

International Journal of Applied Cryptography

ISSN online: 1753-0571 - ISSN print: 1753-0563
https://www.inderscience.com/ijact

PPADMA-ABE: a novel privacy-preserving and auditable
attribute-based encryption under dynamic multi-authority
setting

Zhifa Deng, Jiageng Chen, Shixiong Yao, Pei Li

DOI: 10.1504/IJACT.2023.10061466

Article History:
Received: 12 February 2023
Last revised: 19 March 2023
Accepted: 30 March 2023
Published online: 03 May 2024

Powered by TCPDF (www.tcpdf.org)

Copyright © 2024 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijact
https://dx.doi.org/10.1504/IJACT.2023.10061466
http://www.tcpdf.org

176 Int. J. Applied Cryptography, Vol. 4, Nos. 3/4, 2023

PPADMA-ABE: a novel privacy-preserving and
auditable attribute-based encryption under dynamic
multi-authority setting

Zhifa Deng, Jiageng Chen*, Shixiong Yao and Pei Li
School of Computer Science,
Central China Normal University,
Wuhan, China
Email: zhifadeng@mails.ccnu.edu.cn
Email: jiageng.chen@ccnu.edu.cn
Email: yaosx@ccnu.edu.cn
Email: peili@ccnu.edu.cn
*Corresponding author

Abstract: Attribute-based encryption (ABE) enables a flexible approach to data storage in the
cloud by allowing many users to encrypt data with attributes and ensuring that only authorised
users with the matching attributes can access the data. However, the original ABE system is
often static, which limits its flexibility. Therefore, we propose a novel attribute-based encryption
with security auditing, dynamic multi-authority, and privacy-preserving (PPADMA-ABE) system
that enhances the practicality and flexibility. Our scheme supports dynamic changes under
the coexistence of multiple authorities and enables self-auditing to meet potential practical
requirements. Additionally, we have outsourced a significant amount of user-side operations,
which reduces the decryption cost at the terminal to a constant level. Finally, we prove that
our scheme is secure against selective chosen-ciphertext attacks and can withstand collusion
by malicious users or authorities. In summary, PPADMA-ABE provides a more practical and
flexible solution for dynamic multi-authority ABE with privacy preservation.

Keywords: multi-authority ABE; dynamicity; outsourcing; auditing; collusion resistance; privacy
preserving.

Reference to this paper should be made as follows: Deng, Z., Chen, J., Yao, S. and Li, P. (2023)
‘PPADMA-ABE: a novel privacy-preserving and auditable attribute-based encryption under
dynamic multi-authority setting’, Int. J. Applied Cryptography, Vol. 4, Nos. 3/4, pp.176–194.

Biographical notes: Zhifa Deng is a graduate student majoring in Computer Science and
Technology at the School of Computer Science, the Central China Normal University, focuses
academically on attribute-based encryption, cryptographic protocol security, blockchain network
technology, and related areas.

Jiageng Chen received his BS from the School of Computer Science and Technology, Huazhong
University of Science and Technology (HUST) in 2004, and his MS and PhD from the School of
Information Science, JAIST in 2007 and 2012, respectively. He worked as an Assistant Professor
in the School of Information Science, JAIST from 2012 to 2015. He is an Associate Professor
at the School of Computer, Central China Normal University, and also an associate editor of
the Journal of Information Security and Application. His research areas include cryptography,
especially in privacy-preserving computing, blockchain technology, etc.

Shixiong Yao received his PhD in Information Security in the School of Cyber Science and
Engineering in Wuhan University. He is currently a Lecturer with the School of Computer,
Central China Normal University, Wuhan. He has published papers in many international
journals and conferences, such as the INFOCOM, TrustCom, Connection Science, FGCS and
the International Journal of Network Management. His research interests are in the areas of
blockchain and identity management.

Pei Li received his BS in Optoelectronics Engineering from the Huazhong University of Science
and Technology (HUST) in 2010, his MS in Computer Science from the University of Paris Sud
in 2012 and his PhD of Computer Science from the University of Bordeaux in 2016. During
2015–2016, he stayed at Pierre and Marie Curie University as visiting scholar. Currently, he is
a Lecturer at the School of Computer, Central China Normal University. His research interests
are heterogeneous computing, code optimisation and information security.

Copyright © 2023 Inderscience Enterprises Ltd.

PPADMA-ABE: a novel privacy-preserving and auditable attribute-based encryption 177

This paper is a revised and expanded version of a paper entitled ‘An outsourced multi-authority
attribute-based encryption for privacy protection with dynamicity and audit’ presented at EAI
BlockTEA 2022 – 2nd EAI International Conference on Blockchain Technology and Emerging
Applications, Copenhagen, Denmark, 21–22 November 2022.

