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Abstract: Chinese character generation has attracted a lot of attention due to its 
wide range of applications. Mainstream methods for generating Chinese 
character fonts are mainly based on generative adversarial networks, however, 
the structure of Chinese characters is more complex than other fonts and the 
problem of font structure change and style loss occurs when generating 
complex fonts and the mainstream methods require paired datasets, which is 
difficult and time-consuming to collect paired datasets. This paper proposes 
Trans-StarGAN v2 network for the above problems, which is based on 
StarGAN v2, introduces the Transformer structure for spatial feature extraction 
and channel feature extraction, which improves the feature extraction and 
generation ability of the network, and secondly, introduces the perceptual loss 
to strengthen the model training process. The experimental results show that 
compared with other Chinese character generation networks, the proposed 
network can generate multiple styles of fonts at the same time, improve the 
quality of the generated characters, preserve the structure of the fonts and make 
the style more complete in the face of complex fonts, and improve the FID and 
LPIPS indexes of the generated Chinese character content. 
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1 Introduction 

Chinese is currently the most widely spoken language in this world. Chinese characters 
are widely utilised throughout the Chinese country and have been instrumental in the 
dissemination of Chinese culture, serving as the language’s carrier. Chinese characters 
have evolved over thousands of years, mirroring the growth of the Chinese country. From 
oracle bone inscriptions to small seal writing, clerical script, regular script, and cursive 
script. Human communication has increasingly transitioned from traditional letters to 
voice and video in recent years due to the popularity of social media applications and the 
rise of short films, which has resulted in the phenomenon known as ‘forgetting how to 
write characters’. Chinese characters remain a subject of interest in the age of digital 
information, leading to an increasing amount of research being done on them. 

At the moment, most research focuses on the identification and categorisation of 
Chinese characters (Shi et al., 2016; Busta et al., 2017; Ul-Hasan et al., 2015; Yin et al., 
2017), with comparatively less attention paid to character generation, particularly when 
considering multi-style Chinese character production. Common methods of generating 
Chinese characters fall into two categories: traditional methods and those based on deep 
learning. Liu et al. (2012) and others initially decomposed Chinese characters into 
various components such as strokes and radicals, and then recombined these to generate 
the target font. The introduction of generative adversarial networks (GANs) (Goodfellow 
et al., 2020) in 2014 received widespread attention and was also employed for the task of 
Chinese character generation. GANs have derived many variants including CGAN 
(Mirza and Osindero, 2014), WGAN (Arjovsky et al., 2017), BIGGAN (Brock et al., 
2018), CYCLEGAN (Zhu et al., 2017), etc. CGAN can control the classes of the 
generated data but requires labelling of the dataset. WGAN solves the problem of pattern 
collapse for training with the disadvantage that it is prone to gradient vanishing. 
BIGGAN generates high-resolution images but is slow to train because of the large 
model. CYCLEGAN can be trained using unpaired datasets with the disadvantage that 
geometric transformations of the image are not obvious. Isola et al. (2017) designed a 
style transfer model, pix2pix, based on conditional GANs, providing a general framework 
for image-to-image style transfer. This model, utilising a U-Net architecture generator, 
enhanced the detail in generated images. 

