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Abstract: To address issues related to insufficient monitoring coverage, 
inaccurate measurement of pollution concentration, and inadequate load 
monitoring using traditional methods, an intelligent monitoring method for 
agricultural non-point source pollution based on remote sensing image changes 
is proposed. Utilising Landsat ETM+ remote sensing imagery, a multi-layer 
perceptron algorithm is employed to detect and identify agricultural non-point 
source pollution areas. The Min-Cut algorithm is used for remote sensing 
image segmentation of agricultural non-point source pollution targets. Remote 
sensing image changes are detected based on the segmentation results and 
difference diagram. Intelligent monitoring of agricultural non-point source 
pollution is achieved by combining the detection results of remote sensing 
image changes with relevant monitoring indicators. Experimental findings 
demonstrate that the proposed method achieves a monitoring coverage rate 
exceeding 96.3%, the mean accuracy of pollution concentration monitoring is 
97.1%, the maximum accuracy of pollution load monitoring is 99.3%. 

Keywords: remote sensing image changes; agricultural non-point source 
pollution; intelligent monitoring; Landsat ETM+ remote sensing images;  
min-cut algorithm; difference diagram; monitoring indicators. 
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1 Introduction 

Agricultural non-point source pollution refers to pollution caused by various agricultural 
activities, including farming practices, livestock farming, and rural activities. The 
pollutants enter water bodies through channels such as rainwater and surface runoff, 
causing negative impacts on the water environment (Niu et al., 2022). Improper 
management, unsustainable resource utilisation, and inadequate environmental awareness 
in agricultural activities contribute to the occurrence (Li et al., 2022). Implementing 
scientifically sound and sustainable cultivation practices is essential for mitigating 
agricultural non-point source pollution, pesticide and fertiliser use management, livestock 
waste treatment, and irrigation water resource management (Wan, 2021; Lin and Pan, 
2020). Real-time monitoring pollution yields valuable information for farmers and 
agricultural producers, enabling them to enhance their management practices, minimise 
pollutant emissions, and reduce waste in agricultural activities. By promptly assessing the 
distribution and appropriate control measures can be implemented to steer agricultural 
development, manage water resources, and elevate the standards of sustainable 
agricultural practices. 

Zhang et al. (2022) proposed an intelligent monitoring method based on the RAISR 
algorithm. Through the utilisation of drone aerial remote sensing system, we have the 
capacity to procure remote sensing images pertaining to water conservancy. In order to 
achieve accurate reconstruction of agricultural non-point source pollution images, 
advanced RAISR algorithms are used for preprocessing. In the learning stage, image 
generation filters are trained to optimise the reconstruction effect of the image. 
Furthermore, the technique of histogram analysis is employed to analyse remote sensing 
images, and the maximum cumulative variance method is used to determine the  
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appropriate threshold and calculate the basic parameters of remote sensing images. In 
order to achieve accurate segmentation of remote sensing images, the EM algorithm is 
used for multiple iterations to obtain the optimal parameters. By introducing a Gaussian 
mixture model and calculating t-link weights, the segmentation of remote sensing images 
was successfully achieved. Extract remote sensing features. Using this feature can more 
accurately monitor and grasp the situation, and output relevant monitoring results. 
However, in reality, this method has proven to be unreliable and inaccurate in effectively 
monitoring the concentration of pollutants stemming from agricultural non-point sources. 
Wang and Li (2022) proposed an intelligent monitoring method based on graph 
convolutional neural networks. Utilise multi-sensor collection of agricultural data to 
extract multivariate temporal data related to water quality from the collected data. 
Construct a graph structure using graph convolutional neural networks, connect farmland 
as nodes, and establish relationships between nodes. By training this graph, the network 
can automatically learn the characteristics and pollution propagation laws between  
nodes, and use the network to output relevant intelligent monitoring results. However,  
in real-world scenarios, it has been noted that the effectiveness of intelligent monitoring 
for agricultural non-point source pollution using this method falls short of expectations, 
with a significant gap between the achieved coverage rate and the anticipated goals. 
Xiang et al. (2022) proposed an intelligent monitoring method based on the Internet of 
Things cloud platform. Using multiple types of sensors to collect temperature, pH, and 
other types of data, and uploading them to the IoT monitoring center for centralised 
storage and processing. On the cloud platform, advanced data analysis and machine 
learning algorithms are used to process and analyse the collected data. By constructing 
models and training algorithms, the system can automatically identify the characteristics 
and patterns, thereby achieving intelligent monitoring. However, during implementation, 
significant issues have arisen with the accuracy of this method in monitoring the load of 
agricultural non-point source pollutants, rendering its practical application considerably 
ineffective. 

