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Abstract: In rock drilling applications, abrasion causes wear in inserts and 
hostile working conditions cause damage to other bit components. The effects 
of physico-mechanical properties of rock on the tool wear are investigated by 
several researchers in the past. So, it becomes imperative to exhibit good 
scalability of rock properties by segregating rock samples having similar 
properties for natural homogeneous rock property groupings. The aim of this 
work is to segregate groups with similar type of rock properties and assign 
them into a cluster. This work considers a machine learning based hierarchical 
clustering approach to segregate groups of rock with similar traits. The results 
obtained from this study initiate a conversation on the proper choice of rock 
and tool material for doing laboratory studies using wear test apparatus. The 
analysis’s findings map the distinct qualities of the rock for different mining 
areas by classifying groups of rocks with comparable characteristics. 

Keywords: rock properties; clustering; machine learning; Euclidean distance; 
rock mechanics; drilling; rock sample; artificial intelligence; tungsten carbide; 
clustering algorithm. 
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1 Introduction 

During drilling, the cases of premature failures of drill bits found to be a common 
phenomenon in terms of insert failures. Moradizadeh et al. (2016) investigations showed 
that the drill bit lifetime per meter of drill hole drilled by a bit (m/bit) decreases with an 
increase in equivalent quartz content. The wear of inserts due to rock abrasivity in bits 
reduces the level of performance of the drilling operation (Yaralı et al., 2008). The 
current reasons for tool failure are a rise in temperature, noise, and vibration. Sato et al. 
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(2013) reported that rising temperatures during drilling accelerate insert wear. The 
combined effect of rock properties and temperature rise in polycrystalline diamond 
compact (PDC) drill bits was explored by Appl et al. (1993). Shankar et al. (2020) 
reported that the bit-rock interface temperature plays a major role in the wear rate of the 
tungsten carbide (WC) drill bit during drilling conditions. Piri et al. (2021) have reported 
that the noise level and whole-body vibration strongly influence wear in inserts. Figure 1 
depicts the integrated challenges for tungsten carbide inserts (TCI) under abrasive 
conditions. 

Figure 1 Reasons of TCI failure under different conditions (see online version for colours) 

 

Scientific investigations have always been carried out to develop new drill bit insert 
materials and their components. The lack of real-life data on wear parameters from mines 
often remains indecisive. Developing new insert materials requires a series of laboratory 
experiments with various parameters, including rock properties. Still, most of the 
researchers have not considered state-of-the-art machine learning techniques in their 
studies to improve tool wear conditions in rock drilling applications. 

Machine learning is the branch of artificial intelligence and has the potential to solve 
complex problems related to rock mechanics by providing significant solutions. Mozaffar 
et al. (2019) have taken advantage of machine learning algorithms to identify the 
unknown relations and mapped input and output parameters for their laboratory results 
obtained from experiments. Researchers have utilised data-driven learning methods to 
predict effective correlations for complex problems in rock mechanics (Gu et al., 2018; 
Liang et al., 2018). The different models such as support-vector machines, linear 
regression model, clustering, deep learning, adoptive boosting algorithm, and kernel and 
nearest-neighbour non-parametric regression models have been identified by researchers 
in various fields of engineering problems to determine the positive outcome for complex 
problems (Yao et al., 2014; Ghosal et al., 2020; Li et al., 2022; Altman, 1992). The 
information (Azarafza et al., 2019, 2022; Cemiloglu et al., 2023; He et al., 2019, 2021, 
2023; Wang et al., 2022, 2023; Kumar and Chandar, 2023; Steiakakis et al., 2019) given 
in Table 1 represents machine learning and artificial intelligence utilisation in mining 
engineering. 
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Table 1 Recent developments in mining using machine learning 
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Rock is an anisotropic and non-homogeneous material described by its structure, 
chemical composition, and texture. It is essential to understand the rock material 
properties to measure the reliability of drill bits and wear of drill bit inserts (Abbas, 
2018). In this paper, rock samples were obtained from the drilling locations, and the  
physico-mechanical properties of the rocks were measured from representative rock 
samples prepared in the laboratory complying with International Society of Rock 
Mechanics (ISRM) standards (Hatheway, 2009). The physico-mechanical properties of 
sandstone rock, such as dry density, porosity, P-wave velocity (Vp), uniaxial compressive 
strength (UCS) and modulus of elasticity (E), Cerchar abrasivity index (CAI), and 
Cerchar hardness index (CHI) have been considered in the present study. A hierarchical 
agglomerative machine learning-based clustering approach has been derived from the 
obtained rock properties to understand the impact of different rock properties on mining 
locations. The present hierarchical agglomerative clustering approach not only segregates 
the different mining locations based on rock properties but will also help in the process of 
data collection of appropriate rock samples for wear tests in various studies based on 
needs. Further, this study reduces the sample’s invariability in laboratory tests for similar 
types of rock data and also reduces the overall cost of experiments. This work also 
provides a better understanding of designing experiments and selecting tools in drilling 
applications. 