With the development of the style migration model, the task of generating Chinese 
characters is viewed as a transition between different styles of images. Gao and Wu 
(2020) performed Chinese character style transformation by training multiple GANs to be 
used in combination through three steps, namely skeleton extraction, skeleton 
transformation, and stroke rendering. This approach focuses on preserving the overall 
glyph content of the Chinese characters so that the resulting Chinese character shapes do 
not change too much, but it requires training three networks and spending a lot of time 
tuning each network to achieve the best results. In 2017, Tian (2017) proposed the 
Chinese character generation model Zi2Zi based on pix2pix. This model introduced 
category embedding based on the multi-class classification loss in the ACGAN model, 
allowing for the simultaneous modelling of numerous typefaces. This improved the 
discriminator in line with the expected results. With Zi2Zi, a source font could be 
translated into multiple styles of fonts simultaneously. However, both pix2pix and Zi2Zi  
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required large datasets of paired Chinese characters, necessitating the corresponding 
target style fonts for the input characters. The variability in styles even when the same 
person writes the same character poses challenges in dataset collection, making the use of 
unpaired datasets particularly important in Chinese character generation tasks. Li and 
colleagues computed the structural loss between the output and input images by using 
graphical matching techniques after extracting important points of Chinese character 
structures using the SSD object detection algorithm. A new font style model,  
OFM-CycleGAN, was proposed by Zhang (2019) and colleagues and is based on an 
enhanced feature matching technique. To tackle the challenge of generating fonts from 
unpaired datasets, Chang et al. (2018) proposed the HCCG-Cycle GAN network, defining 
the task of learning the mapping from existing printed fonts to target handwritten font 
styles. Although this method resolved the issue of paired datasets, it could only achieve 
the transfer of a single attribute. When multiple style attributes are required, training 
multiple models becomes necessary. In order to deal with the changes in the structure of 
Chinese characters in the Chinese character style migration, CS-GAN (Xiao et al., 2021) 
is proposed. CS-GAN introduces distribution transformations, reparameterisation 
techniques, and sampling features to ensure the effective transformation of  
high-dimensional features and low-dimensional features. TH-GAN (Cai et al., 2019) 
targets historical Chinese character recognition. For blurry, low-quality Chinese character 
images, the network focuses on the edges of the text and the font structure information to 
generate a target image. Choi et al. (2018), building on StarGAN, introduced the 
StarGAN v2 (Choi et al., 2020) model, addressing the problem of multi-domain 
translation in the image-to-image process. Subsequently, based on the StarGanV2 model 
many scholars made different improvements and applications (Li and Gu, 2023; Holmes 
et al., 2023; Ko et al., 2023; Ning, 2022; Wang et al., 2020). In 2017, Zeng et al. (2021) 
introduced a diversity regulariser in the StarGAN network, resulting in better diversity of 
the generated Chinese characters. In 2021, pan fused style-attentional net into  
jump-connected U-Net as a generator for GAN (Zeng and Pan, 2022), which effectively 
integrates local style patterns based on the semantic spatial distribution of content images 
while preserving feature information of different sizes. In 2022, Ning and others added a 
self-attention mechanism to the StarGAN V2 network to make the generated font strokes 
clearer and higher quality. 

The introduction of the transformer (Vaswani et al., 2017) in 2017, primarily as a 
deep learning model for sequence-to-sequence problems, marked a significant 
advancement in natural language processing (NLP) tasks. In recent years, the transformer 
architecture has also been applied in the field of computer vision (CV) and beyond. Jiang 
et al. (2021) proposed TransGAN, which employs the transformer structure to construct a 
GAN model. Due to its use of memory-efficient generators that incrementally increase 
the resolution of feature maps, it achieved impressive results. Lee and others introduced 
VITGAN. VITGAN (Lee et al., 2021) is built upon the vision transformer (Dosovitskiy  
et al., 2020), exhibiting competitive picture recognition performance with reduced  
vision-specific inductive bias requirements. VITGAN was the first to prove that the 
transformer architecture could match the effectiveness of traditional convolutional GANs, 
challenging the dominance of convolutional neural networks (CNNs) in CV. 
Subsequently, the research on the use of transformer in combination with GAN has 
become more and more in-depth, and the more famous literature includes (Zhang et al., 
2022; Lin et al., 2018; Jiang et al., 2021; Luo et al., 2021; Li et al.,. 2021, 2022, 2023; 
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Metsis et al., 2022; Dalmaz et al., 2022), and the research on the combination of 
transformer and GAN is also one of the mainstream directions in the future. 

This paper is based on the StarGAN V2 model for multi-style font generation 
research, the study found that: the original model in the generation of the target style 
fonts will change the font structure will lead to the emergence of the wrong fonts, and in 
the font outline of the style inconsistency, so that the output fonts are not the fonts that 
we need, in view of these problems, we proposes a font style transfer network 
structure,Trans-StarGanV2, which incorporates the Transformer structure in the 
generator. This integration aims to address the limitations of convolutions in capturing 
long-range pixel relationships. The experiments were conducted on a handwritten dataset 
containing three styles: Founder Shuti, regular script, and clerical script. The results 
demonstrate that the network generates fonts with more standardised structures, 
preserving the integrity of strokes across different target styles and offering richer detail 
in style. Overall, the fonts generated by this network are of higher quality, and the 
network’s performance is commendably robust. 

