assigned to the same task is about the same. If a certain pair of machines
is assigned to the same task many times, then the operation will suffer if this particular
pair of machines happens to be out of order. Again, when twelve machines need to be
assigned to three parallel tasks (four machines per task) for seven periods, the solution
in Table 1 can be used for the best schedule.

Consider testing nk drugs for possible harmful interactions between pairs of drugs.
In order to check all combinations, one needs to perform nk(nk-1)/2 experiments by
testing all possible pairs of drugs. However, this might take too long and be too
expensive. Assume that k labs are available for such experiments, n different drugs can
be administered simultaneously in each experiment, and the labs can be booked for d
experiments each. A testing scheme needs to be designed such that in each of the d
days the nk drugs are divided among the k labs, n drugs to each. It is necessary that
each pair of drugs is tested at least once. Furthermore, it is desirable that every pair of
drugs is in the same group about the same number of times.

Yet another application is the scheduling of commercials for broadcasting. Assume
that nk commercials are available for broadcasting; only n slots are available in a
particular program; and you wish to test these commercials and find the best
combination of n commercials. The effectiveness of each individual commercial
depends on the other commercials selected for showing. Some pairs of commercials
work well together, while some pairs do not. Information about the interactions
between various commercials is not available. The resources to check all possible
selections are not available. Thus, dk groups of people are available for testing
combinations of n commercials, and there are k rooms available for simultaneous
showing. We would like to select d partitions of the nk commercials into k groups of
n commercials each. Our objective is to have each pair of commercials represented in
these groups about the same number of times so that the groups will evenly cover the
spectrum of possible pairings.

The RPS problem is closely related to the well known Oberwolfach problem (Hell,
Kotzig & Rosa, 1975; Alspach, 1996; Liu & Lick, 2003) named after the resort
research center in Oberwolfach, Germany. Participants are invited to a week-long
conference and dine at tables which accommodate the same number of persons. The
seating is pre-arranged and the objective is to have every pair of participants seated at
the same table about the same number of times. In the Oberwolfach problem pairs are

39Goldstein and Drezner



considered matched when they sit next to each other and not all pairs at the same table
are matched, i.e., the seating order around the table matters. A typical Oberwolfach
problem is a conference of twenty-five participants who meet for six days (twelve
meals thus d=12) and are to be seated at five tables, with five persons at a table. A
solution does exist such that every pair of participants meets exactly twice (see Table
8 below).

Note that once the number of groups (k), the number of members in each group
(n) and the number of days (d) are known, the problem is fully defined and no
additional information is required. Therefore, once a solution for a particular set of
values for n, k, and d is found, it can be used for all the applications with these
particular values.

In Drezner (1998), descent algorithms were proposed for the solution of this
problem. In a descent-type algorithm some perturbations of the solution are checked
and if an improved solution is discovered, the current solution is changed to the
improved one. The algorithm proceeds until no such improvement is found.
Optimization techniques for such problems received a significant boost with the
discovery of metaheuristics. There are three main metaheuristics: tabu searches
(Glover, 1986; Glover & Laguna, 1997), simulated annealing (Kirkpatrick, Gelat, &
Vecchi, 1983), and genetic algorithms (Holland, 1975; Drezner & Drezner, 2005).
These techniques generally require more computer time but produce much better
results than “old fashioned" descent algorithms. The increased computational
requirements are not prohibitive in this era of fast computers and results are usually
obtained in a reasonable computer run time.

In this paper we show how to apply these metaheuristics to the RPS problem.
These metaheuristics are widely used and produced excellent algorithms for numerous
optimization problems. For a review see Salhi (1998), and Pardalos and Resende
(2002). In this paper we compare these three metaheuristics and the descent algorithm
for the solution of the RPS problem. Computational comparisons are reported for a set
of RPS problems.

Problem Definition

Notation

n is the number of objects in each group,

k is the number of groups,

d is the number of days.

P is a partition of nk objects to k groups over d days,

mrs(P) is the number of times pair (r, s) meets in a partition P,

F(P) is the objective function for partition P.F(P) = ∑ m2
rs(P)

For example, for the golf problem n=4, k=3, d=7. The solution given in Table 1
consists of three pairs meeting three times, fifty-four pairs meeting twice, and nine

40 Journal of Business and Management – Vol. 13, No. 1, 2007

r,s



pairs meeting once, which leads to the objective function F(P) = 3 x 32 + 54 x 22 + 9
x 12 = 252. In Drezner (1998) it was shown that this objective function is equivalent
to minimizing the variance among pairs’ meetings and thus leading to solutions with
every pair meeting about the same number of times.

