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Abstract: In rock drilling applications, abrasion causes wear in inserts and
hostile working conditions cause damage to other bit components. The effects
of physico-mechanical properties of rock on the tool wear are investigated by
several researchers in the past. So, it becomes imperative to exhibit good
scalability of rock properties by segregating rock samples having similar
properties for natural homogeneous rock property groupings. The aim of this
work is to segregate groups with similar type of rock properties and assign
them into a cluster. This work considers a machine learning based hierarchical
clustering approach to segregate groups of rock with similar traits. The results
obtained from this study initiate a conversation on the proper choice of rock
and tool material for doing laboratory studies using wear test apparatus. The
analysis’s findings map the distinct qualities of the rock for different mining
areas by classifying groups of rocks with comparable characteristics.
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1 Introduction

During drilling, the cases of premature failures of drill bits found to be a common
phenomenon in terms of insert failures. Moradizadeh et al. (2016) investigations showed
that the drill bit lifetime per meter of drill hole drilled by a bit (m/bit) decreases with an
increase in equivalent quartz content. The wear of inserts due to rock abrasivity in bits
reduces the level of performance of the drilling operation (Yarali et al., 2008). The
current reasons for tool failure are a rise in temperature, noise, and vibration. Sato et al.
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(2013) reported that rising temperatures during drilling accelerate insert wear. The
combined effect of rock properties and temperature rise in polycrystalline diamond
compact (PDC) drill bits was explored by Appl et al. (1993). Shankar et al. (2020)
reported that the bit-rock interface temperature plays a major role in the wear rate of the
tungsten carbide (WC) drill bit during drilling conditions. Piri et al. (2021) have reported
that the noise level and whole-body vibration strongly influence wear in inserts. Figure 1
depicts the integrated challenges for tungsten carbide inserts (TCI) under abrasive
conditions.

Figure 1 Reasons of TCI failure under different conditions (see online version for colours)
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Scientific investigations have always been carried out to develop new drill bit insert
materials and their components. The lack of real-life data on wear parameters from mines
often remains indecisive. Developing new insert materials requires a series of laboratory
experiments with various parameters, including rock properties. Still, most of the
researchers have not considered state-of-the-art machine learning techniques in their
studies to improve tool wear conditions in rock drilling applications.

Machine learning is the branch of artificial intelligence and has the potential to solve
complex problems related to rock mechanics by providing significant solutions. Mozaffar
et al. (2019) have taken advantage of machine learning algorithms to identify the
unknown relations and mapped input and output parameters for their laboratory results
obtained from experiments. Researchers have utilised data-driven learning methods to
predict effective correlations for complex problems in rock mechanics (Gu et al., 2018;
Liang et al.,, 2018). The different models such as support-vector machines, linear
regression model, clustering, deep learning, adoptive boosting algorithm, and kernel and
nearest-neighbour non-parametric regression models have been identified by researchers
in various fields of engineering problems to determine the positive outcome for complex
problems (Yao et al., 2014; Ghosal et al., 2020; Li et al., 2022; Altman, 1992). The
information (Azarafza et al., 2019, 2022; Cemiloglu et al., 2023; He et al., 2019, 2021,
2023; Wang et al., 2022, 2023; Kumar and Chandar, 2023; Steiakakis et al., 2019) given
in Table 1 represents machine learning and artificial intelligence utilisation in mining
engineering.
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Recent developments in mining using machine learning

Table 1
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Rock is an anisotropic and non-homogeneous material described by its structure,
chemical composition, and texture. It is essential to understand the rock material
properties to measure the reliability of drill bits and wear of drill bit inserts (Abbas,
2018). In this paper, rock samples were obtained from the drilling locations, and the
physico-mechanical properties of the rocks were measured from representative rock
samples prepared in the laboratory complying with International Society of Rock
Mechanics (ISRM) standards (Hatheway, 2009). The physico-mechanical properties of
sandstone rock, such as dry density, porosity, P-wave velocity (Vp), uniaxial compressive
strength (UCS) and modulus of elasticity (E), Cerchar abrasivity index (CAI), and
Cerchar hardness index (CHI) have been considered in the present study. A hierarchical
agglomerative machine learning-based clustering approach has been derived from the
obtained rock properties to understand the impact of different rock properties on mining
locations. The present hierarchical agglomerative clustering approach not only segregates
the different mining locations based on rock properties but will also help in the process of
data collection of appropriate rock samples for wear tests in various studies based on
needs. Further, this study reduces the sample’s invariability in laboratory tests for similar
types of rock data and also reduces the overall cost of experiments. This work also
provides a better understanding of designing experiments and selecting tools in drilling
applications.

2 Methodology

The research methodology provides the steps to be followed and presents a clear map for
the problem statement. Figure 2 depicts the flowchart that was considered in this study.