The primary contributions of this paper are as follows: 

1 The design of two distinct transformer-based feature extraction modules, the 
CTransformer feature extraction module and the STransformer feature extraction 
module, is introduced. Additionally, a CTransformer V2 feature fusion module that 
integrates adaptive instance normalisation (AdaIN) is presented. These developments 
significantly enhance the model’s capability to collect features and improve the 
precision of the generated image styles. 

2 The introduction of style-aware loss in font generation tasks represents a significant 
advancement. Compared to standard pixel-level loss, this perceptual loss is more 
appropriate for evaluating the quality of images produced by GANs because it is 
computed using feature representations from deep neural networks. 

3 A new font generation model, Trans-StarGAN V2, is proposed. This model produces 
fonts with clearer structures, richer detail in style, and overall higher quality 
compared to those outputted by the original model. 

2 Related works 

2.1 GAN inversion 

One kind of generative deep learning model is the GAN. A GAN is based on the 
adversarial training of two deep neural network models: a generator and a discriminator. 
The structure of a GAN, involves the Generator receiving a random noise vector (usually 
following a uniform or Gaussian distribution) as input and mapping it to the output space 
through a series of transformations. The goal of the generator is to produce data that 
mimics the statistical properties of real data, thereby deceiving the discriminator and 
generating high-quality fake samples. The discriminator, a binary classifier, receives 
either real or generated data as input and attempts to distinguish their sources. 
Maximising the discriminator’s capacity to accurately distinguish between produced and 
actual data is its goal, the basic structure of a GAN as shown in Figure 1. 
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Figure 1 Network architecture of GAN (see online version for colours) 

 

The StarGAN network, which this paper is based on, was proposed in 2018 by Choi et al. 
to address the transformation issues of multi-domain images. It has a structure similar to 
the original GAN, built on a generator and a discriminator. An improved version, 
StarGAN v2, was released to address the restricted diversity of generated images and the 
scalability across numerous domains in the original StarGAN. The StarGAN v2 model 
has a mapping network and a style encoder in addition to the generator and discriminator. 
In order to create the necessary style images, the style encoder extracts the target style’s 
style vectors, which are then integrated into the generator via adaptive normalisation. The 
discriminator is designed as a multi-branch classifier, performing binary classification in 
each branch. The overall loss function of StarGAN v2 is as shown in equation (1): 

, ,min max + + +G F E D adv sty sty ds ds cyc cyc perperλ λ λ λ−      (1) 

In this context, adv  represents the adversarial loss function in equation (2), and 
( ) :ys F z=   

[ ] ( ), , ,log ( ) + log 1 ( ( , ))adv x y y y yD D G= −  x zx x s      (2) 

sty  is the style reconstruction loss in equation (3): 

, , 1| ( ( , ))sty y yE G= − x z s x s     (3) 

ds  is the style diversity loss in equation (4): 

( ) ( )1 2, , , 1 2 1
| , ,ds y G G = − x z z x s x s     (4) 

cyc  is the cycle consistency loss in equation (5): 

( ), , , 1
ˆ| ( , ),cyc y y G G= −  x z x x s s    (5) 

In addition to these losses, this paper introduces a new style-aware loss, utilising the 
pretrained VGG19 model to extract and compute the feature representations of generated 
and real images. This strategy significantly minimises the style discrepancy between the 
target style photos and the model-generated images by integrating the difference 
calculation into the training’s overall loss function. This improves the network’s overall 
performance. The perceptual loss is calculated using the feature maps obtained from the 
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first five convolutional layers of VGG19, denoted as conv1, conv2, conv3, conv4 and 
conv5, formula is shown in equation (6), where E represents the feature maps extracted 
by each convolutional layer of the pretrained VGG network, and F and G are the output 
and original images, respectively: 

( ) ( ) 1
1

1 N

per i out i gt
i

φ I φ I
N =

= −  (6) 

3 Methods 

3.1 Overall structure 

The network presented in this paper is primarily designed based on the StarGAN network 
architecture. It comprises four main modules: a transformer-based generator module, a 
discriminator module, a mapping network module, and a StyleEncoder module for style 
encoding. 