1 Introduction

With the increased awareness of personal privacy
protection, cloud computing and related information
technology have become heavily applied in various
scenarios to safeguard users’ privacy. Cloud computing
has emerged as a new and popular business paradigm, and
organisations and individuals are storing large amounts of
data in the cloud, rather than to build and maintain the
local data centres, which can greatly reduce the operating
cost. However, the data stored in the cloud server often
contains sensitive information. Traditionally, data servers
were trusted to keep data confidential, and access control
policies were assumed to be executed correctly. However,
this technology is no longer applicable in the era of big
data, where cloud service providers (CSP) and end-users
do not belong to the same trusted domain, and the CSP
may not be completely trusted, since the hardware platform
is not directly controlled by the data owner. Therefore, it
is crucial to protect privacy and security when interacting
with others. Cryptographers are actively exploring ways
to reduce users’ concerns about data privacy. An effective
way is to encrypt the data before uploading to the server,
thus protect the data from attackers whose target is the
cloud server. However, the encrypted data also needs to be
shared, and public-key encryption or symmetric encryption
do not offer flexible access control. A better solution to
this problem is attribute-based encryption (ABE), which
was first proposed by Sahai (2005). ABE aims to protect
the confidentiality of sensitive data and is classified into
CP-ABE and KP-ABE according to where the policy is
embedded (Bethencourt et al., 2007). Both of them can
prevent users who do not meet the policy requirements
from accessing the data, even if they collude.

In an ABE system, the encryptor does not know who
can decrypt the ciphertext, and the receiver does not know
who the encryptor is. This provides privacy protection for
various participants, enabling them to exchange private
information anonymously to a certain extent. CP-ABE
is mostly designed for fine-grained data access control
in distributed platforms, making it attractive in the field
of cloud data storage control. However, with the further
development of the internet and explosive growth of
data, users’ requirements for the system have become
increasingly complex and dynamic. In the past, ABE was
mostly in a static state, with relevant system parameters
fixed at the beginning, limiting the flexibility of the system.
Previous works such as Liu et al. (2018), Ling et al. (2021)
and Deng (2014) have addressed only partial updates of the
policy or the user, which cannot handle dynamic changes
and meet the growing potential needs of users.

In addition, the high cost of encryption and decryption
is also a serious bottleneck for ABE, which may
essentially prevent its widespread deployment, especially
on resource-constrained devices or platforms. Most existing
pairing-based CP-ABE systems have linearly dependent
decryption overhead, which often increases with the
complexity of the access policy, making it a challenging
issue. Outsourcing decryption is an effective way to reduce
the decryption overhead of users by outsourcing a large
number of decryption operations to CSP. However, since
CSPs are not fully trusted third parties, verifying the
correctness of outsourced decryption is a tricky problem.
Previous solutions such as those proposed in Green et al.
(2011) and Zhang et al. (2015) only focused on the
efficiency or security of the outsourcing process without
considering the verifiability of outsourced decryption,
which is crucial in an untrusted cloud environment. While
system efficiency can benefit from outsourcing, it comes
at the cost of security compromise to untrusted third-party
services. In a word, none of the above-mentioned research
has focused on combining dynamicity and auditable
mechanisms under the multi-authority setting.

1.1 Motivation

The previous background motivates us in the following
aspects:

1 The existing scenarios have high requirements for
dynamicity. It inspires us to combine the
multi-authority with the dynamic feature to realise the
flexible management of the system.

2 How to safely offload the ‘expensive’ linear pairing
computation operations in the decryption process to
the cloud.

3 How to efficiently check the validity of the decryption
results returned by the cloud.

4 Since the system members are dynamically changing
and the number of attributes is increasing, how to
effectively resist the collusion among users or
authorities.

In summary, none of the previous researches has focused
on combining dynamicity and auditable mechanisms in the
multi-authority setting. In this paper, we are motivated
by the dynamic policy updating in Ling et al. (2021),
multi-authority attribute encryption scheme in Chase and
Chow (2009), outsourcing decryption in Zhang et al.
(2015), as well as several other techniques in Han et al.
(2015), Waters (2008), Kan and Jia (2012) and Ning et al.

178 Z. Deng et al.

(2017), and propose a more flexible ABE system that
focuses on user privacy protection and security in the
following aspects:

• We propose that the number of attribute authorities
should be set by multi-authority while maintaining
dynamicity, so as to achieve one-to-one
correspondence between attributes and authorities and
ensure the system’s dynamicity. Thus, solve the
system bottlenecks and improve system efficiency and
flexibility.

• Due to the large computational overhead in the
decryption phase in most of the schemes (Green
et al., 2011; Zhang et al., 2015; Armknecht et al.,
2014; Yang et al., 2013; Li et al., 2014), we
outsource the related parts to the cloud server.

• The system will not introduce an additional third
party to act as the auditor, but instead we will
distribute the role within the system. In this way, the
decryption results of the outsourced decryption cloud
server can also be verified (Ning et al., 2017) and
strictly ensure the decryption security.

• Regarding the security and privacy protection, we are
inspired by Rahulamathavan et al. (2016) to change
the ciphertext form to handle collusion problem.

Therefore, we investigate the above interesting issues
and further propose a security auditing and dynamic
multi-authority ABE scheme with privacy protection.

1.2 Our contribution

To the best of our knowledge, our proposal is the
first instance that combines multi-authority with dynamic
features. The main contributions of this work can be
summarised as follows:

• Dynamic change in the multi-authority setting: We
have implemented several dynamic operations in our
proposed system, such as the dynamic join, withdraw,
and update of attribute authorities, as well as the
dynamic join, withdraw, and update of users.
Additionally, we have also enabled dynamic updates
of various attributes in the policy. There are multiple
authorities working together in the system, which can
make the system more stable. Each attribute authority
is responsible for attribute management, and the CA
is responsible for managing each AA and notifying
the current status of each one through a broadcast
mechanism. The presence of multiple authorities in
the system improves its stability while still ensuring
dynamic performance.