The following theorem (proven in Drezner, 1998) relates a problem (which we
term the single problem) to another problem (which we term the multiple problem)
with the same n and k but with the number of days being an integer multiple of the
single problem.

Theorem 1: Consider two problems with the same n and k. The first (single)
problem is based on d days while the second (multiple) problem is based on Ld days
for an integer L. The optimal value of the objective function for the multiple problem
is at least as good as that of the single problem multiplied by L2.

The average number of meetings between pairs is . If this number is integer,
we term the problem a perfect problem because it may be possible to get a solution
where all pairs meet exactly the same number of times, in which case it must be
optimal. The following corollary is obvious.

Corollary: For perfect problems, if the single problem has a “perfect” solution
where all pairs meet the same number of times, then in the optimal solution to the
multiple problem all pairs meet the same number of times.

General Description of the Metaheuristics

Suppose we have a particular schedule as our current solution. We would like to
find whether there is a better schedule. Checking all other possible schedules to find
a better one is prohibitive because there are too many combinations. Therefore, we
select a limited set of other schedules and find whether a better solution exists among
them. In other words, we check only perturbations of the current schedule. A
perturbation of the current schedule is defined as switching two objects between two
groups on the same day. The set of all perturbed schedules is called the neighborhood
of the current schedule. One may consider other neighborhoods as well. However, we
recommend this definition of a neighborhood because it has been efficient in our
experiments. We also define a move as changing the current schedule to another one
in the neighborhood.

The descent algorithm and the metaheuristics can be described by the concepts of
perturbations and neighborhoods. We first describe the methods in general, and then
describe the technical details of each approach as it was applied to the RPS problem.

The Descent Algorithm
A starting schedule is randomly generated and is defined as the current schedule.

Each iteration, the objective function values of all schedules in the neighborhood of the
current schedule, is evaluated in a random order and the first encountered improved
schedule is selected as the next current schedule. One may apply a variant of this
approach by evaluating all the schedules in the neighborhood and selecting the best
one. The algorithm terminates when no improved schedule exists in the neighborhood.

41Goldstein and Drezner

d(n–1)______
nk–1



Tabu Search
Tabu search was first suggested by Glover (1986). In its simplest form, the tabu

search starts as a descent algorithm. When no improving schedule is found in the
neighborhood, the best non-improving schedule is selected for the next current
solution with one restriction: a move which reverses a recent move is not allowed. This
is essential to prevent cycling. Other rules that prevent cycling can be used to
construct the tabu list of restricted moves. A restricted move stays in the tabu list for
a pre-specified number of iterations called the tabu tenure. The process is continued
until some stopping criterion is met.

In order to understand the motivation for tabu search, imagine a search on a plane
with many craters. One of these craters is the deepest one, and that one is the desired
solution (the global optimum). The descent algorithm performs only downward
moves and may land at a shallow crater (a local optimum) and not at the global one.
Tabu search attempts to get out of a shallow crater in the hope of getting to a better
one. Therefore, when the descent algorithm terminates at the bottom of a crater,
upward moves are taken in tabu search, while sliding back into the same crater is
disallowed (by restricting reverse moves) with the hope of sliding into deeper craters
and eventually reaching the global optimum. The tabu tenure controls the number of
iterations a move remains restricted. The tabu tenure should be not too low (in which
case the search may slide back into the same crater before it climbed out of it) or too
high (in which case not enough moves are allowed and the search may miss
improvement opportunities into another crater).

The Simulated Annealing Procedure
The simulated annealing procedure simulates the annealing of metals starting with

a high temperature, gradually decreasing the temperature, and ending at cold
temperatures. Its application to optimization problems was first suggested by
Kirkpatrick et al. (1983). In each iteration a perturbation is randomly generated (and
consequently one of the neighboring schedules randomly selected). If the selected
neighbor is improved, it is selected as the next current solution. If the selected
neighbor is non-improved, it is selected with a probability depending on the
temperature and the extent of the deterioration in the value of the objective function.
At the beginning, when the temperature is high, almost every move to a randomly
selected neighbor is accepted regardless of its value of the objective function. As the
process continues, the likelihood of selecting a non-improving neighbor decreases and
towards the end of the process, when the temperature is low, a non-improving
neighbor is hardly ever selected.

Borrowing the metaphor of the plane full of craters, simulated annealing is like a
“bouncing” rubber ball which we hope will settle at the deepest crater because it is
more difficult to get out of it. The cooling of the temperature means that the “height”
of the bounce diminishes as the process continues. At the beginning, each bounce is
very likely to bounce out of a crater and as the temperature is lowered, the likelihood
of bouncing out of a crater diminishes (but it is still easier to bounce out of a shallow
crater than a deeper one) and at the end of the process when the height of the bounce
is low, the probability of bouncing out of a crater is very low.