2.1 Preparation of rock test specimens

The author utilises the Nevada Chart Data Analysis technique to understand the failure
condition of drill bits based on drilling locations. The details on Nevada chart data
analysis can be found elsewhere (Prakash and Mukhopadhyay, 2020). The significant
advantage of this technique is that it works on warranty-based data without large-scale
assumptions and data manipulations. Based on the failure conditions of drill bits in the
Nevada Chart, rock block samples were collected from the field as per the ISRM
standards (Hatheway, 2009). Sandstone rock (block size: 300 mm X 300 mm X 200 mm)
samples were gathered from 30 different drilling locations of the mine. Cylindrical core
samples of size 54 mm dia. X180 mm height were prepared from the sandstone rock
samples using a core drill machine. The prepared samples were ground using a grinder
and polished with a corundum abrasive powder.

Two samples for UCS and three samples for BTS have been prepared from each
sandstone block. In the sample preparation process of UCS, the length-to-diameter ratio
was kept greater than 2.5. Initially, the prepared samples for the UCS test were taken for
the Cerchar hardness test (CHI). After performing the CHI test, the drilled section
developed by a miniature drill machine was removed, and the samples were polished as
per the ISRM standards (Hatheway, 2009). Further, the polished UCS samples were
taken into the study for the density, P-wave velocity, and porosity test. The density,
P-wave velocity, and porosity tests are the non-destructive test. The unpolished BTS
samples were used for the Cerchar abrasivity test. In the study, four numbers of samples
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have been considered for density, porosity, CHI, P-wave velocity, and UCS test. Two
samples (from each sandstone block) were used for the CAI test. Six samples (three from
each sandstone block) were used for the BTS test. All test samples were prepared as per
ISRM standard (Hatheway, 2009). A few prepared rock samples for laboratory tests are
shown in Figure 3.

Figure 2 Flowchart representing the various steps in the methodology (see online version
for colours)

1

[ Identifying the failure locations of inserts |
1

[ Collection of rock samples |
1

| Preparation of rock specimens |
1

| Measurement of rock properties I
1

| Data Partition and Defining Variables I
1

| Development of Clustering Model |
1

| Evaluation of Model |

l

| Structure of rock data| |I\'ormallzation of rock data | Determination of Euclidean
| | distance
]
1
| Investigation on Quality of clustering ]
1
| Optimization of Clustering results |
1
| Formation of Clustering dendrogram |
1
| Significance of Clustering results |
i
| Conclusions |

2.2 Measured values of rock properties

The measured values of physico-mechanical properties of sandstone rock samples
collected from 30 different mine locations are presented in Table 2. The measured data in
Table 2 discloses that high density and low porosity rock usually possessed higher UCS
values. The sonic velocity Vp was found greater than 3 for the tested samples, indicating
that the grains inside the rock sample are closely packed. The behaviour of sonic velocity
with different rocks can be found elsewhere (Ramamurthy, 2004). Further, the authors
have discussed and estimated each rock property’s significance for the dependent
variable UCS using a Pareto chart (Prakash and Mukhopadhyay, 2020) to interpret the
relationship between the rock properties. For the Pareto chart analysis, the dependent
variable was UCS, whereas the independent variables were dry density, porosity, CHI,
BTS, Vp, and E.
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The measured rock properties

Table 2
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Figure 3 Prepared rock test samples for physico-mechanical test

A statistical analysis representing the mean, standard deviation, median, median
deviation, skewness, kurtosis, and standard error pertaining to the estimated rock
properties is shown in Table 3.

Table 3 Represents the statistical results on the tested samples for each rock’s properties

SI. no. Mean gta;?da.rd Median Median.al?solute Skewness  Kurtosis Standard
eviation deviation error

Dry-density ~ 22.38 0.76 22.34 0.90 0.28 -0.89 0.14

Porosity 2.63 1.22 2.42 1.33 0.68 -0.53 0.22

CHI 28.43 5.85 27.70 6.81 -0.24 —0.93 1.07

BTS 8.60 2.14 9.09 2.44 -0.35 -1.36 0.39

P-wave 4.36 0.54 4.22 0.54 0.22 -0.45 0.10

velocity

Youngs 8.91 2.29 9.48 2.37 —-0.55 -1.12 0.42

Modulus

CAI 2.87 0.33 2.83 0.41 0.46 -1.11 0.06

UCs 59.02  16.68 61.81 19.79 -0.19 -1.14 3.04

From Table 2, it can be observed that the rock specimens comprise a varied range of rock
properties. Kurtosis measures the distribution’s tailedness and estimates the dataset’s
outlier data. The considered data in Table 2 is acceptable for statistical analysis as the
kurtosis estimation for each rock properties lie in between —2 to +2. The details on
Kurtosis can be found elsewhere (Cain et al., 2017).