A new intelligent monitoring method for agricultural non-point source pollution 
based on remote sensing image changes is proposed with the research goal of solving 
various problems existing in traditional methods. The coverage rate, accuracy rate of 
pollutant concentration monitoring, and accuracy rate of pollutant load monitoring are 
utilised as indicators to assess the effectiveness of this method. These indicators serve as 
conclusive measures to verify the method’s efficacy. The intelligent monitoring method 
has the following innovative technological routes: 

1 Data source selection: Using Landsat ETM+ remote sensing images as the data 
source, utilising its high-resolution and multispectral information, provides a reliable 
data foundation. 

2 Agricultural non-point source pollution target recognition: Using multilayer 
perceptron (MLP) as a classification model, automatic recognition of agricultural 
non-point source pollution targets in remote sensing images is carried out. 

3 Remote sensing image segmentation processing: Based on target recognition results, 
the Min Cut algorithm is used to segment remote sensing images, achieving effective 
extraction of targets and clear definition of boundaries. 
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4 Remote sensing image change detection: By utilising segmentation results and 
difference maps, one can ascertain the variations in agricultural non-point source 
pollution targets within remote sensing images. This information can then be 
leveraged to monitor and analyse the spatiotemporal distribution of pollutants. 

5 Intelligent monitoring and indicator analysis: By combining agricultural non-point 
source pollution monitoring indicators, the remote sensing image change detection 
results and indicators are comprehensively analysed to achieve intelligent monitoring 
and comprehensive evaluation. 

The experimental results indicate that the intelligent monitoring method by this 
innovative technology route has high coverage and accuracy. By employing this method, 
it is possible to accomplish comprehensive monitoring and management of non-point 
source pollution in farmland, providing important technical support and decision-making 
reference for environmental protection, sustainable development of farmland, and 
improvement of agricultural production efficiency. 

2 Intelligent monitoring method for agricultural non-point source 
pollution 

2.1 Pollution target recognition based on remote sensing images 

The acquisition of remote sensing image data often presents various technical challenges 
and difficulties. One of the initial challenges is selecting suitable sensors that fulfil the 
specific research needs, while also grappling with the availability and accessibility of 
necessary data. Processing raw image data may require preprocessing and correction, 
including atmospheric correction, geometric correction, and radiation correction. In 
addition, there are various noise sources in remote sensing images, such as clouds, 
shadows, and atmospheric interference, which require denoising and restoration 
techniques for processing. Furthermore, to acquire a more comprehensive and precise 
understanding of the subject matter, it is imperative to ensure that all significant aspects 
are thoroughly examined, it is often necessary to fuse data from different sensors or 
multiple time points, which needs to address the differences in data format and 
consistency. Finally, remote sensing image data typically has a large number of spatial 
and temporal dimensions, requiring high-speed computing and storage systems to process 
and store large-scale data, as well as effective data management and querying. Landsat 
satellite, equipped with multispectral sensors, can obtain high-resolution image data in 
the visible and infrared bands (Zhao et al., 2022; Fan et al., 2022), providing rich surface 
information. The spatial resolution of Landsat images is usually between 15 m and  
30 m, which means it can capture details of the surface and provide high accuracy 
(Ridwana et al., 2021; Li et al., 2011). In addition, Landsat data also provides long-term 
observation data for historical change analysis and monitoring. 

Table 1 provides a comprehensive overview of the information obtained from the 
Landsat ETM+ remote sensing images. 
 
 
 
 



   

 

   

   
 

   

   

 

   

   284 T. Sun et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Table 1 Landsat ETM+remote sensing image information 

Name Resolution ratio/m Wavelength/µm Band 

Band 1 30 0.45~0.52 Blue-green band 
Band 2 30 0.52~0.60 Green band 
Band 3 30 0.63~0.69 Red band 
Band 4 30 0.76~0.90 Near infrared band 
Band 5 30 1.55~1.75 Mid infrared band 
Band 6 60 10.40~12.50 Thermal infrared band 
Band 7 30 2.08~2.35 Mid infrared band 
PAN 15 0.52~0.90 Panchromatic band 