The generator module in this paper features a U-shaped structure and is primarily 
composed of three parts: the channel-based transformer (CBT) feature extraction module, 
the spatial-based transformer (SBT) feature extraction module, and the channel-based 
transformerV2 (CBTV2) feature fusion module. The use of both channel-based and SBTs 
enables the simultaneous extraction of features in both channel and spatial dimensions, 
resulting in more realistic model-generated outcomes that closely align with the desired 
results. The CBT module employs self-attention in the channel dimension to extract 
features, while also utilising up-sampling and down-sampling modules to respectively 
increase and decrease spatial resolution. After channel dimension feature extraction, the 
SBT module extracts spatial dimension features. These are then upscaled and combined 
using the CBTV2’s AdaIN, incorporating style vectors extracted from the target font by 
the StyleEncoder module to generate the required style images. By enabling adversarial 
training between the discriminator and generator, the discriminator evaluates the veracity 
of the images produced by the generator, improving the generation network’s overall 
performance. The structure of Trans-StarGAN v2 is shown in Figure 2. 

3.2 CBT feature extraction module 

Currently, the generators in GANs predominantly employ CNNs for feature extraction. 
However, the transformer, as a novel neural network architecture, enables feature 
extraction that is not solely reliant on CNNs. The transformer model addresses limitations 
such as the finite receptive field of CNNs and its unique self-attention mechanism allows 
the model to gather information not just from adjacent areas but from any position. 
Consequently, this paper proposes a transformer-based feature extraction module, named 
the CBT feature extraction module. Each CBT module consists of a LayerNorm layer; a 
multi-Dconv head transposed attention (MDTA) layer, and a gated-Dconv feed-forward 
network (GDFN) layer. The LayerNorm layer, or normalisation layer, normalises vectors 
in each dimension, thereby maintaining feature scale uniformity and enhancing the 
model’s overall generalisation capability. The use of LayerNorm in transformers also 
improves the model’s ability to process high-resolution images. The MDTA layer 
calculates attention not in the pixel dimension but in the channel dimension, eliminating 
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the need for interactive computations in the pixel dimension and instead calculating 
covariance in the feature channel dimension to extract feature maps. This is initially 
achieved through 1×1 convolution for cross-channel pixel aggregation, and then using 
3×3 depthwise convolutions for local contextual channel-level aggregation. The structure 
of CBT is shown in Figure 3. This structure offers two main advantages. 

The first advantage is the introduction of depthwise convolution, which emphasises 
local context before computing feature covariance to generate global attention maps. The 
second is the calculation of cross-channel covariance to produce attention maps that 
implicitly encode global context. The specific computation process is detailed in 
equations (7), (8), and (9). 

K K
pdK W W X=  (7) 

Q Q
pdQ W W X=  (8) 

V V
pdV W W X=  (9) 

In the formula, X represents the input: Wd is a 3×3 depthwise convolution; Wp is a 1×1 
point convolution; Subsequently, the projections Q and K undergo a reshape operation 
and then a dot product to generate a ˆ ˆC C×  size channel attention map. The subsequent 
calculations are similar to those in a conventional transformer, as detailed in  
equation (10): 

ˆˆˆ ˆ maxP
K QX W V Soft

 ⋅= ⋅  
 α

 (10) 

In the equation, ˆ ˆ ˆ, andQ K V  represent the results of Q, K, V after the reshape operation; 
α is a learnable scaling parameter, GDFN layer is a gated forward network based on local 
content 0fusion, emphasising spatial context. It first uses 1×1 convolutions for 
dimensionality increase, followed by 3×3 convolutions for feature extraction, and then 
gated with the GELU activation function. The GDFN’s gating mechanism decides when 
and how complementary features should be passed down, enabling higher levels in the 
network hierarchy to concentrate on certain finer image characteristics and generate 
output of superior quality. Equation (11) provides an illustration of the computation 
process. 