2 Methodology 

The research methodology provides the steps to be followed and presents a clear map for 
the problem statement. Figure 2 depicts the flowchart that was considered in this study. 

2.1 Preparation of rock test specimens 

The author utilises the Nevada Chart Data Analysis technique to understand the failure 
condition of drill bits based on drilling locations. The details on Nevada chart data 
analysis can be found elsewhere (Prakash and Mukhopadhyay, 2020). The significant 
advantage of this technique is that it works on warranty-based data without large-scale 
assumptions and data manipulations. Based on the failure conditions of drill bits in the 
Nevada Chart, rock block samples were collected from the field as per the ISRM 
standards (Hatheway, 2009). Sandstone rock (block size: 300 mm × 300 mm × 200 mm) 
samples were gathered from 30 different drilling locations of the mine. Cylindrical core 
samples of size 54 mm dia. ×180 mm height were prepared from the sandstone rock 
samples using a core drill machine. The prepared samples were ground using a grinder 
and polished with a corundum abrasive powder. 

Two samples for UCS and three samples for BTS have been prepared from each 
sandstone block. In the sample preparation process of UCS, the length-to-diameter ratio 
was kept greater than 2.5. Initially, the prepared samples for the UCS test were taken for 
the Cerchar hardness test (CHI). After performing the CHI test, the drilled section 
developed by a miniature drill machine was removed, and the samples were polished as 
per the ISRM standards (Hatheway, 2009). Further, the polished UCS samples were 
taken into the study for the density, P-wave velocity, and porosity test. The density,  
P-wave velocity, and porosity tests are the non-destructive test. The unpolished BTS 
samples were used for the Cerchar abrasivity test. In the study, four numbers of samples 
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have been considered for density, porosity, CHI, P-wave velocity, and UCS test. Two 
samples (from each sandstone block) were used for the CAI test. Six samples (three from 
each sandstone block) were used for the BTS test. All test samples were prepared as per 
ISRM standard (Hatheway, 2009). A few prepared rock samples for laboratory tests are 
shown in Figure 3. 

Figure 2 Flowchart representing the various steps in the methodology (see online version  
for colours) 

 

2.2 Measured values of rock properties 

The measured values of physico-mechanical properties of sandstone rock samples 
collected from 30 different mine locations are presented in Table 2. The measured data in 
Table 2 discloses that high density and low porosity rock usually possessed higher UCS 
values. The sonic velocity Vp was found greater than 3 for the tested samples, indicating 
that the grains inside the rock sample are closely packed. The behaviour of sonic velocity 
with different rocks can be found elsewhere (Ramamurthy, 2004). Further, the authors 
have discussed and estimated each rock property’s significance for the dependent 
variable UCS using a Pareto chart (Prakash and Mukhopadhyay, 2020) to interpret the 
relationship between the rock properties. For the Pareto chart analysis, the dependent 
variable was UCS, whereas the independent variables were dry density, porosity, CHI, 
BTS, Vp, and E. 
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Table 2 The measured rock properties 
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Figure 3 Prepared rock test samples for physico-mechanical test 

 

A statistical analysis representing the mean, standard deviation, median, median 
deviation, skewness, kurtosis, and standard error pertaining to the estimated rock 
properties is shown in Table 3. 
Table 3 Represents the statistical results on the tested samples for each rock’s properties 

Sl. no. Mean Standard 
deviation Median Median absolute 

deviation Skewness Kurtosis Standard 
error 

Dry-density 22.38 0.76 22.34 0.90 0.28 –0.89 0.14 
Porosity 2.63 1.22 2.42 1.33 0.68 –0.53 0.22 
CHI 28.43 5.85 27.70 6.81 –0.24 –0.93 1.07 
BTS 8.60 2.14 9.09 2.44 –0.35 –1.36 0.39 
P-wave 
velocity 