2.3 Clustering of rock properties

Clustering is an advanced and important technique to understand different phenomena. It
segregates explicit data from different point of views concluding it into a value added
information and provides statistical solutions to data in several fields (Davis and Meyer,
2009; Saxena et al., 2017). For the data shown in Table 2, a clustering investigation has
been performed to extract some essential information from the data by observing what
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groups the data focus falls into when applying a clustering algorithm. In this way, it is the
way to gather the data points of rock property into clusters so that one could be able to
investigate the significance of rock properties based on different mining locations. Thus,
the objective of clustering analysis is to understand the impact of rock properties on the
mining locations. The clustering analysis in this study discusses the following issues:

1 How to classify the mining area based on the rock properties?

2 How to quantify the significance of individual rock properties with respect to the
mining locations?

3 Based on the mining locations, whether these rock properties have a similar or
dissimilar impact on bit failure?

The clustering analysis performed in this study has been developed using R codes in
software R (Core Team, 2013). R is a language and environment for statistical computing
and graphics.

A study on failed bits obtained from the field is crucial as it provides significant
information on failed inserts regarding life estimation. In the field, drill bit fails for many
reasons, and one of the reasons is the rock characteristics of that location. Researchers
have thoroughly studied the failure mode of insert obtained from the field and
simultaneously developed test setups for their betterment. However, the correct
assessment of the inserts is challenging due to rock characteristics. In Figure 4, a
methodology to address this problem is provided. The developed clustering process in
this study is a method to guide interface design between the failed and newly developed
bits.

Figure 4 Practical tool selection strategies in consideration of clustering analysis

« Collection of  + Collection of
rock specimens failed inserts

I Investigation on failed inserts I

| Characterization of failed insensl

7

l » Performance specification

AN

Clustering analysis

Segregation of rock samples Design of experiments
Ly Selection of reliable rock l Investigation on ‘ Selection of tool material Je_____|
specimen tool wear based on field study

l

| Product development |

The new bits are created in the laboratory by a series of investigations. In the case of TCI,
researchers tested the pin sample of TCI against the rock surface for the determination of
tool characteristics. However, to estimate the accurate solution on tool wear, utilising the
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rock specimen from the exact field location is essential. Clustering here investigates the
rock sample characteristics and segregates them into groups according to their properties.
By segregating rock samples for the wear test setup using clustering, a reliable solution
may be achieved in the case of insert material. These insights gained through the
clustering approach help with the selection of tool material for a drilling application.

3 Clustering methodology
Clustering methodology can be categorised into four effective methods. They are

appeared in Figure 5. Each method has its advantages and hence can be used on the basis
of data characteristics (Rokach and Maimon, 2010).

Figure 5 Different types of clustering methods

Clustering methods

v

v

Centroid based
methods

v

K- methods
K- means

v
K- prototype Gaussian mixture

K- modes model | ‘ DBSCAN optics
}

v v v v

| Single linkage | |Complete Iinkage‘ | Centroid linkage | | Average linkage ‘

Hierarchical
clusterin

Distribution based Density based
clusterin clusterin

)

Divisive

Agglomerative

Source: Rokach and Maimon (2010)

The present work discusses a hierarchical-based agglomerative clustering approach to
rock data since this approach is the prominent and widely used technique to analyse data
with multiple variables. The steps involved in this approach are discussed below.

3.1 Structure of rock data

The first step is to understand the data type. For the clustering analysis, the data are
drawn from Table 2. The data frame consists of 30 observations with nine variables in
which the eight variables, such as dry density, porosity, CHI, BTS, sonic velocity,
Youngs modulus, CAI, and UCS, are of numeric type. The mining area is the 9th variable
of factor type with 30 different levels, such as mine area 1, mine area 2 ,....., mine area
30.

3.2 Normalisation of rock data

The clustering calculation must not be one-sided with regards to the variables having
higher values only. Table 2 shows that UCS values are more with respect to other
variables. Also, all these numeric variables are not present on the same scale. This may
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prompt inappropriate clustering results, and because of this, the clustering results’
effectiveness will decrease.

To conquer this issue, clustering algorithm will bring down all the numeric variables
shown in Table 2 together to a similar scale. One of the most widely recognised methods
to do so is normalisation, where this approach ascertains the mean and standard deviation
of the variable and with these boundaries, the objective of normalisation is to change the
estimations of the numeric column in the dataset to a typical scale, without twisting
contrasts in the scopes of qualities.