( )( )0 1 1 2 2ˆ ( ) ( )P P Pd dX W W W X W W X= φ  (11) 

In the formula:   represents element-wise multiplication; φ denotes the GELU nonlinear 
function; 1 2andd dW W  respectively represent the first and second linear projection layers 
after 3×3 depthwise convolution; 1 2andP PW W  represent the first and second linear 
projection layers after 1×1 expansion convolution; 0

PW  represents a 1×1  
dimension-reducing convolution. 
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Figure 2 Network architecture of Trans-StarGAN V2 (see online version for colours) 
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Figure 3 Network architecture of CBT (see online version for colours) 
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Figure 4 Network architecture of SBT (see online version for colours) 
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Figure 5 Network architecture of CBTV2 (see online version for colours) 
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3.3 SBT feature extraction module 

Relying solely on the CBT feature extraction module for channel dimension feature 
extraction is insufficient. Therefore, the SBT feature extraction module was designed to 
facilitate global interaction of spatial features after the CBT module, optimising the final 
generated images. Since the SBT module is connected after the CBT, and undergoes 
multiple downsampling processes, the features are significantly reduced in the spatial 
dimension, focusing primarily on the channel level. This setup adapts well to the  
space-based self-attention operation. The SBT module is an enhancement of the 
conventional Transformer module’s FFN layer. The structure of SBT is shown in  
Figure 4. 

The specific structure of the SBT module is illustrated as follows: in the SBT module, 
the multi-head self-attention (MHSA) mechanism replaces the MDTA layer of the CBT, 
and a gated feed-forward network (GFFN) substitutes the GDFN in CBT. Through the 
CBT feature extraction and downsampling, the features are reduced by a factor of 16 in 
the spatial dimension, resulting in a size of only 16×16, while the channel dimension 
expands to 512. After processing through the CBT feature extraction module, 
comprehensive global interaction has already been achieved in the channel dimension, 
eliminating the need for self-attention on this level. Instead, self-attention is applied in 
the spatial dimension to compensate for the limitations in global interaction of 1×1 and 
3×3 convolution operations, thereby enhancing the global representational capability of 
the extracted features. 

Q
lQ W X=  (12) 

K
lK W X=  (13) 

V
lV W X=  (14) 

In the formula: X represents the input; W denotes a fully connected layer, subsequently, 
the projections Q and K are reshaped，facilitating their dot product interaction to 
generate a spatial attention map of size ˆ ˆ ˆ ˆ .×HW HW  The subsequent calculations proceed 
as in a conventional transformer, as specifically illustrated in equation (15): 

ˆ ˆˆ ˆSoft maxlW
 ⋅= ⋅ 
 

Q kX v
α

 (15) 

In the formula: ˆ ˆ ˆ, andQ k V  are respectively the reshaped results of Q, K and V obtained 
after the reshape operation; α is a learnable scaling parameter. With one layer turned on 
by the GELU nonlinear function, the GFFN layer is still intended to be the element-wise 
product of two linear projection layers. The proposed GFFN also emphasises spatial 
context based on local content blending (similar to the MDTA module). The difference is 
that the GFFN performs linear mapping on channels, highlighting the fusion of channel 
features. The gating mechanism, similar to that in the MDTA, controls which 
complementary features should be forwarded. This allows subsequent layers in the 
network hierarchy to focus on finer image attributes, thereby generating higher quality 
output. The computation process is as described in equation (16): 
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( )( )0 1 2ˆ ( ) ( )l l lW W W=X X Xφ  (16) 

  represents element-wise multiplication; φ denotes the GELU nonlinear function; 1
lW  

indicates the linear mapping of the first linear projection layer; 2
lW  refers to the linear 

mapping of the second linear projection layer; 0
lW  signifies the fusion linear mapping. 

3.4 CBTV2 feature fusion module 

The CBTV2 feature extraction module primarily differs from the CBT module in the 
inclusion of the feature fusion layer AdaIN. The AdaIN layer has two inputs: a content 
input X and a style input S. It synchronises the content features’ mean and variation with 
the style features’ mean and variance. The structure of CBTV2 is shown in Figure 5. 

CBTV2 is utilised in the generator’s upsampling process, where it combines style 
vectors through the AdaIN layer to generate the target font required. The structure is 
illustrated as shown, and the formula for AdaIN is presented in equation (17), where s 
represents the style vector, and x denotes the input content. 

( )AdaIN( , ) ( ) + ( )
( )

x μ xx s σ s μ x
σ x
− =  

 
 (17) 

4 Experiment 

We first go over the specifics of our implementation, and then we compare our approach 
with existing approaches on our dataset both numerically and qualitatively. Numerous 
ablation studies show how effective our module is. 