42 Journal of Business and Management – Vol. 13, No. 1, 2007



Genetic Algorithms
Genetic algorithms simulate the natural evolution of species. The application of

genetic algorithms for optimization problems was first suggested by Holland (1975).
The basic approach is as follows. We start with a population of schedules that can be
randomly generated or obtained by other means. Each iteration, two parents are
randomly selected from the population, and a crossover operator is used to produce
an offspring. The offspring is created by taking part of the schedule from the first
parent and combining it with the remaining part of the schedule from the second
parent. The value of the objective function of the offspring is calculated and if it is
better than that of the worst population member, it replaces that member. This way the
size of the population remains constant. Some genetic algorithms use sporadic
mutations. A mutation consists of randomly selecting a member of the population and
considering a random perturbation of this member. We opted to apply the descent
algorithm to the offspring and consider the improved offspring for inclusion in the
population. This variant is called a hybrid-genetic algorithm or a memetic algorithm
(Moscato, 2002). Since all mutations are considered by the descent algorithm, no
mutations are suggested for our procedure. The evolution process is continued until a
stopping criterion is met and the best member of the last population is selected as the
solution. For a review of genetic algorithms see Drezner and Drezner (2005).

The most important part of genetic algorithms is the merging of two parents to
produce an offspring. A good merging procedure is essential for a successful
performance of a genetic algorithm. Most genetic algorithms employ a crossover
operator to generate an offspring. To illustrate the process consider a problem with six
people, two groups, and three people in each group, meeting for four days. The
following are two arbitrary schedules (parents).

The crossover point is between days 2 and 3. We select, for example, the first two
days from parent #1 and the last two days from parent #2 and get offspring #1. If we
select the first two days from parent #2 and the last two days from parent #1 we get
offspring #2.

43Goldstein and Drezner



Note that the order of the four days does not affect the value of the objective function.
It is therefore possible to scramble the order of the days in each parent before
determining the crossover point.

Two schedules are randomly selected and one offspring constructed. If the
offspring has a good value of the objective function (better than the value of the
objective function of the worst population member) it replaces it. Otherwise, the
population remains unaltered. This completes one generation. The population evolves
and keeps improving because “bad” schedules are removed from the population and
are replaced by a “good” schedule. The process continues until a pre-specified number
of generations have been performed.

Selecting Test Problems

The applications described in the introduction may have various values for the
number of groups, the number of objects in each group, and the number of days. The
golf scheduling problem has a specific set of parameters. However, the other
applications may have various values for each particular instance. We therefore
selected a set of problems to demonstrate the efficiency of the algorithms proposed in
this paper. Such problems may well occur in practical applications.

One consideration in selecting the test problems was to select sets of single and
multiple problems so that Theorem 1 and the Corollary can be verified. We first
selected the two problems presented in Drezner (1998) (k=3, n=4, d=7; k=4, n=3,
d=11) their multiples, and additional test problems, most of them being perfect
problems. We restricted the problem size to d≤25. The set of 22 problems is depicted
in all six tables below.

Applying the Metaheuristics for Our Problem

To illustrate the metaheuristic algorithms we consider a simple problem of only
four people divided into two groups of two people each over a three-day period. There
exists a simple solution where each pair meets exactly once:

44 Journal of Business and Management – Vol. 13, No. 1, 2007



A move is defined as exchanging two people between groups on the same day. For
example, exchanging 1 and 3 on the first day (making the partition on the first day to
be 3,2 and 1,4) and keeping the rest of the schedule the same is a move. The
neighborhood is the set of all possible moves. For each day there are 4 possible
exchanges for a total of twelve possible moves. Therefore, the cardinality of the
neighborhood is twelve moves.

The Descent Algorithm
No specific parameters are required for the descent algorithm. We generate a

random schedule and perform the first move that improves the value of the objective
function. The descent algorithm proceeds until no move improves the value of the
objective function. In the example above there are twelve possible moves. If at least
one of them improves the value of the objective function it is executed and the twelve
possible moves on the improved schedule are evaluated. If none of the twelve moves
improves the value of the objective function, the algorithm terminates.