4.36 0.54 4.22 0.54 0.22 –0.45 0.10 

Youngs 
Modulus 

8.91 2.29 9.48 2.37 –0.55 –1.12 0.42 

CAI 2.87 0.33 2.83 0.41 0.46 –1.11 0.06 
UCS 59.02 16.68 61.81 19.79 –0.19 –1.14 3.04 

From Table 2, it can be observed that the rock specimens comprise a varied range of rock 
properties. Kurtosis measures the distribution’s tailedness and estimates the dataset’s 
outlier data. The considered data in Table 2 is acceptable for statistical analysis as the 
kurtosis estimation for each rock properties lie in between –2 to +2. The details on 
Kurtosis can be found elsewhere (Cain et al., 2017). 

2.3 Clustering of rock properties 

Clustering is an advanced and important technique to understand different phenomena. It 
segregates explicit data from different point of views concluding it into a value added 
information and provides statistical solutions to data in several fields (Davis and Meyer, 
2009; Saxena et al., 2017). For the data shown in Table 2, a clustering investigation has 
been performed to extract some essential information from the data by observing what 
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groups the data focus falls into when applying a clustering algorithm. In this way, it is the 
way to gather the data points of rock property into clusters so that one could be able to 
investigate the significance of rock properties based on different mining locations. Thus, 
the objective of clustering analysis is to understand the impact of rock properties on the 
mining locations. The clustering analysis in this study discusses the following issues: 

1 How to classify the mining area based on the rock properties? 

2 How to quantify the significance of individual rock properties with respect to the 
mining locations? 

3 Based on the mining locations, whether these rock properties have a similar or 
dissimilar impact on bit failure? 

The clustering analysis performed in this study has been developed using R codes in 
software R (Core Team, 2013). R is a language and environment for statistical computing 
and graphics. 

A study on failed bits obtained from the field is crucial as it provides significant 
information on failed inserts regarding life estimation. In the field, drill bit fails for many 
reasons, and one of the reasons is the rock characteristics of that location. Researchers 
have thoroughly studied the failure mode of insert obtained from the field and 
simultaneously developed test setups for their betterment. However, the correct 
assessment of the inserts is challenging due to rock characteristics. In Figure 4, a 
methodology to address this problem is provided. The developed clustering process in 
this study is a method to guide interface design between the failed and newly developed 
bits. 

Figure 4 Practical tool selection strategies in consideration of clustering analysis 

 

The new bits are created in the laboratory by a series of investigations. In the case of TCI, 
researchers tested the pin sample of TCI against the rock surface for the determination of 
tool characteristics. However, to estimate the accurate solution on tool wear, utilising the 
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rock specimen from the exact field location is essential. Clustering here investigates the 
rock sample characteristics and segregates them into groups according to their properties. 
By segregating rock samples for the wear test setup using clustering, a reliable solution 
may be achieved in the case of insert material. These insights gained through the 
clustering approach help with the selection of tool material for a drilling application. 

3 Clustering methodology 

Clustering methodology can be categorised into four effective methods. They are 
appeared in Figure 5. Each method has its advantages and hence can be used on the basis 
of data characteristics (Rokach and Maimon, 2010). 

Figure 5 Different types of clustering methods 

 

Source: Rokach and Maimon (2010) 

The present work discusses a hierarchical-based agglomerative clustering approach to 
rock data since this approach is the prominent and widely used technique to analyse data 
with multiple variables. The steps involved in this approach are discussed below. 

3.1 Structure of rock data 

The first step is to understand the data type. For the clustering analysis, the data are 
drawn from Table 2. The data frame consists of 30 observations with nine variables in 
which the eight variables, such as dry density, porosity, CHI, BTS, sonic velocity, 
Youngs modulus, CAI, and UCS, are of numeric type. The mining area is the 9th variable 
of factor type with 30 different levels, such as mine area 1, mine area 2 ,….., mine area 
30. 

3.2 Normalisation of rock data 

The clustering calculation must not be one-sided with regards to the variables having 
higher values only. Table 2 shows that UCS values are more with respect to other 
variables. Also, all these numeric variables are not present on the same scale. This may 
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prompt inappropriate clustering results, and because of this, the clustering results’ 
effectiveness will decrease. 