4.1 Implementation dataset 

In this experiment, we collected and produced a dataset with three different styles of 
fonts: Founder Shuti, clerical script, and regular script. These three fonts are the fonts that 
are used more often in Chinese characters, and they are the fonts that are most similar to 
the fonts that people write in their daily lives, so the difficulty of collecting the dataset is 
greatly reduced, because there are more than 80,000 Chinese characters in total, but there 
are only 20,000 fonts that are used in daily life, and the rest of 60,000 fonts are only 
found in the history books and the ancient books, so we did not include them in the 
dataset. We chose 10,000 commonly used fonts among the 20,000 commonly used 
characters. These three fonts were treated as three distinct classes within the model, with 
the dataset divided into training and validation sets. Each font’s training set contained 
10,000 images of different font characters, while the validation set for each font included 
2,000 images of different font characters. The dataset underwent pre-processing, where 
each font image was resized to 256×256 pixels. Additionally, parts of the images with 
large blank spaces were cropped to maximise the font coverage ratio in the image. A 
partial sample of this experimental dataset is shown in Figure 6. 
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Figure 6 Sample data sets for this experiment (see online version for colours) 

 

4.2 Experimental parameterisation and evaluation indicators 

The experimental environment for this paper was set up using PyCharm based on the 
Pytorch framework. The code was written in Python 3.6.7 under the Windows operating 
system and utilised an Nvidia A4000 GPU for training, with a memory size of 16 GB. 
During the training experiments, the Adam optimiser was chosen to optimise the 
network, and β1 = 0, β2 = 0.99, with the training batch size set to 4; the number of 
iterations set at 100,000. The initial learning rate was set to 1e-4, we set λsty = 1, λds = 1, 
λcyc = 1 and λreg = 1. The learning rates for G, D, E, and F were set to 10–4. 

Three different metrics were used to evaluate the font style generation accuracy of the 
network model in this paper: 

1 Fréchet inception distance (FID), which measures the distance between two 
multivariate normal distributions. 

2 Learned perceptual image patch similarity (LPIPS), a trained perceptual image patch 
similarity metric that quantifies the differences between two images using a more 
human-perceptible manner. 

4.3 Experimental results 

To thoroughly validate the efficacy of Trans-StarGanV2 in Chinese character generation, 
we conducted a comprehensive comparison with other font generation models in terms of 
objective measurement metrics as well as human subjective visual effects. All 
comparisons were based on the same dataset to ensure a fair premise. 

Firstly, we compared the generated font images produced by the generators of  
Trans-StarGAN V2 network and StarGAN V2 network at different iteration steps. We 
observed that the font images generated by Trans-StarGAN V2 network exhibited higher 
quality and faster speed compared to those generated by the original network. At 1,000 
iterations of both networks’ generators, it was noted that the font images generated by 
Trans-StarGAN V2 displayed a complete font structure, whereas those generated by the 
original StarGAN V2 network appeared incomplete. Subsequently, at 2,000 iterations, it 
was observed that the background of the images generated by Trans-StarGAN V2 
network turned white, consistent with the background colour of the target font, and the 
generated font images began to adopt the style of the target font. In contrast, font images 
generated by StarGAN V2 network still had a grey background, and the font structure 
remained incomplete until 5,000 iterations were reached to generate the correct 
background. Experimental results indicate that, regardless of the iteration count, the 



   

 

   

   
 

   

   

 

   

    Chinese character style transfer based on improved StarGAN v2 network 85    
 

    
 
 

   

   
 

   

   

 

   

       
 

image quality and generation speed of Trans-StarGAN V2 network are superior to those 
of StarGAN V2 network. 

Upon examining the data from both the Trans-StarGAN V2 and StarGAN V2 models 
during the task of font style transfer, we have observed a noteworthy distinction. The 
original model, during its training process, tends to alter the structural integrity of 
Chinese characters, whereas the Trans-StarGAN V2 model preserves the original 
structure of these characters. Specifically, in the training process of the StarGAN V2 
model, the character ‘背’ undergoes a transformation where the component ‘月’ changes 
to ‘目’, thereby altering the meaning of the character ‘背’ from its original sense. This 
misrepresentation of the character’s meaning represents a significant error in the model’s 
learning process. 