Multilayer perceptron is an artificial neural network model commonly used to solve 
classification and regression problems. It consists of multiple neural layers, each of which 
processes inputs through weights and activation functions and passes them on to the next 
layer. By continuously adjusting weights and biases, MLP can learn complex nonlinear 
relationships between data (Shirazi and Toosi, 2023; Wu et al., 2022). In agricultural  
non-point source pollution target recognition, multi-layer perceptrons can be applied to 
image classification and target recognition tasks. By extracting features from Landsat 
ETM+remote sensing images as input, multi-layer perceptrons can learn feature 
representations of different categories and recognise targets such as farmland, crops, and 
water bodies. Figure 1 illustrates the structure of the multi-layer perceptron. 

Figure 1 Multilayer perceptron structure 

 

 

The mathematical model of a multi-layer perceptron is represented by the following 
formula: 
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1

n

i i
i

Y f W X θ
=

⎡ ⎤= −⎢ ⎥
⎣ ⎦
∑  (1) 

In the above formula, iX  represents the ith Landsat ETM+remote sensing image, iW  is 
the weight of the ith neural network, and θ is the bias parameter. 

The procedure for identifying agricultural non-point source pollution targets using 
multi-layer perceptrons is outlined below: 

1 Set the initial value for weight W . For components with different weight 
coefficients ( )1 2, , , nW W W W= … , set a smaller zero random value of 

( ) ( ) ( )1 20 , 0 , , 0nW W W… . Then ( )iW t  represents the weight value on the ith input at 
t , 1,2, ,i n= … . 

2 Landsat ETM+remote sensing image ( )1 2, , , nX X X X= … , expected output is d. 

3 Based on the constructed multi-layer perceptron mathematical model, the output is 
calculated, and the specific calculation results are as follows: 

( ) ( )
1

1

n

i i
i

Y t f W t X
+

=

⎡ ⎤= ⎢ ⎥
⎣ ⎦
∑  (2) 

4 Calculate the error e based on the actual output, which is calculated using the 
following formula: 

( )e d Y t= −  (3) 

5 The weight value is modified based on the e values calculated by formula (3), and 
the specific results are as follows: 

( ) ( )1i i iW t W t e Xη+ = + ⋅ ⋅  (4) 

In formula, η  is the rate of change in weight, and 0 1η< ≤ . If the actual output is 
consistent with the expected value d , the following formula holds: 

( ) ( )1i iW t W t+ =  (5) 

6 For the first Landsat ETM+remote sensing image 2X , if its actual output and 
expected output remain consistent, perform the steps (1)–(5) above for the second 
sample 2X  until all samples meet the requirements. The obtained remote sensing 
image can yield recognition results for agricultural non-point source pollution targets 
by employing the following formula: 

( )
1

1

1
n

i i
i

Y f W t X
+

=

⎡ ⎤= +⎢ ⎥
⎣ ⎦
∑  (6) 

2.2 Remote sensing image segmentation 

The process of segmenting agricultural non-point source pollution targets from remote 
sensing images holds paramount significance. It serves as a fundamental step in precisely 
pinpointing the targets, elevating the reliability and accuracy of target recognition, and 
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establishing a solid basis for subsequent analysis and decision-making, thereby playing a 
pivotal role in the overall process. It is one of the key steps for monitoring and managing. 
Henceforth, this paper synergistically merges the findings from pollution target 
recognition, elucidated in Section 2.1, with the process of segmenting Landsat ETM+ 
remote sensing images. 

Assuming that Landsat ETM+remote sensing images are represented by 
( )1, , , ,n Nz z z z= … … , and nz  represents the greyscale value of each pixel in the remote 

sensing image. Definition ( )1, , , ,n Nα α α α= … … , where { }0,1nα ∈ . Assign a value of 
nk , { }1, ,nk K∈ …  to each pixel n, indicating which Gaussian model the pixels belong 

to. Therefore, for an entire Landsat ETM+remote sensing image, there is 
( )1, , , ,n Nk k k k= … … . 
Establish the minimum energy function for Landsat ETM+remote sensing images, 

which is represented by the following formula: 

( )min , , ,ˆ arg E k z
α

α α θ=  (7) 

In the above formula, θ  represents the parameters of the Gaussian model and 
( ), , ,E k zα θ  represents the Gibbs energy parameter, which is represented by the 

following formula: 

( ) ( ) ( ), , , , , , ,E k z U k z V zα θ α θ α= +  (8) 