The Tabu Search
Some preliminary definitions:
• The tabu list consists of tabu moves. A tabu move is an object that was recently

moved on a specific day. The tabu list consists of at most nkd entries for the nk
different objects on d different days. For the example above, if persons 1 and 3 were
exchanged on day 1, the entries person 1-day 1 and person 3-day 1 are entered into
the tabu list. This means that in the next several iterations an exchange involving
person 1 or person 3 on day 1 is not allowed. This is essential for an efficient search
to prevent the repetition of the same exchange which would lead back to the same
solution (sliding back into the same crater).

• The tabu tenure is the number of iterations that a tabu move remains on the tabu
list. Once its tenure is over, the entry is removed from the tabu list. We selected the
tabu tenure as 10 percent of the number of possible tabu moves: 0.1nkd. That
means that 10 percent of the possible moves are disallowed because they involve
persons that were recently moved on a particular day. For our particular example
the tabu tenure is too small to be effective (0.1nkd=1.2). However, for the test
problems this tabu tenure was effective.

45Goldstein and Drezner



Extensive experiments lead to the following tabu search procedure. Note that the first
phase of the tabu search is the descent algorithm.

The Tabu Search Procedure

46 Journal of Business and Management – Vol. 13, No. 1, 2007



We report experiments with a stopping rule of 3,000 iterations with 1,000 runs,
and 30,000 iterations with only 100 runs. The results are summarized in Table 3. The
preferred approach is stopping after 3,000 iterations with 1,000 runs.

Table 3: Comparison Between Two Values for the
Number of Iterations in the Tabu Search

The Simulated Annealing
In our example above there are 12 possible moves. One of them is randomly

selected. For example, suppose that day 2 is selected (each day is selected with
probability of 1/3), and person 3 from group 1 is selected (each person in the group
has a probability of 1/2 to be selected) and person 2 from group 2 is selected (also a
probability of 1/2). Day 2 schedule is now 1,2 and 3,4 and days 1 and 3 keep the same
schedule. Note that each move has a probability of 1/12 (the product of the above
probabilities) to be selected.

47Goldstein and Drezner



We experimented with many variants of the parameters for the simulated annealing
procedure. The following parameters were found to be the most effective: An initial
temperature of ten is selected. The number of iterations N was set to 2,000 times the
number of possible perturbations or: N = 1000n2k(k = 1)d. The procedure is:

The Simulated Annealing Procedure

48 Journal of Business and Management – Vol. 13, No. 1, 2007



Following Drezner and Salhi’s (2002) suggestion we also tried the SA-K simulated
annealing procedure. In the SA-K procedure for a given integer K ≥ 1, the best of K
randomly generated neighbors is selected each iteration. In order to have the same
number of objective function evaluations in the procedure, the number of iterations is
divided by K. Note that SA-1 is the “standard” simulated annealing procedure. We
report results for SA-1, SA-3, and SA-5. The comparison between different K’s with
one-hundred replications for each problem is given in Table 4. The best results overall
for the set of twenty-two test problems was provided by K=5.

Table 4: Comparison Between Three Versions of the Simulated Annealing

49Goldstein and Drezner



The Genetic Algorithm
Following experiments with various strategies, the following genetic algorithm is
proposed:

The Genetic Algorithm

Two variants of the merging procedure are reported. In the first one, termed the
“fixed” procedure, the offspring is generated by selecting days 1, 3, 5,… from the first
parent, and days 2, 4, 6,… from the second parent. This is the odd-even rule. In the
“random” procedure, the order of the days in both parents is scrambled and the
schedule is then constructed by the odd-even rule. In Table 5 we compare the two
approaches on the twenty-two test problems with one-hundred runs each. The
preferred approach is the random procedure.

50 Journal of Business and Management – Vol. 13, No. 1, 2007



51Goldstein and Drezner

Table 5: Comparison Between Random and Fixed Merge
of Parents in the Genetic Algorithm

Computational Experiments

We report the results by all four heuristic procedures on the set of twenty-two test
problems. Programs were coded in Microsoft Fortran PowerStation 4.0 and run on a
Pentium IV 2.8GHz desktop PC with 256 MB RAM.

In Table 6 the minimum value of the objective function and the number of times
found for each of the heuristics are depicted. The best known results are marked in
boldface. In Table 7 we report the average value of the objective function for all runs
and the run times in minutes for all runs. The best average solution among the four
heuristics is marked in boldface. Solving the set of twenty-two test problems the
specified number of replications took less than three hours of computer time for each
of the heuristics.



Table 6: Comparison of Best Solutions by Various Metaheuristics

In Table 8 we report the best possible theoretical result and the best known solution
for each problem (including those obtained by non-selected variants of the
metaheuristics reported in Tables 3-5). Theorem 1 and the corollary may be used to
confirm an optimal solution for multiple problems. However, for six multiple perfect
problems the optimal solution was not obtained by the proposed heuristics. Theorem
1 and the corollary are indeed confirmed by these results.