Conversely, the Trans-StarGAN V2 model, owing to its transformer architecture, 
adeptly maintains the overall structure of the fonts. This is particularly evident when the 
model handles more complex characters like ‘陆’. It successfully retains the entire 
structure of the character, demonstrating its superior ability to preserve the linguistic 
integrity of the text during the style transfer process. This difference is exemplified in 
Figure 7 and Figure 8. 

Figure 7 The results of the StarGAN V2 model during the iterations process 

 

Figure 8 The results of the Trans-StarGAN V2 model during the iterations process 

 

Secondly, to verify the preservation capability of the Trans-StarGAN V2 network 
regarding Chinese character font structures, we selected two characters with 
comparatively intricate typographic architectures: ‘陆’ (Lu) and ‘筷’ (Kuai). 
Subsequently, we documented the variations occurring in these two complex Chinese 
characters as the iteration count increased. We opted for four iteration counts as anchor 
points, specifically: 5,000, 30,000, 60,000, and 100,000. The resultant output consists of 
the source font image in the first row, the target font style image in the second row, the 
model-generated target style image in the third row, and the font image reconstructed by 
the network to maintain cyclical consistency in the fourth row. Transitioning the 
character ‘陆’ from regular script to clerical script and ‘筷’ from clerical script to regular 
script, we corroborated the Trans-StarGAN V2 network’s ability to robustly preserve 
Chinese character font structures across various stylistic transformations. 

Through experimentation, it was observed that the Trans-StarGAN V2 network 
consistently preserves the structural integrity of input fonts at any given iteration step. 
The preservation of Chinese character structure stands as a pivotal stage in the font 
generation process, as any alteration in structure may impact the intended semantics of 
the characters. Experimental findings indicate that at the iteration count of 5,000, the 
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generated images begin to exhibit traces of the target font style, albeit subtly. By the time 
the iteration count reaches 30,000, a substantial portion of the font closely aligns with the 
target style. Optimal results are achieved at 100,000 iterations, where the generated font 
displays superior clarity and stylistic similarity compared to that at 60,000 iterations. 

As the number of iterations increases, the generated results are shown in Figure 10. 

Figure 9 Results under different iterations 

 

In Figure 10, we compared the output results of the Trans-StarGAN v2 network and the 
StarGAN v2 network in simultaneously transforming three different styles of fonts: 
Founder Shuti, clerical script, and regular script, as illustrated in Figure 10. The first row 
represents the input font, while the first column denotes the target font. 

Figure 10 Example of Trans-StarGAN v2 and StarGAN v2 font generation results 

 

In Figure 11, it is evident that compared to the original StarGAN v2 network, the  
Trans-StarGAN v2 network preserves the style and structure of the target font more 
accurately at the character level, particularly for complex characters. For instance, 
focusing on the structure of the character ‘陆’, when transitioning from regular script to 
Fangzheng Shuti, the Trans-StarGAN v2 network transforms the bottom strokes of the 
character ‘陆’ into the style of Fangzheng Shuti while retaining the original font’s 
structure. Conversely, the output generated by the StarGAN v2 network for the character 
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‘陆’ does not achieve the target style and introduces distortion at the bottom of the 
character, resulting in a change in the font structure. Similarly, for the characters ‘筷’ and 
‘鸠’, the results generated by the StarGAN v2 network exhibit noticeable distortion, 
while those generated by the Trans-StarGAN v2 network not only conform to the target 
style but also present a more aesthetically pleasing font structure overall. 

Figure 11 The generated results for the characters ‘陆’, ‘筷’, and ‘鸠’ 

 

Above is our analysis of the generated images. Next, we will further analyse the 
performance of the model by calculating the FID metric. Upon examination of the FID 
metrics of the two models, it becomes evident that our model exhibits the most 
substantial enhancement in the transition from Founder Shuti to clerical, manifesting a 
notable reduction of seven points in the metrics. From the result images, it’s also clear 
that our model significantly outperforms the original StarGAN v2 model in terms of 
effect. Other style transformations also show considerable improvements in FID metrics  
Tables 1 and 2 present the font style transfer FID metrics for the Trans-StarGAN v2 
model and StarGAN v2, respectively. 
Table 1 FID values for trans-StarGAN V2 models on the dataset 