• Auditability of decryption by AA and CA: The dual
audit mechanism we proposed can effectively ensure
the integrity and correctness of the outsourced
decryption without relying on a third party auditor.
This mechanism is designed to be lightweight and

efficient, without introducing any additional
parameters or computational costs to the user. The
decryption information will be audited twice by the
attribute authorities (AA) and the central authority
(CA) after the decryption request is executed.
Therefore, we can detect any attempts of malicious
behaviour and verify the correctness of the decryption
results. Compared to verifiable methods described in
Ma et al. (2015) and Hui et al. (2017), our auditable
method does not require any modifications to the
ciphertext of our system and does not add any
computational overhead to the user.

• Effective resistance to collusion: The scheme restricts
the collusion between malicious users and malicious
authorities from the key distribution and decryption
elements, and provides detailed proof to optimise the
third party disclosure collusion existing in the
previous scheme.

1.3 Paper organisation

The rest of the study is organised as follows. In
Section 2, we review a series of related works of ABE,
compare and analyse several types of attribute encryption
with different features. In Section 3, we introduce
the preliminaries including the related definitions and
complexity assumptions used in the scheme. In Section 4,
we present the system model, scheme framework, security
model and security assumptions. In Section 5, we give
the concrete scheme construction. The security analysis
of our scheme is presented in Section 6. In Section 7,
an evaluation and comparison of relevant performance is
provided. Finally, we conclude our paper in Section 8.

2 Related work

In 1984, Shamir proposed the concept of identity-based
encryption (IBE), which uses identity information as the
public key to encrypt messages. In 2001, Boneh proposed
a provably secure IBE scheme based on Weil pairing, and
enhanced it by the technique from Fujisaki and Okamoto
(1999). In 2005, Sahai proposed a new type of IBE,
the fuzzy IBE, which is the prototype of ABE, but it
only allowed fixed identities in the system, which seems
to be closer to the access control mechanism. We can
view IBE as a very special case of ABE. From then
on, various ABE schemes have been gradually proposed.
According to the number of authority, there are single
authority, multi-authority and de-centred multi-authority
schemes. Single-authority and multi-authority settings have
been proposed to address the management issues in both
encryption schemes. According to the characteristics of
ABE, it can be divided into revocation ABE, key delegate
encryption, reproxy, audit accountability, outsourcing,
online and offline, and lattice-based attribute encryption.
Different schemes have different properties, which makes
ABE have stronger development potential.

PPADMA-ABE: a novel privacy-preserving and auditable attribute-based encryption 179

In a single-authority ABE, both attribute management
and key distribution are handled by a single authority.
However, in most practical scenarios, users have more
than one attribute, then a multi-authority attribute-based
encryption (MA-ABE) system is proposed. In a
multi-authority ABE system, different attribute authorities
manage different attribute sets and distribute corresponding
attribute keys. In 2007, Chase implemented the MA-ABE
scheme for the first time (Chase, 2007). In Chase (2007),
the attribute authority (AA) are independent of each other
and do not need to exchange information, but it needs a
fully trusted central authority (CA) to manage all private
information. What’s more, it achieves collusion resistance
by assigning a unique global identifier (GID) to each user.
Later, Lewko and Waters (2011) proposed a new MA-ABE
scheme called decentralising CP-ABE scheme, in which the
authority centre CA is removed, and any party can become
an authority.

Moreover, due to the complex pairing and
exponentiation operations in ABE, outsourcing complex
operations to cloud server has become an effective solution.
The concept of outsourcing retrievable proof is proposed
by Armknecht et al. (2014), in which users can entrust
external auditors to execute and verify POR with cloud
providers. Outsourcing decryption is introduced into the
ABE system by Green et al. (2011), so that the complex
operations in the decryption stage can be outsourced to
the cloud server, leaving only an exponentiation operation
for the user to recover the plaintext. Although they
entrusted complex operations to the cloud server, they
did not consider the correctness of the results returned
by the cloud. In order to solve the above problem, Ren
et al. (2015) proposed a mutual verifiable provable data
auditing method. Later, Lai et al. (2013) introduced
the verifiability of ABE to verify the correctness of
outsourced decryption. Zhang et al. (2015) revisited
verifiable outsourced ABE (Lai et al., 2013) and proposed
a more efficient approach to construct. In addition to
outsourcing decryption, Li et al. (2014) and Hui et al.
(2017) also considered key distribution during outsourcing.
Green et al. (2011) proposed to outsource decryption
by transferring computationally expensive operations
on ciphertexts (such as bilinear pairing operations) to
devices with more powerful computing power, thereby
effectively reducing the computational cost of users. In
2020, Sethi et al. transferred the expensive decryption
operation to a device with stronger computing power,
thereby reducing the computing overhead essentially. In
addition, they also obtained the partial ciphertext, so that it
was unnecessary to obtain all the ciphertext for decryption,
further integrating the overhead resources to improve the
computing performance of the system.

Also, after the multi-authority attribute encryption is
proposed, a series of functional features are also derived,
such as policy updating or hiding (Liu et al., 2018),
attribute revocation (Yang et al., 2013), searchable ABE
(Green et al., 2011), ABE on lattices (Liu et al., 2017b),
online or offline combined computing (Hohenberger and
Waters, 2014), large universe mechanisms (Lian et al.,

2019), outsourced scheme (Zhang et al., 2015), verifiable
scheme (Ma et al., 2015), and so on. However, only some
papers are aimed at member management or auditing or
outsourcing (Yu et al., 2010; Ren et al., 2015; Zhang et al.,
2015), just pay attention to one aspect, they cannot use
multi-authority decentralised management while ensuring
dynamicity, and at the same time have to take into
account decryption outsourcing and audit the correctness of
decryption results. None of the above-mentioned research
has focused on combining dynamicity and auditable
mechanisms with multi-authority.