Let ( ),V zα  represent the histogram illustrating the distribution of greyscale frequency. 
The probability of measuring the pixels belonging to the foreground and background is 
defined as follows: 

( ) ( )U , , , , , ,n n n
n

k z D k zα θ α θ=∑  (9) 

( ) ( ) ( ), , , log , , log ,n n n n n n n nD k z p z k kα θ α θ π α= − −  (10) 

In the above formula, ( ),n nkπ α  represents the weight of the Gaussian component, and 
( ), ,n n np z kα θ  represents the Gaussian distribution of the three-dimensional Gaussian 

model, namely: 

( )
( )

( ) ( )11 1, , exp
22

n n n n nd
p z k z zα θ µ µ

π
−⎡ ⎤′= − − Σ −⎢ ⎥⎣ ⎦Σ

 (11) 

In the above formula, 3d = , ( ),n nkαΣ = Σ , ( ),n nkµ µ α=  represents the Gaussian 
component, and nz  represents the RGB information of pixels in Landsat ETM+remote 
sensing images, which is a three-dimensional vector. By substituting it into formula (11), 
the following results can be obtained: 

( ) ( ) ( )

( ) ( ) ( )' 1

1, , , , ,
2

1 , , ,
2

n n n n n n n

n n n n n n n n

D k z log k logdet k

z k k z k

α θ π α α

µ α α µ α−

= − +

+ − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

∑

∑
 (12) 
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In the above formula, ( ),V zα  represents the difference parameter between pixel points 
and surrounding pixel points, and the specific calculation formula is as follows: 

( )
( )

[ ] 2

,

, exp || ||n m m n
m n C

V z z zα γ α α β
∈

⎡ ⎤= ≠ − −⎣ ⎦∑  (13) 

In formula (13), β  is the pixel mean, and C  is the set formed by combining a certain 
pixel point with its neighbouring pixels. 

1 The Gaussian component in the Gaussian model is assigned to each pixel, and the 
results are as follows: 

( )min , , ,ˆ
n

n n n n nk
k arg D k zα θ=  (14) 

2 Given the outcomes of the aforementioned analysis, the parameters of the Gaussian 
model were acquired and fine-tuned, leading to the subsequent results: 

( )min , , ,ˆ arg U k z
θ

θ α θ=  (15) 

3 By leveraging the Min-Cut algorithm, the remote sensing image segmentation of 
agricultural non-point source pollution targets yields the following results: 

( )arg min , , ,ˆ ˆ
nF E k z

α
α θ=  (16) 

2.3 Remote sensing image change detection 

The process of remote sensing image change detection involves using multi temporal 
remote sensing image data to identify and evaluate the changes of these targets. This is 
achieved by comparing images captured at different time points and analysing the 
variations observed between them. This method can determine whether the target has 
changed by analysing the differences in pixel values or other specific change indicators in 
the image. By detecting changes in remote sensing images, valuable insights can be 
gained into the evolving patterns of agricultural non-point source pollution targets. These 
changes can include the expansion of farmland, alterations in crops, shifts in water areas, 
and more. Such analysis aids in evaluating the environmental impact of agricultural 
activities and assessing the rationality of resource utilisation. Figure 2 illustrates the 
architecture of the change detection system for remote sensing images. 

Assuming that two remote sensing images at different time points are represented by 
images 1 and 2 respectively, a multi difference operator, namely LR difference map and 
MR difference map, is used for decision fusion to generate a difference map. 
Unsupervised clustering functions are used for pre classification, and pixels are divided 
into modified, unchanged, and invariant classes, and further operations are carried out. 
Subsequently, the frequency domain analysis FDA module was used to convert it into a 
frequency domain operation, and the DCT function was used for frequency domain 
conversion. The DCT coefficients were inputted into the GLU for selection. The output 
results were then obtained through two fully connected layers to obtain the variation 
difference diagram at different time points using remote sensing images 1 and 2, 
respectively, in order to achieve remote sensing image change detection of agricultural 
non-point source pollution targets. 
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Figure 2 Architecture for detecting changes in remote sensing images of agricultural non-point 
source pollution targets (see online version for colours) 

 

 

1 Multi difference operator module 

The logarithmic ratio operator is an effective tool for converting the multiplicative 
random noise present in remote sensing images of agricultural non-point source pollution 
targets into additive noise. This transformation mitigates the impact of noise, allowing for 
more accurate and reliable image analysis and interpretation. The difference image 
generated by it is transformed and nonlinear shrinkage is achieved, which is better when 
the proportion of unchanged areas is large. The difference image generated by it is 
represented by the following formula: 

( ) ( )
( )

2

1
LR

I x C
D x log

I x C
+

=
+

 (17) 
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In formula (17), ( )1I x  and ( )2I x  represents the intensity values of images 1 and 2 at 
spatial position x , respectively, and C  represents a non-zero constant. 