To conquer this issue, clustering algorithm will bring down all the numeric variables 
shown in Table 2 together to a similar scale. One of the most widely recognised methods 
to do so is normalisation, where this approach ascertains the mean and standard deviation 
of the variable and with these boundaries, the objective of normalisation is to change the 
estimations of the numeric column in the dataset to a typical scale, without twisting 
contrasts in the scopes of qualities. 

In other words, the normalisation procedure gives equal importance to all the 
variables irrespective of their magnitude value. The standardised scale function in 
‘software R (Core Team, 2013)’ has been used to compute the normalised values for the 
variables discussed in Table 2. For each numeric variable shown in Table 2, mean and 
standard deviation values have been computed. The scale function is a generalised 
method to determine a normalised value for any dataset. This is also called a data 
transformation technique, which is used for regression and clustering analysis. The 
normalised value using the scale function is simply the number of standard deviations 
away from the mean. In the study, the normalised value has been computed by using the 
following formula: 

i
i

x xz
s
−=  

where 

zi normalised value of rock properties 

xi given value of rock property 

x  mean value of the corresponding rock property 

s standard deviation of the corresponding rock property. 

In this step, all the variables’ normalised values are calculated using clustering 
algorithms, which are shown in Table 4. Here, the normalisation technique gives equal 
importance to all the variables before estimating each property’s significance. Table 4 
depicts that all variables are on the same scale as the magnitude is reduced for all the 
variables. 

3.3 Calculating the Euclidean distance 

Euclidean distance that depicts the distance between two points based on the Pythagoras 
theorem is one of the most utilised algorithms in the cluster investigation (Zendrato et al., 
2020). The Euclidean distance for the normalised dataset shown in Table 4, has been 
calculated to find the similarities between the mining locations for the different rock 
properties. The calculated Euclidean distance in consideration with the rock properties by 
considering clustering algorithm is shown in Table 5. In Table 5, the integer numbers 1, 
2, 3, …, 30 are the different mining locations and represent mine area 1, mine area 2,…., 
and mine area 30, respectively. The Euclidean distance between these mining locations is 
represented in a matrix form (refer to Table 5). 
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Table 4 Normalised values for rock properties 
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Table 5 Euclidean distance 
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The minimum Euclidean distance for any two mining locations suggests that the two 
mining areas have similar rock properties and must be grouped together. Table 5 shows 
that the minimum distance of mine area 1 with respect to any other mining locations is 
1.56, and basically, it is the Euclidean distance between mine area 1 and 4. However, the 
maximum distance of mine area 1 with respect to any other mining areas is 6.58, and it is 
the distance between mine area 1 and mine area 27. These observations state that mine 
area 1 and mine area 4 can be grouped together in one cluster since they pose similar rock 
properties compared to other locations. However, the mine area1 and mine area 27 must 
not be grouped together since their Euclidean distance is very large. Similarly, the 
distance between any two mining locations can be obtained and grouped together. 

4 Results and discussion 

4.1 Determining the optimum number of clusters 

Finding the optimum number of clusters for a dataset is the biggest challenge. However, 
there are many methods available that are helpful for this type of problem. The elbow, 
silhouette and gap statistics (Nagpal et al., 2013) methods mostly suggest the best optimal 
number of clusters for any dataset. One can use any of the three methods for their dataset 
for optimising the results. In this study, the silhouette method has been considered for 
finding the optimal number of clusters of a dataset shown in Table 4. The graphical 
representation of the results using the silhouette method is presented in Figure 6. 

Figure 6 Optimal number of clusters using the silhouette method (see online version for colours) 

 

Here, the silhouette method suggests the optimum number of clusters for the normalised 
dataset as 2. This implies that the 30 different mining locations must be divided into two 
distinct clusters based on rock properties. 