3 Preliminaries

3.1 Access structures

Definition 3.1 [access structure (Shamir, 1979)]: Let
{P1, P2, ..., Pn} be a set of parties. A collection
A ⊆ 2{P1,P2,...,Pn} is monotone if ∀B,C: if B ∈ A and
B ⊆ C then C ∈ A. An access structure (respectively,
monotone access structure) is a collection (respectively,
monotone collection). A of non-empty subsets of
{P1, P2, ..., Pn}, i.e., A ⊆ 2{P1,P2,...,Pn}\{∅}. The sets in
A are called the authorised sets, and the sets not in A are
called the unauthorised sets.

In the subsequent discussions, the set of attributes in
ciphertext will be embedded in access policy A, so we limit
our attention to the monotonous access structure, but the
‘not’ logic can also be included at the cost of doubling
the number of attributes in the system, resulting in a more
general access structure. From now on, access structures
in this article refer to monotone access structures unless
otherwise stated.

3.2 Lagrange interpolation

According to Beimel (1996) and Pohoata (2008), a
Lagrange interpolating polynomial is a polynomial of
degree not greater than (n− 1) that passes through n points
(xi, yi), ..., (xn, yn), and is given by,

p(x) =

n∑
j=1

pj(x) (1)

where

pj(x) = yj
∏

k=i,...,n,k ̸=j

x− xk

xj − xk
(2)

For i ∈ Z and S ⊆ Z, the Lagrange coefficient △i,s(x) is
defined as

△i,s(x) =
∏

∀j∈S,j ̸=j

x− j

i− j
(3)

180 Z. Deng et al.

3.3 Bilinear pairings

Let G and GT be two multiplicative cyclic groups of prime
order p. Let g be a generator of G and e : G×G→ GT be
a bilinear map with the properties:

• bilinearity: e(Ax, By) = e(A,B)xy for all A,B ∈ G
and x, y ∈ Zp

• non-degeneracy: ∃A ∈ G1, B ∈ G2, e(A,B) ̸= 1,
where 1 is the identity of GT

• efficient computability: there exits an algorithm that
can efficiently compute e(A,B) for all
A ∈ G1, B ∈ G2.

3.4 The decisional bilinear Diffie-Hellman problem

Let G1, G2 and GT be three cyclic groups of prime order
q, P and Q be arbitrarily-chosen generators of G1 and G2,
respectively, and e : G1 ×G2 → GT be a bilinear mapping.
Given (P,Q, aP, bP, cP, aQ, bQ, cQ,Z) for some a, b, c ∈
Z∗
q and Z ∈ GT , decide if Z = e(P,Q)abc.
An algorithm B that outputs b

′ ∈ {0, 1} has advantage
ϵ in solving the DBDH problem if

|Pr[B(P,Q, aP, bP, cP, aQ, bQ, cQ, e(P,Q)abc)]

−Pr[B(P,Q, aP, bP, cP, aQ, bQ, cQ,Z)]| ≥ ϵ
(4)

Definition 3.2 (the decisional-BDH assumption): We
say that the decisional BDH assumption holds if no
polynomial-time adversary has non-negligible advantage in
solving the decisional BDH problem (Boneh, 2001).

3.5 Trapdoor function

We say a trapdoor function is an algorithm that can be
effectively reversed when you know the trapdoor; However,
it is very difficult to calculate reversals without knowing
the trapdoor.

Definition 3.3 [the trapdoor function scheme (Boneh and
Shoup, 2020)]: Let X and Y be finite sets. A trapdoor
function scheme T , define over (X,Y), is a triple of
algorithm (G,F, I), where

1 G is a probabilistic key generation algorithm that is
invoked as (pk, sk) R←− G(), where pk is called a
public key and sk is called a secret key.

2 F is a deterministic algorithm that is invoked as
y ← F (pk, x), where pk is a public key (as output by
G) and x lies in X . The output y is an element of Y .

3 I is a deterministic algorithm that is invoked as
x← I(sk, y), where sk is a secret key (as output by
G) and y lies in Y . The output x is an element of X .

Also, sk is the trapdoor of this function. If the sk is
obtained, it can be substituted into the algorithm to calculate
the function value, i.e., we have I(sk, F (pk, x)) = x.

4 Our construction

4.1 System model

Our system consists of central authority (CA), attribute
authority (AA), data owners (DO), data users (DU), cloud
service provider (CSP) and outsourcing decryption cloud
service providers (OD-CSP). The system architecture of our
work is shown in Figure 1.

• Central authority (CA): In our scheme, the CA plays
a critical role in establishing and maintaining the
system, as well as processing dynamic requests from
other entities like DU and AA. The CA is fully
trusted and responsible for managing all AA
operations, including AA registration, revocation, and
updating, as well as user enrolment. However, it is
not involved in attribute management. In addition to
its administrative roles, the CA also acts as an auditor
to ensure the correctness of outsourced decryption
results. Since this auditing process can be costly, we
delegate the preliminary auditing to the AA and let
the CA act as a secondary auditor. This approach
helps to improve the efficiency of the system, as the
cost of auditing is mainly due to symmetric
decryption.