The results in Tables 6 and 7 rank the heuristic algorithms as Tabu search being the
best, simulated annealing the second best, then the genetic algorithm and the descent
heuristic a clear last. Tabu search is the fastest among the three metaheuristics for the
total number of trials run.

Discussion

This study looks at the problem of a group of people (objects) needing to be
partitioned into smaller groups a given number of times. For example, twelve golf
players play a tournament over seven days and each day they are partitioned into three
groups of four players each. The repeated partition scheduling (RPS) problem requires

52 Journal of Business and Management – Vol. 13, No. 1, 2007



53Goldstein and Drezner

Table 7: Comparison of Average Solutions by Various Metaheuristics

that each pair of objects be in the same group about the same number of times.
Applications include tournament scheduling where an equitable partition makes the
game more enjoyable and fair, personnel assignment where an equitable solution
enhances good relations between group members, production scheduling so that
unexpected break down of machines will have the least effect on the operation,
advertising and experimental design where it may be too costly to measure interactions
between pairs of objects and we can group the objects into groups of more than two
objects each reducing the cost of the experiment, and others. For example, in personnel
assignment we wish that pairs of workers will not work together in the same group for
too many days so that they will not “get on each other’s nerves”. In small conferences,
when participants are assigned to tables during meals, we wish that each participant
will sit at the same table with other participants about the same number of times in
order to facilitate meetings and conversations between participants.

The problem is a combinatorial design problem with a very large number of
possible partitions. Our goal is to find the partition that is the most equitable. That
means that every pair of objects is in the same group about the same number of times.
It is noted that once the number of objects, the number of groups, and the number of
days are given, then the problem no longer depends on the application. For example,
if twelve objects need to be partitioned into three groups over a seven day period, then
the solution depicted in Table 1 can be used for any application with these three values.



Table 8: Summary of Results for the Test Problems

We solved the RPS problem using the three metaheuristics: tabu search, simulated
annealing and the genetic algorithm. The recommended method is the tabu search as
it provided the best solutions in the fastest computer time on our set of twenty-two
test problems.

References

Alspach, B. (1996). The Oberwolfach Problem, in CRC Handbook of Combinatorial
Designs, C.J. Colbourn and J.H. Dinitz (Eds.), CRC Press, 394-395.

Drezner, Z. (1998). On the Repeated Partition Scheduling Problem, Journal of
Business and Management, 5: 65-77.

Drezner, T. & Drezner, Z. (2005). Genetic Algorithms: Mimicking Evolution and
Natural Selection in Optimization Models, in Y. Bar-Cohen (Ed.), Biomimetics -
Biologically Inspired Technologies, CRC Press, Boca Raton, FL, 157-175.

54 Journal of Business and Management – Vol. 13, No. 1, 2007



55Goldstein and Drezner

Drezner, Z. & Salhi, S. (2002). Using Hybrid Metaheuristics for the One-Way and Two-
way Network Design Problem, Naval Research Logistics, 49: 449-463.

Glover, F. (1986). Future Paths for Integer Programming and Link to Artificial
Intelligence, Computers and Operations Research, 13: 533-549.

Glover, F. & Laguna, M. (1997). Tabu Search, Kluwer Academic Publishers, Boston.
Hell P., Kotzig A. & Rosa, A. (1975). Some Results on the Oberwolfach Problem,

Aeq. Mathematica, 12: 1-5.
Holland, J.H. (1975). Adaptation in Natural and Artificial Systems, University of

Michigan Press, Ann Arbor, Michigan.
Kirkpatrick, S., Gelat, C.D. & Vecchi, M.P. (1983). Optimization by Simulated

Annealing, Science, 220: 671-680.
Liu, J. & Lick, D.R. (2003). On λ-Fold Equipartite Oberwolfach Problem with
Uniform Table Sizes, Annals of Combinatorics, 7: 315-323.
Moscato, P. (2002). Memetic Algorithms, in P.M. Pardalos and M.G.C. Resende (Eds.)

Handbook of Applied Optimization, Oxford, U.K: Oxford University Press.
Pardalos, P.M. & Resende, M.G.C. (Eds.) (2002). Handbook of Applied Optimization,

Oxford, U.K: Oxford University Press.
Salhi, S. (1998). Heuristic Search Methods, in Modern Methods for Business Research,

G.A. Marcoulides (Ed.), Lawrence Erlbaum Associates, Mahwa, NJ.



56 Journal of Business and Management – Vol. 13, No. 1, 2007