The mean ratio operator can suppress individual outliers to a certain extent, but its 
effect is average for areas with a large amount of noise accumulation. The difference 
graph introducing the mean ratio operator is represented by the following formula: 

( ) ( ) ( )( )
( ) ( )( )

1 2

1 2

,
1

,MR

min I x I x
D x

max I x I x
= −  (18) 

In the above formula, ( )1I x  and ( )2I x  represent the intensity of images 1 and 2 after 
mean filtering. 

Combining the advantages of the above operators and considering the individual and 
neighbourhood information in remote sensing images, this paper proposes a multi 
difference operator method that combines the logarithmic ratio operator and the mean 
ratio operator to generate a difference map. The generated difference map is represented 
by the following formula: 

( ) ( ) ( ) ( )1MD LR MRD x D x D xα α= + −  (19) 

In the above formula, α  represents the fusion parameters. 

2 FCM clustering module 

Fuzzy mean clustering (FMC) is an extended method based on fuzzy C-means clustering 
(FCM). FMC introduces the fuzzy mean function on the basis of FCM, optimises 
clustering results by defining an objective function, and introduces fuzzy dissimilarity to 
measure the differences and similarities between samples. FMC further considers the 
similarity between data points during the clustering process, more accurately 
characterising the complex structure of the data. 

Assuming that the remote sensing image dataset { }1 2, ,..., nX x x x=  consists of k  
categories, with the centre of each cluster being ( )1,2,...,jm j k= , the clustering loss 
function based on membership is represented by the following formula: 

( )
1 1

k n b

f j i i j
j i

J x x mµ
= =

⎡ ⎤= −⎣ ⎦∑∑  (20) 

In formula (20), ( )j ixµ  represents the membership function of category j  
corresponding to the ith sample. The iterative formulas for jm  and ( )j ixµ  are as 
follows: 

( )
( )

1

1

bn
j i ii

j bn
j ii

x x
m

x

µ

µ
=

=

⎡ ⎤⎣ ⎦=
⎡ ⎤⎣ ⎦

∑
∑

 (21) 

( )
( )

( )

2/ 1

2/ 1
1

|| ||

|| ||

b
i j

j i k b
i ss

x m
x

x m
µ

− −

− −
=

−
=

−∑
 (22) 
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After initialising the cluster centre, the membership function is calculated using  
formula (20), and the current membership function is used to recalculate the cluster 
center. When the algorithm converges, the final clustering result can be obtained. 

3 FDA module 

Using discrete cosine transform (DCT) as a frequency domain analysis tool (Gul and 
Toprak, 2023; Abbasi et al., 2022), remote sensing images can be divided into parts with 
different visual qualities. The formula for the variation of DCT is as follows: 

1

0

1
2

n

m k
k

f x cos m k
n
π−

=

⎡ ⎤⎛ ⎞= +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑  (23) 

In the above formula, kx  represents the kth remote sensing image, and m  represents the 
clustering center. The one-dimensional DCT shown in formula (23) cannot meet the task 
requirements, so a two-dimensional DCT is introduced to handle the task. The forward 
transformation formula is given by the following formula: 

( ) ( ) ( )( ) ( )( )cos 2 1 cos 2 1
, , * *

2 2
x u y v

f u v f x y
N N

π π+ +
=∑∑  (24) 

In the above formula, ( ),f x y  is a two-dimensional vector in the spatial domain, ( ),u v  

represents the elements of the transformation coefficient array, ( ),x y  represents the 

spatial greyscale values of the original image, ( ),u v  is the frequency coordinates in the 
frequency domain. 

This paper uses gated linear units to select the key components, and the output results 
are then obtained through two fully connected layers to obtain the difference diagram of 
remote sensing changes at different time points, thus achieving change detection of 
remote sensing images. The results are as follows: 

( ) ( ) ( )h X X W b X V cσ= × + × +:  (25) 

In the above formula, W and V represent different weight matrices, is σ represents the 
sigmoid function, b and c represent the calculation deviation of different elements, and 
:  represents the multiplication of each element. 