• Attribute authority (AA): The AA is an entity
responsible for handling different attributes. They
exist independently of each other, managing different
attributes and issuing corresponding decryption keys.
The AA receives requests for GID from legitimate
users and issues decryption keys to them based on
their attributes. They can also generate update keys,
which are used to update the keys of users in case
some attributes of some users are added or revoked.
In addition, each AA is responsible for auditing the
content decrypted by the ODCSP and verifying its
correctness.

• Data owner (DO): The DO defines data access
policies using ABE on the specific encrypted content,
and then encrypts the data through the policy. The
access policy specifies the attributes required to
access the ciphertext data, allowing for fine-grained
data access control, and determines which users are
able to access it.

• Data user (DU): The DU is an entity that wants to
access the data and decrypt it. Once registered in the
system, each user will have a unique GID. When a
user has a ciphertext that needs to be decrypted,
he/she sends its GID to the authority. Note that the
authority does not get any information about the user
attributes. After the authority verifies that the GID is
correct, if the user has a set of attributes that satisfy
the encrypted data access policy defined by DO, then
he/she will use the attribute set for decryption to
obtain the ciphertext content.

PPADMA-ABE: a novel privacy-preserving and auditable attribute-based encryption 181

Figure 1 The overall design of system (see online version
for colours)

• Cloud service provider (CSP): The cloud service
provider (CSP) is an entity responsible for storing the
data. The DO submits the encrypted ciphertext data to
the CSP for storage, which makes it convenient for
DU to retrieve the ciphertext in the later stage.
Meanwhile, if an AA wants to access the ciphertext
during an auditing stage, it will interact with the CSP
to verify the integrity and consistency of the
ciphertext data during the auditing process.

• Outsourced decryption cloud service provider
(OD-CSP): The OD-CSP is an entity responsible for
decrypting the ciphertext sent by the user and
calculating the partial session key. The DU obtains
the ciphertext from CSP and obtains the partial
session key from AA with the help of ODCSP, so
ODCSP also plays an extremely important role. After
receiving the complete and necessary information,
ODCSP performs the fast calculation of bilinear
pairings, and completes the whole operation with the
cooperation of AA, so as to reduce the overhead of
the whole system. The algorithm improves the
decryption efficiency by reducing the number of
pairing and exponentiation operations required by
users.

4.2 The scheme framework

Based on the system model described above, our
scheme consists of the following algorithms: system
initialisation (CASetup(), AAEnrol(), UserEnrol()),
execution (KeyGen(), Update(), Revoke()), encryption and
decryption (OD-CSP), audit (CA and AA), decryption
(user).

Table 1 Notations

Notation Meaning

λ A security parameter
SAA Set of all attribute authorities (AA)
SAi Set of attributes maintained by AAi

Suid Set of attributes owned by user uid

U Set of registered users
Attr(N) Attribute associated with node N

val(N) Attribute value associated with node N

NL Set of all leaf nodes of access tree T

kN Threshold value associated with node N

dN Degree of the polynomial of node N

parent(N) Parent node of node N

index(N) Index associated with node N

First, some symbol notations in this chapter are described
in Table 1. Then, our scheme is specifically constructed as
follows.

4.2.1 System initialisation

• CASetup(1λ) → ((CAsk, CApk), (CAsig,
CAverify)): The algorithm takes the security
parameter λ as input to generate the PK and SK of
the CA, as well as the signature and its verification
key pair (CAsig, CAverify).

• AAEnrol(CAsk, CApk, AAinf o) → (AAi, AAi,sk,
AAi,pk): In this algorithm, the CA issues a unique ID
AAid to each attribute authority. And then generate
the public key(AAi,pk) and secret key(AAi,sk) for
each of ith authority.

• UserEnrol(CAsk, CApk, uinfo) → (uid, cert(uid),
usk, upk): The algorithm makes use of the public and
private key pair of CA (CAsk, CApk) and user
information (uinfo) to assigns a unique global user’s
identity uid (here, we use the method in Chase and
Chow (2009) to obtain the GID, so that the user can
interact with other entities without revealing private
information) and a certificate cert(uid) for the user. At
the same time it generates the user’s public and
private key pair(upk, usk).

4.2.2 Execution

• KeyGen(CApk, AAi,sk, uid, Suid
)→ (SKuid

): This
algorithm generates a decryption key for the user.
Before the algorithm is executed, the system will
verify the validity of the user. If the user is valid, the
system enters the CA’s public key, the current user’s
GID and the private key for ith AA, user attribute set
S, then generates the decryption key for the
outsourcing server to decrypt.

• Update(uid, j,m)→ (SKuid,j∈Suid
): When the user

uid needs to change his/her attribute value, then the
algorithm is executed to update it to a new value
m′

id,j . The new value can either exist in the system

182 Z. Deng et al.

or be newly added, so as to meet the user’s demand
for changing the attribute value in the system.

• Revoke(uid): When the uid user wants to leave the
system, then the algorithm will be executed and the
certificate will be revoked. What’s more, the
credentials of system will also be updated.

4.2.3 Encryption and decryption

• Encrypt(CApk, AAi,pk, T,K,M)→ (CT): This
algorithm takes public parameters of CA and the
authority of the managed attributes, an access tree
structure T , a key K, and a message M . The
algorithm output the result of symmetric encryption
under K, which is ciphertext CT .