4.2 Quality of clustering results 

The clustering quality matters in data investigation. The adopted hierarchical-based 
clustering method estimates clustering quality by evaluating the clustering dendrogram 
with five different agglomerative linkages. The different agglomerative linkages (Tokuda 
et al., 2022) are average, complete, single, centroid and median. The quality of clustering 
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mainly depends upon the average silhouette width (Nagpal et al., 2013; Tokuda et al., 
2022). The silhouette width is the average distance between clusters. Its value lies 
between –1 and 1, where 1 represents a good cluster (Golalipour et al., 2021). Since the 
silhouette method estimates the optimal number of clusters as 2, the authors determined 
the average silhouette width value for all the five agglomerative linkages to investigate 
the clustering effectiveness. Table 6 differentiates the quality of clustering based on the 
average silhouette width value. 
Table 6 Clustering results 

Agglomerative 
linkage 

Optimum no of clusters 
based on the silhouette 

method 

Grouping of 30 
different mining 

locations in two clusters 

Average silhouette 
width 

Average 2 6.24 0.41 
Complete 2 6.24 0.41 
Single 2 23.1 –0.03 
Centroid 2 6.24 0.41 
Median 2 17.13 0.35 

The average silhouette width for the average, complete, and centroid linkages is 0.41, 
which is maximum compared to the other linkages. This implies that the clustering 
dendrogram produced by any of these linkages gives the best possible combination to 
mining locations. From Table 6, these agglomerative linkages also divide the 30 different 
mining locations into two clusters, with six mining locations in one cluster and the rest 
mining locations in the second cluster. The following silhouette plot also depicts the same 
results using complete linkage. 

Figure 7 Silhouette plot using complete agglomerative linkage 

 

In Figure 7, n = 30, represents the total number of mining locations, and they have been 
divided into 2 clusters based on the obtained rock properties. Also, it depicts that the six 
mining locations of cluster 1 have a similar type of rock formations. However, the other 
24 mining locations of cluster 2 have different kinds of rock formations compared to the 
mining locations of cluster 1. A hierarchical architecture or cluster dendrogram for all the 
mining location based on the calculated distance matrix is shown in Figure 8. 
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Figure 8 Cluster dendrogram for the mining locations using complete linkage 

 

The clustering dendrogram shown in Figure 8 implies that the mining areas such as 4, 8, 
20, 1, 2, and 5 are grouped in one cluster since the rock properties belong to these areas 
are more or less similar to each other. However, the mining areas other than these 
locations have been grouped in the second cluster. The results from cluster means and 
within the cluster sum of squares were favourable when the data were analysed with the 
silhouette method. The conditions on an optimal number of clusters and their associated 
results by considering various agglomerative linkages such as average, complete, single, 
centroid, and median can be observed in Figure 6, Table 6, and Figure 7 respectively. 

4.3 Significance of rock properties based on mining locations 

The clustering dendrogram using the complete agglomerative linkage determines each 
rock’s properties’ impact strength for their respective cluster. Table 7 shows the impact 
strength value of individual rock properties. In Table 7, cluster 1 refers to the mining 
areas 1, 2, 4, 5, 8 and 20. Also, cluster 2 refers to mining areas except 1, 2, 4, 5, and 8. 
The rock properties have a higher impact on drilling locations when its impact strength 
value is positive. 
Table 7 Represents the impact strength of individual rock properties in different clusters 

Clusters Dry-density Porosity CHI BTS 
1 –1.1256113 1.4715033 –1.4966445 –1.3560117 
2 0.2814028 –0.3678758 0.3741611 0.3390029 
 Sonic velocity (P-wave) Young’s modulus CAI UCS 
1 –1.2752952 –1.5023347 –0.5596735 –1.5025437 
2 0.3188238 0.3755837 0.1399184 0.3756359 

The clustering impact strength value for the rock properties associated with clusters 1 and 
2 are shown in Table 7. The impact strength value for dry density, CHI, BTS, sonic 
velocity (P-wave), Young’s modulus, CAI and UCS is negative in cluster 1. However, 
porosity has a positive value in cluster 1. It means that the rock properties such as dry 
density, CHI, BTS, sonic velocity (P-wave), Young’s modulus, CAI and UCS are less 
significant to those sandstone block, which has been collected from mining areas 1, 2, 4, 
5, 8, and 20. However, porosity greatly impacts the sandstone rock located in mining 
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areas 1, 2, 4, 5, 8, and 20. In cluster 2, the impact strength value of rock properties such 
as dry density, CHI, BTS, sonic velocity (P-wave), Young’s modulus, CAI, and UCS was 
found to be positive. At the same time, the impact strength value for porosity is negative 
in cluster 2. Thus, all the other rock properties, except porosity, have a high impact in 
cluster 2 and are more significant to the sandstone block. The summary of Table 7 here 
helps to understand the wear test experiments which are to be carried out by choosing the 
appropriate rock disc specimen based on the clustering results. Here, rock’s strength is 
different for different clusters, which means that bit wear will always be a function of 
rock properties. 