2.4 Intelligent monitoring method for agricultural non-point source pollution 

Based on the remote sensing image change detection results, combined with agricultural 
non-point source pollution monitoring indicators, intelligent technology can be used to 
achieve intelligent monitoring. This can improve monitoring efficiency, accuracy, and 
timeliness, and provide important information support for environmental protection 
departments and decision-makers. 

The normalised vegetation index (NVI) is widely utilised as a crucial indicator in the 
monitoring and assessment of agricultural non-point source pollution. It offers valuable 
insights into the vegetation cover and growth status in agricultural areas. 

( ) ( )/DVIN NIR Red NIR Red= − +  (26) 
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In formula (26), NIR is the near-infrared reflectance, Red is the red reflectance. 
The difference vegetation index (DVI) is extensively employed as a key indicator for 

monitoring agricultural non-point source pollution. It provides valuable information 
regarding vegetation growth and health status in agricultural areas. The specific 
calculation formula for DVI is as follows: 

VID NIR Red= −  (27) 

The green vegetation index specific calculation formula is as follows: 

( )VIG = Green / Green+ Red + Blue  (28) 

In the above formula, Green  is the reflectance in the green light band, Blue  is the 
reflectance in the blue light band. 

Soil erosion indicators are essential tools in the monitoring. They are specifically 
designed to assess and monitor the severity of soil erosion in farmland. Soil erosion refers 
to the impact of external factors such as rainfall, water flow, and wind on the soil surface, 
resulting in the loss of soil particles and a decrease in soil quality. The indicator is 
calculated using the following formula. 

( )* * * /IE R K LS C P=  (29) 

In the above formula, R  is the rainfall erosivity factor, K  is the land management 
factor, LS is the slope length factor, C is the coverage factor, and P is the protection 
measure factor. 

The specific calculation formula for sediment transport rate in the soil loss model is 
as follows: 

( )* * * /SYS R K LS C P=  (30) 

Chlorophyll concentration in water is an important parameter in water pollution 
indicators, used to evaluate and monitor algae growth and water quality in water bodies. 
The calculation formula for chlorophyll concentration in water based on regression 
models of measured and remote sensing data is as follows: 

*hl aC a Rrs b− = +  (31) 

In the above formula, Rrs  represents the far-infrared radiation reflectance, and a and b 
represent different regression coefficients. 

The formula for calculating the concentration of suspended solids in water bodies is 
as follows: 

( )* c
SMT a Rrs b= −  (32) 

In the above formula, c represents an empirical parameter that can be fitted through 
measured data. 

To calculate dissolved oxygen, a spatial interpolation model based on remote sensing 
images is utilised. The specific calculation formula is as stated below: 

1 2 3 4* * * *O hl a hD k T k C k S k PAR−= + + +  (33) 
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In the above formula, T  represents water temperature, hS  represents transparency, AP  
represents photosynthetic effective radiation, and 1k , 2k , 3k , and 4k  represent different 
weight coefficients. 

The Moran’s I index is employed in this paper to assess the level of spatial 
autocorrelation, which indicates the clustering of pollution. The precise calculation 
formula is provided below: 

( ) ( ) ( ) ( ) ( )/ * * * / *I bar bar bar barM n W X X W X X X X X X′ ′= − − − −  (34) 

In formula (34), n is the number of remote sensing image samples, X is the variable 
values of remote sensing images, Xbar is the average value of the variables. 

Through the amalgamation of agricultural non-point source pollution monitoring 
indicators mentioned earlier with the outcomes obtained from remote sensing image 
change detection, a sophisticated model for intelligent monitoring has been developed. 
The precise formulation of the intelligent monitoring model is as follows: 

( )1

n
i i j

i

r y y
E

h X=

′ +
=∑  (35) 

In the above formula, ir′  is abnormal parameters, iy  represents agricultural non-point 
source pollution load, and jy  is pollution concentration. 

3 Experimental design 

3.1 Experimental scheme 

To validate the practicality of the intelligent monitoring method for agricultural non-point 
source pollution, a series of experimental tests were carried out. 

Step 1: Determine the research area, develop an experimental plan based on the 
experimental subjects and research requirements, determine monitoring points, 
monitoring frequency, monitoring period, and sampling method. Figure 3 showcases the 
remote sensing images captured within the designated study area. 