• DecryptODCSP (CT, SKuid
)→ (K1): DU initiates

an outsourced decryption calculation request. The
algorithm is executed by the ODCSP. After receiving
the ciphertext and decryption key from DU, output
the partial session key K1.

4.2.4 Audit

• AuditAA(AAi,sk, CT , DecryptODCSP (CT ,
SKuid

)) → (1/0): The AA performs the preliminary
audit. The algorithm inputs the secret key AAi,sk, the
ciphertext CT, and the partial session key K1

obtained from the ODCSP. Then the AA calculates
the one-way trapdoor function by using its private
key to obtains the XOR result of the function value
and the partial session key K1. Finally, the calculated
result is compared with M̄ in the ciphertext. If they
are consistent, the algorithm outputs 1; otherwise
returns 0.

• AuditCA(AuditAA(∗) == 1, CApk, CT , K, M) →
(1/0): The CA performs a secondary auditing. Since
the AA is not fully trusted, a trusted CA is required
to conduct a secondary auditing on the results of AA
to ensure the correctness. The algorithm takes the
CA’s public key, the ciphertext CT, and the session
key K (since CA is absolutely trusted, the CA can
obtain the partial session key K2 of the user.
Combined with the partial session key K1 of the
ODCSP, the complete session key K is obtained).
What’s more, the algorithm will judge the result
returned by the AuditAA, if it returns 1, the
algorithm can be successfully executed; otherwise, it
will fall back to the previous step. Lastly, it is
compared with the initial encrypted M, if
DK(M̄) = M then return 1, otherwise return 0.

4.2.5 Decryption (user)

• DecryptDU (AuditCA(∗) == 1, cert(uid), CT ,
DecryptODCSP (CT , SKuid

), K2) → (M/⊥): The
algorithm will judges the result returned by the
AuditCA, if it returns 1, the algorithm can be

successfully executed; otherwise, it will fall back to
the previous step. The algorithm is performed by the
DU, if AuditCA(CApk, CT , K, M̄ , M) → 1, the
algorithm (run by DU) outputs the message M.
Otherwise, it outputs ⊥.

4.3 Security assumptions and requirements

In the following analysis, we will rely the following
assumptions:

• The CA must be completely trusted, and there must
be no collusion by any other party.

• The AA is honest but curious, not completely trusted,
and may collude with each other.

• The DU is honest but curious, and may collude with
other unauthorised users out of the temptation of
profit.

• CSP and OD-CSP are honest but curious, just like
DU. They will actively and faithfully perform their
duties, but may also be curious about the data content.

Also, we make some requirements as follows:

• Data confidentiality: Unauthorised users who do not
conform to the access policy attributes are not
allowed to access the data plaintext, and illegal users
and the possibility of collusion are blocked.

• Backward and forward secrecy: In the practical
scenario of ABE, the backward secrecy means that
any user with an attribute (satisfying the access
policy) has no right to access the plaintext before
owning the attribute; and the forward secrecy means
that any user whose attribute is revoked or has left
the system can no longer access the plaintext data,
unless the revocable attribute he holds satisfies other
valid access policies.

• Collusion-resistance: If multiple users are going to
collude, they cannot decrypt a ciphertext by
combining their attributes even if they cannot decrypt
it alone. Since we assume that CSP and ODCSP are
not necessarily fully trusted, we do not consider
active attacks from revoked users by colluding with
them as in Yu et al. (2010).

4.4 Security model

Here, we describe a selectively CP-ABE and
chosen-ciphertext attack (sCP-IND-CCA) model for the
PPADMA-ABE scheme, played by a game between a
challenger and an adversary. The model is called selective
because it allows the adversary to adaptively choose the
access control tree T ∗ at the beginning of the game.
Let A denote the adversary who attempts to attack the
scheme, C denote the challenger who encrypt the challenge
ciphertext. Formally, this is represented by the following
game interaction between A and C.

PPADMA-ABE: a novel privacy-preserving and auditable attribute-based encryption 183

• Init: At the beginning of the game, the adversary A
can choose which access control policy T ∗ he wants
to challenge and sends it to the challenger C.

• Setup: The challenger runs the system initialisation
algorithm to establish the CA of the system and
complete the creation and setup of the AA. Next, the
challenger exploits the system algorithm to generate
the required keys of the adversary for the corrupt and
honest AA with the assistance of CA. In this process,
the adversary’s requirements are as follows: the
adversary can have the right to obtain the public and
private key pairs {AApk, AAsk} of the set of all
corrupt authorities S′

AA ⊂ SAA, but only the public
keys of the remaining authorities S̃ : (SAA − S′

AA).
According to the above requirements, the challenger
reasonably calls the system algorithm to complete the
generation of the corresponding keys and sends it to
the adversary A.

• Query phase 1: In phase 1, the adversary A makes
some queries to challenger C as follows.

1 Private key query: The adversary can request a
user SKuid

attribute set S1, ..., Sq corresponding
to some corrupt authorities and obtain his private
key from it. However, it is necessary to ensure
that there is at least one uncorrupted authority to
prevent the adversary from obtaining a sufficient
number of keys. Finally, SKuid

will be recorded
in a set LSK , which was created specifically to
hold these keys.

2 Decryption query: The adversary can also
perform a decryption query against a given
ciphertext CT and output the message M
corresponding to the CT. If the ciphertext is
incorrectly constructed, ⊥ is output.