In other words, the normalisation procedure gives equal importance to all the
variables irrespective of their magnitude value. The standardised scale function in
‘software R (Core Team, 2013)’ has been used to compute the normalised values for the
variables discussed in Table 2. For each numeric variable shown in Table 2, mean and
standard deviation values have been computed. The scale function is a generalised
method to determine a normalised value for any dataset. This is also called a data
transformation technique, which is used for regression and clustering analysis. The
normalised value using the scale function is simply the number of standard deviations
away from the mean. In the study, the normalised value has been computed by using the
following formula:

Xi—X

zZ; =
N

where
z; normalised value of rock properties

x; given value of rock property

X mean value of the corresponding rock property
s standard deviation of the corresponding rock property.

In this step, all the variables’ normalised values are calculated using clustering
algorithms, which are shown in Table 4. Here, the normalisation technique gives equal
importance to all the variables before estimating each property’s significance. Table 4
depicts that all variables are on the same scale as the magnitude is reduced for all the
variables.

3.3 Calculating the Euclidean distance

Euclidean distance that depicts the distance between two points based on the Pythagoras
theorem is one of the most utilised algorithms in the cluster investigation (Zendrato et al.,
2020). The Euclidean distance for the normalised dataset shown in Table 4, has been
calculated to find the similarities between the mining locations for the different rock
properties. The calculated Euclidean distance in consideration with the rock properties by
considering clustering algorithm is shown in Table 5. In Table 5, the integer numbers 1,
2,3, ..., 30 are the different mining locations and represent mine area 1, mine area 2,....,
and mine area 30, respectively. The Euclidean distance between these mining locations is
represented in a matrix form (refer to Table 5).
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The minimum Euclidean distance for any two mining locations suggests that the two
mining areas have similar rock properties and must be grouped together. Table 5 shows
that the minimum distance of mine area 1 with respect to any other mining locations is
1.56, and basically, it is the Euclidean distance between mine area 1 and 4. However, the
maximum distance of mine area 1 with respect to any other mining areas is 6.58, and it is
the distance between mine area 1 and mine area 27. These observations state that mine
area | and mine area 4 can be grouped together in one cluster since they pose similar rock
properties compared to other locations. However, the mine areal and mine area 27 must
not be grouped together since their Euclidean distance is very large. Similarly, the
distance between any two mining locations can be obtained and grouped together.

4 Results and discussion

4.1 Determining the optimum number of clusters

Finding the optimum number of clusters for a dataset is the biggest challenge. However,
there are many methods available that are helpful for this type of problem. The elbow,
silhouette and gap statistics (Nagpal et al., 2013) methods mostly suggest the best optimal
number of clusters for any dataset. One can use any of the three methods for their dataset
for optimising the results. In this study, the silhouette method has been considered for
finding the optimal number of clusters of a dataset shown in Table 4. The graphical
representation of the results using the silhouette method is presented in Figure 6.

Figure 6 Optimal number of clusters using the silhouette method (see online version for colours)
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Here, the silhouette method suggests the optimum number of clusters for the normalised
dataset as 2. This implies that the 30 different mining locations must be divided into two
distinct clusters based on rock properties.

4.2 Quality of clustering results

The clustering quality matters in data investigation. The adopted hierarchical-based
clustering method estimates clustering quality by evaluating the clustering dendrogram
with five different agglomerative linkages. The different agglomerative linkages (Tokuda
et al., 2022) are average, complete, single, centroid and median. The quality of clustering
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mainly depends upon the average silhouette width (Nagpal et al., 2013; Tokuda et al.,
2022). The silhouette width is the average distance between clusters. Its value lies
between —1 and 1, where 1 represents a good cluster (Golalipour et al., 2021). Since the
silhouette method estimates the optimal number of clusters as 2, the authors determined
the average silhouette width value for all the five agglomerative linkages to investigate
the clustering effectiveness. Table 6 differentiates the quality of clustering based on the
average silhouette width value.

Table 6 Clustering results

tagonerave Q0 G et
method locations in two clusters

Average 2 6.24 0.41

Complete 2 6.24 0.41

Single 2 23.1 -0.03

Centroid 2 6.24 0.41

Median 2 17.13 0.35

The average silhouette width for the average, complete, and centroid linkages is 0.41,
which is maximum compared to the other linkages. This implies that the clustering
dendrogram produced by any of these linkages gives the best possible combination to
mining locations. From Table 6, these agglomerative linkages also divide the 30 different
mining locations into two clusters, with six mining locations in one cluster and the rest
mining locations in the second cluster. The following silhouette plot also depicts the same
results using complete linkage.