Figure 3 Remote sensing images of the study area (see online version for colours) 
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1 Monitoring points: Considerable attention was directed towards areas exhibiting 
potential or verified instances of agricultural non-point source pollution, notably 
encompassing farmland and the surrounding regions of aquaculture farms. 
Representative points were carefully chosen considering the feasibility and 
practicality of sampling operations. 

2 Monitoring frequency: Determine the monitoring frequency based on the monitoring 
purpose and research requirements, and choose continuous and intermittent 
monitoring methods to achieve agricultural non-point source pollution monitoring. 

3 Monitoring period: The monitoring period needs to be determined based on factors 
such as agricultural activities, seasonal changes, and hydrological and meteorological 
conditions. 

4 Sampling method: Suitable sampling methods can be selected based on different 
monitoring objects, such as soil sample collection, water sample collection, crop leaf 
or root collection, etc. 

Step 2: Install corresponding intelligent monitoring equipment or sensors, such as 
automatic weather stations, soil moisture monitors, water level and flow monitors, to 
ensure accurate data acquisition. 

Step 3: Regularly collect data obtained from monitoring equipment, including parameters 
such as soil, hydrology, meteorology, plants, and water quality. Record the time, location, 
and relevant information of monitoring data, and the types of data collected are as 
follows: 

1 Hydrological data: Including hydrological monitoring data such as water level, flow, 
rainfall, etc., used to understand changes in water bodies and water cycle conditions. 

2 Soil data: In addition to the aforementioned factors, soil monitoring data including 
soil moisture, soil moisture content, and soil temperature were also incorporated to 
assess the soil moisture status and temperature variations. 

3 Meteorological data: Moreover, for a comprehensive analysis, meteorological 
monitoring data, and wind direction were included to assess the impact of weather 
conditions on agricultural non-point source pollution. 

4 Plant data: Includes plant monitoring data such as crop growth, crop leaf area index 
(LAI), and crop leaf nitrogen content, used to analyse plant growth status and 
nutrient utilisation. 

5 Water quality data: Includes monitoring data on the concentration of pollutants such 
as nitrogen, phosphorus, and chemical oxygen demand (COD) in water bodies, used 
to evaluate the quality and degree of pollution of water bodies. 

6 GPS data: Including the longitude and latitude coordinates of monitoring points, 
used to record the spatial position information of monitoring points. 

Step 4: Clean, organise, and analyse the collected data accordingly. 

Step 5: Input the obtained data into the simulation software, use different methods to 
complete the intelligent monitoring experiment of agricultural non-point source pollution, 
and obtain relevant experimental results. 
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The actual application effects of different methods are verified by comparing their 
monitoring coverage, pollutant concentration monitoring accuracy, and pollutant load 
monitoring accuracy. The coverage rate of the coverage of monitoring activities in a 
specific geographical area or agricultural activity range, and the higher the coverage rate, 
the more accurate the monitoring results obtained. The accuracy index for monitoring the 
concentration of agricultural non-point source pollutants is used to evaluate the 
consistency between monitoring results and actual pollutant concentrations. The accuracy 
index of agricultural non-point source pollutant load monitoring is used to evaluate the 
consistency between monitoring results and actual pollutant load values. The higher the 
accuracy of pollutant concentration monitoring and pollutant load monitoring, the more 
accurate the monitoring results are. 

3.2 Experimental result 

Figure 4 illustrates the comparison results of agricultural non-point source pollution 
monitoring coverage rates between the three experimental comparison methods. 

Figure 4 Monitoring coverage rate (see online version for colours) 

 

As the number of experiments increases, the monitoring coverage rate by the three 
methods shows a fluctuating trend. Among them, compared with the three experimental 
methods has a more stable monitoring coverage curve fluctuation, indicating that  
the monitoring process of this method is more stable. From a data perspective, the 
monitoring coverage rate using Zhang et al. (2022) method is 67.2% to 83.12%;  
the monitoring coverage rate using Wang and Li (2022) method is 64.9~86.2%; the 
monitoring coverage rate using the proposed method is above 96.3%, indicating that  
the monitoring coverage rate for this method is higher, indicating that this method can 
more accurately understand and grasp the potential impact of agricultural activities on the 
environment, and timely detect and solve potential non-point source pollution problems. 