• Challenge: After the above process is completed, the
adversary A submits (M0,M1, T

∗) to the challenger,
of where M0 and M1 are two messages of equal
length, and T ∗ is an access tree structure other than
that specified by the adversary before, and all the sets
S1, ..., Sq in phase 1 do not satisfy this access
structure. Now the challenger randomly selects
b ∈ {0, 1} and K ∈ GT , and performs symmetric
encryption EK(Mb) of the message Mb under the
access tree structure T ∗ sent by the adversary, and
finally constructs the corresponding CT ∗. If there
exits SKi ∈ LSK that can decrypt CT∗, then the
challenge will be terminated. Otherwise, the
ciphertext CT ∗ is given to the adversary.

• Query phase 2: Repeating phase 1, the adversary can
continue the above private key queries without being
able to make decryption queries.

• Guess: After the above operations, finally, the
adversary guess which message the challenger
encrypted, and output his guess b′ of b, if b′ = b, then
the adversary wins the game.

We define the advantage of the adversary in above game
as:

AdvCCA
PPADMA(A) = |Pr(b′ = b)− 1/2| (5)

Definition 4: A ABE with security auditing, dynamic
multi-authority, and privacy protection scheme is said to be
selectively ciphertext policy and chosen-ciphertext attacks
(sCP-IND-CCA secure) if for any adversary A within
polynomial time, the AdvCCA

PPADMA(A) is negligible.

5 The proposed scheme

5.1 System initialisation

The system initialisation stage is divided into four parts, the
algorithm details of each part are as follows.

5.1.1 CASetup(1λ)→ ((CAsk, CApk),
(CAsig, CAverify))

The CA inputs a security parameter λ and generates a
bilinear mapping e : G1 ×G2 → GT , where G1 and G2 are
two additive groups, GT is a multiplicative group. Then
the public parameters PP = {G1, G2, GT , g, h, e(g, h)} are
obtained, where g ∈ G1 and h ∈ G2 respectively, and
G1, G2, GT are with prime order q. The CA performs the
steps as follows:

Step 1 Choose two random elements α, β from Z∗
q .

Step 2 Selects two one-way collision-resistance hash
functions, called H1 and H2:

H1 : {0, 1}∗ → Zq
∗

H2 : {0, 1}∗ → {0, 1}lλ

where lλ is the length of random string.

Step 3 The algorithm generates (CAsk, CApk) as
follows:

CAsk = {α, β},
CApk = {PP, e(g, h)

αβ
,

f = e(g, h)
α(β−1)

, gα,H1,H2}

Step 4 The CA produces a pair of central signature keys
and verification keys (CAsig, CAverify) by
using algorithm like RSA.

After the subsequent AAEnrol() phase is deployed, the
CA still needs to initialise some parameter settings in the
systems. Please refer to the AAEnrol() phase for details.

5.1.2 AAEnrol(CAsk, CApk, AAinf o) → (AAi, AAi,sk,
AAi,pk)

Each authority sends a request to CA to register. The
algorithm inputs central authority public and private key

184 Z. Deng et al.

pair {CAsk, CApk}, and the information of attribute
authority. The CA runs the algorithm and generates a global
unique identity for each legitimate authority in the system.
As shown in Table 1, let SAi = {Ai,1, Ai,2, ..., Ai,ni}
represents the set of attribute values maintained by ith

attribute authority. Every AA runs the algorithm as follows:

Step 1 AAi picks a random ci ∈ Zq and computes xi, yi
as follows:

xi = gci , yi = hci

Step 2 Then generates AAi,sk and AAi,pk as:

AAi,sk = ci, AAi,pk = {xi, yi}

Step 3 When the attribute authority is set, CA then sets
two default users in this step to be used as the
credential information to bind the user and AA
together.

1 Set U = {0, 1} and randomly some elements
{vuid,j}∀uid∈U,j∈SAi

and {σi}∀i∈SAA
in Z∗

q .

2 Compute
{
Vj =

(∏
∀j∈SAi

vuid,j

)
h

}
{
v̄uid,j = σi

∏
∀k ̸=uid,k∈U

v−1
k,j + vuid,j mod q

}
∀j∈SAi

(6)

Finally, the public key of CA is newly changed.
The PK contains the information about
{Vj , {v̄uid,j}∀j∈SAA

}, which is used for
subsequent operations. Also, we can view this
part as some kind of credential information in
the process of system dynamic change. The
newly changed PK is as follows:

CApk = {PP, e(g, h)
αβ

, f = e(g, h)
α(β−1)

, gα,

H1,H2, {Vj , {v̄uid,j}∀j∈SAi
}}.

5.1.3 UserEnrol(CAsk, CApk, uinf o)→
(uid, cert(uid), usk, upk)

Each user who wants to join the system sends a request
to the CA. The CA performs the algorithm called
UserEnrol() which inputs CA’s secret key CAsk, public
key CApk and each user information uinfo and then assigns
a unique global identity uid to each user. The algorithm
randomly picks a tuid

∈ Zp, then outputs public and secret
key pair of the user {upk, usk} as follows:

usk = {tuid
}, upk = {htuid }

At the same time, the algorithm also generates user
certificates cert(uid) where

cert(uid) = {sign{CAsign}(uid, h
tuid)}

Thus one person can prove that he/she is a legal user in the
system by using the certificate cert(uid) received from CA.

Then we randomly pick {σi, vuid,j}∀j∈SAi
in Z∗

q , set
{Vj , {v̄uid,j}∀j∈SAi

} (we can view this part as some kind
of credential information in the process of system dynamic
change).