Figure 7 Silhouette plot using complete agglomerative linkage
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In Figure 7, n = 30, represents the total number of mining locations, and they have been
divided into 2 clusters based on the obtained rock properties. Also, it depicts that the six
mining locations of cluster 1 have a similar type of rock formations. However, the other
24 mining locations of cluster 2 have different kinds of rock formations compared to the
mining locations of cluster 1. A hierarchical architecture or cluster dendrogram for all the
mining location based on the calculated distance matrix is shown in Figure 8.
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Figure 8 Cluster dendrogram for the mining locations using complete linkage
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The clustering dendrogram shown in Figure 8 implies that the mining areas such as 4, 8,
20, 1, 2, and 5 are grouped in one cluster since the rock properties belong to these areas
are more or less similar to each other. However, the mining areas other than these
locations have been grouped in the second cluster. The results from cluster means and
within the cluster sum of squares were favourable when the data were analysed with the
silhouette method. The conditions on an optimal number of clusters and their associated
results by considering various agglomerative linkages such as average, complete, single,
centroid, and median can be observed in Figure 6, Table 6, and Figure 7 respectively.

4.3  Significance of rock properties based on mining locations

The clustering dendrogram using the complete agglomerative linkage determines each
rock’s properties’ impact strength for their respective cluster. Table 7 shows the impact
strength value of individual rock properties. In Table 7, cluster 1 refers to the mining
areas 1, 2, 4, 5, 8 and 20. Also, cluster 2 refers to mining areas except 1, 2, 4, 5, and 8.
The rock properties have a higher impact on drilling locations when its impact strength
value is positive.

Table 7 Represents the impact strength of individual rock properties in different clusters
Clusters Dry-density Porosity CHI BTS
1 —-1.1256113 1.4715033 —1.4966445 -1.3560117
2 0.2814028 —0.3678758 0.3741611 0.3390029
Sonic velocity (P-wave) Young’s modulus CAI ucs
1 —1.2752952 —1.5023347 —0.5596735 —1.5025437
2 0.3188238 0.3755837 0.1399184 0.3756359

The clustering impact strength value for the rock properties associated with clusters 1 and
2 are shown in Table 7. The impact strength value for dry density, CHI, BTS, sonic
velocity (P-wave), Young’s modulus, CAI and UCS is negative in cluster 1. However,
porosity has a positive value in cluster 1. It means that the rock properties such as dry
density, CHI, BTS, sonic velocity (P-wave), Young’s modulus, CAI and UCS are less
significant to those sandstone block, which has been collected from mining areas 1, 2, 4,
5, 8, and 20. However, porosity greatly impacts the sandstone rock located in mining
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areas 1, 2, 4, 5, 8, and 20. In cluster 2, the impact strength value of rock properties such
as dry density, CHI, BTS, sonic velocity (P-wave), Young’s modulus, CAI, and UCS was
found to be positive. At the same time, the impact strength value for porosity is negative
in cluster 2. Thus, all the other rock properties, except porosity, have a high impact in
cluster 2 and are more significant to the sandstone block. The summary of Table 7 here
helps to understand the wear test experiments which are to be carried out by choosing the
appropriate rock disc specimen based on the clustering results. Here, rock’s strength is
different for different clusters, which means that bit wear will always be a function of
rock properties.

The problem statement in this research work is of classification type. Therefore, the
Hierarchical agglomerative clustering method was used to fulfil the objective of this
research. This method classifies different mining locations based on rock properties by
considering various alternate agglomerative linkages such as average, complete, single,
centroid, and median. Table 6 represents the clustering results obtained from various
linkages. The quality of clustering has been verified by the silhouette method. The
optimal number of clusters and the parameters, such as average silhouette width value are
shown in Figure 6 and Figure 7, respectively. The results from Table 7 represent the
impact strength of individual rock properties in their respective cluster. These strength
values reflect the state of rock properties and help designers to prepare rock disc
specimens for wear tests based on their research needs.

Laboratory tests like rotary wheel abrasion test, impact test, and micro-tribological
test using pin-on-disc wear test apparatus (Angseryd et al., 2013; Konyashin and Ries,
2014) were conducted on rock samples to investigate the wear characteristics of inserts.
These tests measure the wear rate in terms of the specimen’s weight loss in defiance of
sliding distance against the rock specimen. The studies conducted by Heinrichs et al.
(2017) and Saai et al. (2020) state that the performance of inserts mainly depends on rock
properties. Thus, it becomes essential to categorise the rock samples of different mining
locations into clusters for the optimal judgement of rock during laboratory tests. The
machine learning-based clustering approach significantly fulfils the objective by
segregating rock samples from different mining locations into clusters. This approach
also determines the impact strength of individual rock properties in the clusters. This
information may be used for the selection of appropriate rock disc specimen in wear test
setup, which may ultimately provide better solution for tool wear against the rock
properties.