T 
S 

Founder Shuti Regular Clerical 

Founder Shuti Null 44.821 35.032 
Regular 18.712 Null 34.502 
Clerical 24.123 30.215 Null 

Table 2 FID values for StarGAN v2 models on the dataset 

T 
S 

Founder Shuti Regular Clerical 

Founder Shuti Null 48.234 42.124 
Regular 25.242 Null 38.425 
Clerical 28.324 33.564 Null 

Table 3 presents the metrics for various font generation models trained on our dataset, 
indicating that our model outperforms others in these metrics. Compared to models like 
zi2zi, HCCG-CycleGAN, and StyleGAN, our model achieves distinct advantages in both 
FID and LPIPS evaluation metrics. Our method, unlike zi2zi and HCCG-CycleGAN, 
only requires constructing a target style dataset for immediate training, imparting the 
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desired style features onto the input original images. The use of the transformer structure 
has demonstrated superior performance in aspects of detailed extraction and fusion of 
font styles. Experimental evidence shows that the CBT and SBT modules effectively 
explore the feature relationships in spatial channels, significantly enhancing the fusion of 
font style generation across various evaluation metrics. 
Table 3 FID values and LPIPS values for Trans-StarGAN V2 models on the dataset 

Models FID LPIPS 
Zi2Zi 91.35 0.1163 
HCCG-CycleGAN 81.35 0.0824 
StyleGAN 59.34 0.0624 
CycleGAN 94.34 0.1453 
StarGAN V2 58.54 0.0682 
Ours 48.23 0.0321 

4.4 Ablation study 

To validate the efficacy of the proposed network model, we conducted ablation 
experiments on the model. Initially, our model combines the use of transformer and 
convolution. To verify the effectiveness of the transformer structure, three sets of ablation 
experiments were performed. These involved replacing the CBT and SBT modules with 
the original model’s ResBLK, and substituting the CBTV2 with the original model’s 
AdaINResBLK. The effectiveness of these modifications was then assessed using FID 
and LPIPS metrics. The results of the ablation experiments are shown in Table 4. 
Table 4 Generator layers ablation experiment results 

Models FID LPIPS 
CBT ONLY 66.34 0.0635 
SBT ONLY 89.25 0.1025 
CBTV2 ONLY 91.78 0.1123 
CBT+SBT 56.64 0.0501 
SBT+CBTV2 61.25 0.0542 
CBT+CBTV2 55.14 0.0421 
Ours 48.23 0.0321 

The experimental results revealed that when feature extraction was confined to either 
channels or spatial dimensions, the FID metrics increased by 30–40. This indicates a 
significant deviation of the generated images from the target style, demonstrating that the 
Transformer structure, in contrast to convolution, is not limited to a small receptive field. 
Instead, it extracts features from a global perspective, which proves to be more 
advantageous than convolution. The use of CBTV2 and AdaINResBLK for upsampling 
and style fusion showed a relatively minor improvement. This is attributed to the use of 
AdaIN for combining the target style by calculating the mean and variance for alignment. 
This choice of AdaIN as the style transfer module is justified by its effectiveness in terms 
of speed and flexibility. 
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5 Conclusions 

Based on the multi-style transfer model StarGAN v2, this paper proposed the  
Trans-StarGAN v2, a novel multi-style transfer model, by incorporating a transformer 
structure. The model initially utilises an improved Transformer feature extraction module 
to extract channel and spatial features, followed by an upsampling module integrated 
with AdaIN to fuse the target style onto the image. Subsequently, the discriminator 
evaluates the images generated by the generator to facilitate adversarial training, 
enhancing the capabilities of both the generator and the discriminator. This model has 
been trained on a font dataset comprising three styles: clerical script, Shu style, and  
semi-cursive script. Through intuitive comparison of the generated Chinese character 
images and evaluation based on the FID and LPIPS metrics, it has been found that  
Trans-StarGAN v2 surpasses StarGAN v2 in generative ability, producing higher quality 
Chinese character images. Compared to other partial font generation models, it achieves 
better results in both overall and detailed aspects of the font. However, the parameters in 
the feature extraction process are crucial factors affecting network performance. 
Therefore, future research will focus on exploring the impact of parameters on model 
efficacy and optimising the transformer structure for subsequent device deployment. 
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