The problem statement in this research work is of classification type. Therefore, the 
Hierarchical agglomerative clustering method was used to fulfil the objective of this 
research. This method classifies different mining locations based on rock properties by 
considering various alternate agglomerative linkages such as average, complete, single, 
centroid, and median. Table 6 represents the clustering results obtained from various 
linkages. The quality of clustering has been verified by the silhouette method. The 
optimal number of clusters and the parameters, such as average silhouette width value are 
shown in Figure 6 and Figure 7, respectively. The results from Table 7 represent the 
impact strength of individual rock properties in their respective cluster. These strength 
values reflect the state of rock properties and help designers to prepare rock disc 
specimens for wear tests based on their research needs. 

Laboratory tests like rotary wheel abrasion test, impact test, and micro-tribological 
test using pin-on-disc wear test apparatus (Angseryd et al., 2013; Konyashin and Ries, 
2014) were conducted on rock samples to investigate the wear characteristics of inserts. 
These tests measure the wear rate in terms of the specimen’s weight loss in defiance of 
sliding distance against the rock specimen. The studies conducted by Heinrichs et al. 
(2017) and Saai et al. (2020) state that the performance of inserts mainly depends on rock 
properties. Thus, it becomes essential to categorise the rock samples of different mining 
locations into clusters for the optimal judgement of rock during laboratory tests. The 
machine learning-based clustering approach significantly fulfils the objective by 
segregating rock samples from different mining locations into clusters. This approach 
also determines the impact strength of individual rock properties in the clusters. This 
information may be used for the selection of appropriate rock disc specimen in wear test 
setup, which may ultimately provide better solution for tool wear against the rock 
properties. 

4.4 Primary limitations, broader applicability and the implications of findings 

Some clustering algorithms are sensitive, provide incomprehensible results, and cannot 
filter the noisy data from the data set. Hierarchical-based clustering analysis in this study 
offers robust data interpretation. Rock is heterogeneous, and its properties vary from 
place to place. Hence, good scalability is needed to visualise rock data precisely, and 
Hierarchical clustering is the best approach to deal with these issues. The considered 
approach identifies the data pattern and carefully analyses the clustering quality. This 
clustering approach is reliable for dealing with low-and high-dimensional data and 
provides optimal results. It also detects the arbitrary shape of clustering, integrates 
hierarchical agglomeration for the rock data, and offers optimum results. The clustering 
results obtained in this study are interpretable, understandable, and usable. It opens a 
wide range of opportunities to interpret mining data from field studies. It provides better 



   

 

   

   
 

   

   

 

   

    Segregation of rock properties using machine learning algorithm 87    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

opportunities for drilling-related problems and multi-dimensional solutions in various 
areas, including designing experiments and selecting better tools under rock drilling. 

5 Conclusions 

Clustering analysis is a fast-growing application in data science, which works with a set 
of algorithms and delivers correct and precise information on a big data set without error. 
The study discoursed the following: 

• The obtained rock properties have been examined using the hierarchical-based 
clustering approach, which determines the segregated groups of rock with similar 
traits. The R programming framework with R studio software was used in the study 
for accurate and faster calculation of the data gathered from a different source. 

• In the study, this approach classifies the different rock properties based on their 
mining locations and determines the impact of each rock property in their groups. 

• The results from the clustering analysis revealed that the 30 different mining 
locations considered in the study could be grouped into two clusters based on the 
similarities of rock properties. The information gathered in this study opens a 
discussion on selecting the appropriate rock and tool material to plan the experiments 
on wear test equipment in the laboratory. 

• The study has offered an evaluative perspective of an essential industrial issue. This 
investigation delineated significant mining issues, such as choosing appropriate rock 
specimens for wear tests using the clustering approach. Further, this work enhances 
the specimen’s perpetual quality in research facility tests for comparative sorts of 
rock information. 

• The outcomes from cluster means and within the cluster sum of squares were 
conducive when the data was dissected with the silhouette method. The 
circumstances on an ideal number of clusters and their related outcomes by 
considering different agglomerative linkages were found reliable for the problem 
statement. 
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