4.4 Primary limitations, broader applicability and the implications of findings

Some clustering algorithms are sensitive, provide incomprehensible results, and cannot
filter the noisy data from the data set. Hierarchical-based clustering analysis in this study
offers robust data interpretation. Rock is heterogeneous, and its properties vary from
place to place. Hence, good scalability is needed to visualise rock data precisely, and
Hierarchical clustering is the best approach to deal with these issues. The considered
approach identifies the data pattern and carefully analyses the clustering quality. This
clustering approach is reliable for dealing with low-and high-dimensional data and
provides optimal results. It also detects the arbitrary shape of clustering, integrates
hierarchical agglomeration for the rock data, and offers optimum results. The clustering
results obtained in this study are interpretable, understandable, and usable. It opens a
wide range of opportunities to interpret mining data from field studies. It provides better
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opportunities for drilling-related problems and multi-dimensional solutions in various
areas, including designing experiments and selecting better tools under rock drilling.

5 Conclusions

Clustering analysis is a fast-growing application in data science, which works with a set
of algorithms and delivers correct and precise information on a big data set without error.
The study discoursed the following:

e The obtained rock properties have been examined using the hierarchical-based
clustering approach, which determines the segregated groups of rock with similar
traits. The R programming framework with R studio software was used in the study
for accurate and faster calculation of the data gathered from a different source.

¢ In the study, this approach classifies the different rock properties based on their
mining locations and determines the impact of each rock property in their groups.

e The results from the clustering analysis revealed that the 30 different mining
locations considered in the study could be grouped into two clusters based on the
similarities of rock properties. The information gathered in this study opens a
discussion on selecting the appropriate rock and tool material to plan the experiments
on wear test equipment in the laboratory.

e The study has offered an evaluative perspective of an essential industrial issue. This
investigation delineated significant mining issues, such as choosing appropriate rock
specimens for wear tests using the clustering approach. Further, this work enhances
the specimen’s perpetual quality in research facility tests for comparative sorts of
rock information.

e The outcomes from cluster means and within the cluster sum of squares were
conducive when the data was dissected with the silhouette method. The
circumstances on an ideal number of clusters and their related outcomes by
considering different agglomerative linkages were found reliable for the problem
statement.

Acknowledgements

The first and corresponding author has prepared the manuscript.

References

Abbas, R.K. (2018) ‘A review on the wear of oil drill bits (conventional and the state of the art
approaches for wear reduction and quantification)’, Engineering Failure Analysis, Vol. 90,
pp-554-584, DOI:10.1016/j.engfailanal.2018.03.026.

Altman, N.S. (1992) ‘An introduction to kernel and nearest-neighbor nonparametric regression’,
The American Statistician, Vol. 46, No. 3, pp.175-185, DOI: https://doi.org/10.2307/2685209.

Angseryd, J., From, A., Wallin, J., Jacobson, S. and Norgren, S. (2013) ‘On a wear test for rock
drill inserts’, Wear, Vol. 301, Nos. 1-2, pp.109—115, DOI: 10.1016/j.wear.2012.10.023.



88 S. Prakash

Appl, F.C., Wilson, C.C. and Lakshman, 1. (1993) ‘Measurement of forces, temperatures and wear
of PDC cutters in rock cutting’, Wear, Vol. 169, No. 1, pp.9—24, DOI: 10.1016/0043-
1648(93)90386-Z.

Azarafza, M., Ghazifard, A., Akgun, H. and Asghari-Kaljahi, E. (2019) ‘Geotechnical
characteristics and empirical geo-engineering relations of the South Pars Zone marls, Iran’,
Geomechanics and Engineering, Vol. 19, No. 5, pp.393—405, DOI: https://doi.org/10.12989/
gae.2019.19.5.393.

Azarafza, M., Hajialilue Bonab, M. and Derakhshani, R. (2022) ‘A deep learning method for the
prediction of the index mechanical properties and strength parameters of marlstone’,
Materials, Vol. 15, No. 19, p.6899, DOI: https://doi.org/10.3390/mal15196899.

Cain, M.K., Zhang, Z. and Yuan, K.H. (2017) ‘Univariate and multivariate skewness and kurtosis
for measuring nonnormality: prevalence, influence and estimation’, Behavior Research
Methods, Vol. 49, pp.1716-1735, DOI: https://doi.org/10.3758/s13428-016-0814-1.

Cemiloglu, A., Zhu, L., Arslan, S., Xu, J., Yuan, X., Azarafza, M. and Derakhshani, R. (2023)
‘Support vector machine (SVM) application for uniaxial compression strength (UCS)
prediction: a case study for Maragheh Limestone’, Applied Sciences, Vol. 13, No. 4, p.2217,
DOI: https://doi.org/10.3390/app13042217.

Core Team, R.C.T.R. (2013) R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna.

Davis, N.W. and Meyer, B.B. (2009) ‘Qualitative data analysis: a procedural comparison’, Journal
of Applied Sport Psychology, Vol. 21, No. 1, pp.116—124, DOI: https://doi.org/10.1080/
10413200802575700.

Ghosal, A., Nandy, A., Das, A K., Goswami, S. and Panday, M. (2020) ‘A short review on different
clustering techniques and their applications’, Emerging Technology in Modelling and
Graphics: Proceedings of IEM Graph 2018, pp.69-83.