Table 2 presents the comparison results of the accuracy of pollutant concentration 
monitoring between the three experimental comparison methods. 
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Table 2 Accuracy of monitoring the concentration of agricultural non-point source pollutants 

Accuracy of pollutant concentration monitoring/% 
Number of 
experiments 

Reference Zhang et al. 
(2022) method 

Reference Wang and 
Li (2022) method Proposed method 

10 86.2 65.8 96.7 
20 82.5 67.4 95.8 
30 74.9 74.1 97.4 
40 82.3 75.2 98.3 
50 78.5 74.3 97.1 
60 80.3 76.5 96.3 
70 82.6 77.1 97.5 
80 84.1 69.8 98.5 
90 83.2 66.3 96.4 
Mean value 81.6 71.8 97.1 

The maximum accuracy of monitoring the concentration of agricultural non-point source 
pollutants using Zhang et al. (2022) method is 86.2%, the maximum accuracy of 
monitoring the concentration of pollutants using Wang and Li (2022) method is 77.1%, 
and the maximum accuracy of monitoring the concentration of pollutants using the 
proposed method is 98.5%; The minimum accuracy of monitoring the concentration of 
agricultural non-point source pollutants in Zhang et al. (2022) method is 74.9%, the 
minimum accuracy of monitoring the concentration of pollutants in Wang and Li (2022) 
method is 65.8%, and the minimum accuracy of monitoring the concentration of 
pollutants in the proposed method is 95.8%; The average accuracy of monitoring the 
concentration of agricultural non-point source pollutants using Zhang et al. (2022) 
method is 81.6%, the average accuracy of monitoring the concentration of pollutants 
using Wang and Li (2022) method is 71.8%, and the average accuracy of monitoring the 
concentration of pollutants using the proposed method is 97.1%. Overall, the proposed 
method has the highest accuracy in monitoring the concentration of agricultural non-point 
source pollutants, indicating that it can more accurately measure and analyse the 
concentration of non-point source pollutants in agricultural production processes. This 
helps to more accurately understand the potential impact of agricultural activities on the 
environment and can formulate more scientific and refined environmental protection and 
agricultural management policies. 

Table 3 exhibits the comparison results of the accuracy of agricultural non-point 
source pollutant load monitoring between the three experimental methods. 

The maximum accuracy of agricultural non-point source pollutant load monitoring 
using Zhang et al. (2022) method is 88.3%, the average is 83.6%, and the minimum value 
is 80.6%. The maximum accuracy of agricultural non-point source pollutant load 
monitoring using Wang and Li (2022) method is 78.9%, the average is 74.4%, and the 
minimum value is 70.1%. The maximum accuracy of the proposed method for 
monitoring agricultural non-point source pollutant load is 99.3%, the average is 97.6%, 
and the minimum value is 94.7%. From various angles, the proposed method 
demonstrates the highest accuracy in monitoring agricultural non-point source pollutant 
load. This indicates that it has the potential to achieve precise and reliable monitoring. 
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Table 3 Accuracy rate of agricultural non-point source pollutant load monitoring 

Accuracy of pollutant load monitoring/% 
Number of 
experiments 

Zhang et al. (2022) 
method 

Wang and Li (2022) 
method Proposed method 

10 82.3 75.6 98.5 
20 80.6 74.1 97.4 
30 85.2 75.2 98.2 
40 84.1 77.3 98.5 
50 86.3 74.6 99.3 
60 82.7 78.9 94.7 
70 80.6 74.6 97.2 
80 81.9 72.3 96.3 
90 88.3 70.1 98.1 
Mean value 83.6 74.4 97.6 

4 Conclusion 

Indeed, agricultural non-point source pollution poses significant damage and threats to 
the water environment and ecosystem. By monitoring pollution, we can effectively detect 
and control the sources of pollution in the early stages, allowing for prompt intervention 
and mitigation measures to protect and preserve the water environment and ensure the 
sustainability of the ecosystem. Aiming at the problems of traditional monitoring 
methods, an intelligent monitoring method for agricultural non-point source pollution 
based on remote sensing image changes is proposed. The test findings demonstrate that 
the proposed method achieves a remarkable coverage rate of over 96.3% when 
monitoring agricultural non-point source pollution, an average accuracy rate of 97.1% for 
pollutant concentration monitoring, and a maximum accuracy rate of 99.3% for pollutant 
load monitoring. This indicates that the method can achieve precise monitoring. Through 
continuous research work, the proposed method in this paper will continue to play an 
important role and make greater contributions to sustainable agricultural development 
and environmental protection. 
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