Golalipour, K., Akbari, E., Hamidi, S.S., Lee, M. and Enayatifar, R. (2021) ‘From clustering to
clustering ensemble selection: a review’, Engineering Applications of Artificial Intelligence,
Vol. 104, p.104388, DOI: 10.1016/j.engappai.2021.104388.

Gu, G.X., Chen, C.T. and Buehler, M.J. (2018) ‘De novo composite design based on machine
learning algorithm’, Extreme Mechanics Letters, Vol. 18, pp.19-28, DOI:10.1016/j.em1.2017.
10.001.

Hatheway, A.W. (2009) ‘The complete ISRM suggested methods for rock characterization, testing
and monitoring’, Environ. Eng. Geosci., Vol. 15, pp.47-48, https://doi.org/10.2113/
gseegeosci.15.1.47.

He, M., Zhang, Z., Ren, J., Huan, J., Li, G., Chen, Y. and Li, N. (2019) ‘Deep convolutional neural
network for fast determination of the rock strength parameters using drilling data’,
International Journal of Rock Mechanics and Mining Sciences, Vol. 123, p.104084,
DOI: 10.1016/j.ijrmms.2019.104084.

He, M., Zhang, Z., Zhu, J., Li, N., Li, G. and Chen, Y. (2021) ‘Correlation between the rockburst
proneness and friction characteristics of rock materials and a new method for rockburst
proneness prediction: field demonstration’, Journal of Petroleum Science and Engineering,
Vol. 205, p.108997, DOI: 10.1016/j.petrol.2021.108997.

He, M., Zhou, J., Li, P., Yang, B., Wang, H. and Wang, J. (2023) ‘Novel approach to predicting the
spatial distribution of the hydraulic conductivity of a rock mass using convolutional neural
networks’, Quarterly Journal of Engineering Geology and Hydrogeology, Vol. 56, No. 1,
pp-qjegh2021-169, DOI: 10.1144/qjegh2021-169.

Heinrichs, J., Olsson, M. and Jacobson, S. (2017) ‘Initial deformation and wear of cemented
carbides in rock drilling as examined by a sliding wear test’, International Journal of
Refractory Metals and Hard Materials, Vol. 64, pp.7-13, DOI: 10.1016/j.ijrmhm.
2016.12.011.



Segregation of rock properties using machine learning algorithm 89

Konyashin, I. and Ries, B. (2014) ‘Wear damage of cemented carbides with different combinations
of WC mean grain size and co content. Part II: Laboratory performance tests on rock cutting
and drilling’, International Journal of Refractory Metals and Hard Materials, Vol. 45,
pp.230-237, DOI: 10.1016/j.ijrmhm.2014.04.017.

Kumar, M.S. and Chandar, K.R. (2023) ‘Development of an alert system in slope monitoring using
wireless sensor networks and cloud computing technique — a laboratory experimentation’,
International Journal of Mining and Mineral Engineering, Vol. 14, No. 2, pp.205-221,
DOT: https://doi.org/10.1504/IJTMME.2023.133652.

Li, J., Zhang, D., Wang, N. and Chang, H. (2022) ‘Deep learning of two-phase flow in porous
media via theory-guided neural networks’, SPE Journal, Vol. 27, No. 2, pp.1176-1194,
DOIL: https://doi.org/10.2118/208602-PA.

Liang, L., Liu, M., Martin, C. and Sun, W. (2018) ‘A deep learning approach to estimate stress
distribution: a fast and accurate surrogate of finite-element analysis. Journal of the Royal
Society Interface, Vol. 15, No. 138, p.20170844, DOLI: https://doi.org/10.1098/rsif.2017.0844.

Moradizadeh, M., Cheshomi, A., Ghafoori, M. and TrighAzali, S. (2016) ‘Correlation of equivalent
quartz content, Slake durability index and Is50 with Cerchar abrasiveness index for different
types of rock’, International Journal of Rock Mechanics and Mining Sciences, Vol. 86,
pp-42—47, DOI: 10.1016/j.ijrmms.2016.04.003.

Mozaffar, M., Bostanabad, R., Chen, W., Ehmann, K., Cao, J. and Bessa, M.A. (2019) ‘Deep
learning predicts path-dependent plasticity’, Proceedings of the National Academy of Sciences,
Vol. 116, No. 52, pp.26414-26420, DOI: https://doi.org/10.1073/pnas.1911815116.

Nagpal, A., Jatain, A. and Gaur, D. (2013) ‘Review based on data clustering algorithms’, in 2013
IEEE Conference on Information & Communication Technologies, IEEE, April, pp.298-303,
DOI: 10.1109/CICT.2013.6558109.

Piri, M., Mikaeil, R., Hashemolhosseini, H., Baghbanan, A. and Ataei, M. (2021) ‘Study of the
effect of drill bits hardness, drilling machine operating parameters and rock mechanical
parameters on noise level in hard rock drilling process’, Measurement, Vol. 167, p.108447,
DOI: 10.1016/j.measurement.2020.108447.

Prakash, S. and Mukhopadhyay, A.K. (2020) ‘Reliability analysis of tricone roller
bits with tungsten carbide insert in blasthole drilling’, International Journal of Mining,
Reclamation and Environment, Vol. 34, No. 2, pp.101-118, DOI: https://doi.org/10.1080/
17480930.2018.1530055.

Ramamurthy, T. (2004) ‘A geo-engineering classification for rocks and rock masses’, International
Journal of Rock Mechanics and Mining Sciences, Vol. 41, No. 1, pp.§9-101,
DOI: https://doi.org/10.1016/S1365-1609(03)00078-9.

Rokach, L. and Maimon, O. (2010) Data Mining and Knowledge Discovery Handbook, Springer,
New York, DOI: https://doi.org/10.1007/978-0-387-09823-4.

Saai, A., Bjerge, R., Dahl, F., Antonov, M., Kane, A., Diop, J.B. and Ojala, N. (2020) ‘Adaptation
of laboratory tests for the assessment of wear resistance of drill-bit inserts for
rotary-percussive drilling of hard rocks’, Wear, Vol. 456, p.203366, DOI: https://doi.org/
10.1016/j.wear.2020.203366.

Sato, M., Aoki, T., Tanaka, H. and Takeda, S. (2013) ‘Variation of temperature at the bottom
surface of a hole during drilling and its effect on tool wear’, International Journal of Machine
Tools and Manufacture, Vol. 68, pp.40-47, DOI: 10.1016/j.ijmachtools.2013.01.007.

Saxena, A., Prasad, M., Gupta, A., Bharill, N., Patel, O.P., Tiwari, A., Er, M.J., Ding, W. and
Lin, C.T. (2017) ‘A review of clustering techniques and developments’, Neurocomputing,
Vol. 267, pp.664—681, DOI: https://doi.org/10.1016/j.neucom.2017.06.053.

Shankar, V.K., Kunar, B.M., Murthy, C.S. and Ramesh, M.R. (2020) ‘Measurement of bit-rock

interface temperature and wear rate of the tungsten carbide drill bit during rotary drilling’,
Friction, Vol. 8, pp.1073—-1082, DOI: 10.1007/s40544-019-0330-2.



90 S. Prakash

Steiakakis, C., Papavgeri, G., Steiakakis, N., Agioutantis, Z. and Schilizzi, P. (2019) ‘A
cloud-based near real-time slope movement monitoring system’, International Journal of
Mining and Mineral Engineering, Vol. 10, Nos. 2-4, pp.233-254, DOI: https://doi.org/
10.1504/1IIMME.2019.104455.

Tokuda, E.K., Comin, C.H. and Costa, L.D.F. (2022) ‘Revisiting agglomerative clustering’,
Physica A:  Statistical Mechanics and its Applications, Vol. 585, p.126433,
DOTI: https://doi.org/10.1016/j.physa.2021.126433.

Wang, H., He, M., Zhang, Z. and Zhu, J. (2022) ‘Determination of the constant mi in the
Hoek-Brown criterion of rock based on drilling parameters’, International Journal of Mining
Science and Technology, Vol. 32, No. 4, pp.747-759, DOI: https://doi.org/10.1016/
j-jmst.2022.06.002.

Wang, H., He, M., Zhao, J. and Zhang, Y. (2023) ‘Digital drilling-based determination of rock
anisotropy and anisotropic effect on cutter wear’, Quarterly Journal of Engineering Geology
and Hydrogeology, pp.qjegh2022-103, DOI: 10.1144/qjegh2022-103.

Yao, B., Yao, J., Zhang, M. and Yu, L. (2014) ‘Improved support vector machine regression in
multi-step-ahead prediction for rock displacement surrounding a tunnel’, Scientia Iranica.
Transaction A, Civil Engineering, Vol. 21, No. 4, p.1309.

Yarali, O., Yasar, E., Bacak, G. and Ranjith, P.G. (2008) ‘A study of rock abrasivity and tool wear
in coal measures rocks’, International Journal of Coal Geology, Vol. 74, No. 1, pp.53-66,
DOI: 10.1016/j.c0al.2007.09.007.

Zendrato, N., Dhany, H.W., Siagian, N.A. and Izhari, F. (2020) ‘Bigdata clustering using X-means

method with Euclidean distance’, in Journal of Physics: Conference Series, IOP Publishing,
June, Vol. 1566, No. 1, p.012103, DOI: 10.1088/1742-6596/1566/1/012103.