{
Vj =

(∏
∀j∈SAi

vuid,j

)
g

}
{
v̄uid,j = σi

∏
∀k ̸=uid,k∈U

v−1
k,j + vuid,j mod q

}
∀j∈SAi

(7)

After a user is registered to the system, then set U = U ∨
{uid} and update {Vj , {v̄uid,j}∀j∈SAi

}.

5.2 Execution

5.2.1 KeyGen(CApk, AAi,sk, uid, Suid
)→ (SKuid

)

Each user registered to the system has its own global
identity. They request the decryption key from the AA
bound to their own attributes. First, AA uses the CA
verification key to verify the user’s legal identity, and
obtains the user’s ID. If the user is found to be illegal,
the algorithm aborts. Otherwise, the AA allocates the key
that conforms to its attribute value according to the relevant
information.

Step 1 Randomly pick some elements {huid,j , ϑ,
{ρi, σi, ti, ci}∀i∈SAA

, {vuid,j}∀j∈Suid

∩
SAi

,

{ri,j}∀i∈SAA∀j∈Suid

∩
SAi

} in Z∗
q .

Step 2 Compute

{
Vj = vuid,jVj}∀j∈Suid

∩
SAi

{v̄uid,j = σi

∏
∀k ̸=uid,k∈U

v−1
k,j + vuid,j mod q} ∀i∈SAA,

∀j∈Suid

∩
SAi

{v̄k,j = (v̄k,j − vk,j)v
−1
uid,j

+ vk,j mod q} ∀k ̸=uid,k∈U,
∀j∈Suid

∩
SAi

(8)

Step 3 According to the relevant information about user
uid and then compute his/her decryption key as
follows:

Duid
= (αh+ ρiσiciH1(uid)h)∀i∈SAA

{Duid,j = v−1
uid,j

(ρi + ri,j) ·H1(uid)}∀i∈SAA,∀j∈Suid

∩
SAi

{D′
uid,j = ri,jg ·H1(uid)}∀i∈SAA,∀j∈Suid

∩
SAi

{D′′
uid,j = σiciri,jg + ρicigvj}∀i∈SAA,∀j∈Suid

∩
SAi

(9)

Step 4 It outputs the secret key

SKuid,j∈S = {Duid
, D′

uid
, Duid,j , D

′
uid,j

, D′′
uid,j
}∀j∈Suid

∩
SAi

5.2.2 Update(uid, j,m
′
uid,j

)→ (SKuid,j)

The updating algorithm can solve the issue of the user
updating its attribute value and meet the dynamic demand
change. With the dynamic changes of users’ identities,
roles, capabilities and other cases, the attributes of the
user will inevitably change. Therefore, users can update

PPADMA-ABE: a novel privacy-preserving and auditable attribute-based encryption 185

their corresponding attribute values according to the current
scenario, such as updating their jth attribute value to m′

uid,j

to meet the needs from the new environment. The algorithm
performs the following operations:

Step 1 Firstly, randomly select some elements,
ρi

′, v′uid,j
, and r′i,j in Z∗

q

Step 2 Next, compute h′
uid,j

= H2(m
′
uid,j

)

Step 3 Then, give

Duid
= (αh+ ρi

′σiciH1(uid)h)∀i∈SAA,∀j∈SAi

{Duid,j = v
′−1
uid,j

(ρ′i + r′i,jhuid,j) ·H1(uid)}∀i∈SAA,∀j∈SAi

{Duid,k′ = v−1
uid,k′(ρ

′
i + r′i,khuid,k′) ·H1(uid)} ∀i∈SAA,

∀k′∈SAi
\{j}

{D′
uid,j = r′i,jgH1(uid)}∀i∈SAA,∀j∈SAi

{D′
uid,k′ = r′i,k′gH1(uid)}∀i∈SAA,∀k′∈SAi

\{j}

{D′′
uid,j = h′

uid,j(r
′
i,jσicig + ρ′icigvj)}∀i∈SAA,∀j∈SAi

{D′′
uid,k′ = h′

uid,k′(r′i,k′σicig + ρ′icigvj)} ∀i∈SAA,
∀k′∈SAi

\{j}

(10)

to user uid.

Step 4 Lastly, update {Vj , {v̄uid,j}∀j∈SAi
}

{
Vj = v−1

uid,j
v′uid,jVj}∀j∈SAi

{v̄uid,j = (v̄uid,j − vk,j) + v−1
uid,j

mod q} ∀k ̸=uid,
k∈U,∀j∈SAi

{v̄k,j = (v̄k,j − vk,j)vuid,jv
−1
uid,j

+ vk,j mod q} ∀k∈U\{uid},
∀j∈SAi

(11)

5.2.3 Revoke(uid)

After the algorithm is executed, the user identity is no
longer valid. In other words, the user cannot legally exist
in the system and the user certificate and private key are
revoked. In addition, the credentials of the system will be
modified and all relevant information about him/her will
be deleted. The algorithm update {Vj , {v̄uid,j}∀j∈SAj

} as
follows:

{
Vj = v−1

uid,j
Vj}∀j∈SAi

{v̄k,j = (v̄k,j − vk,j)vuid,j + vk,j mod q} ∀k∈U\{uid},
∀j∈SAi

(12)

And then, set U = U\{uid} and delete {v̄uid,j}∀j∈SAi
in

PK.

5.3 Encryption and decryption

5.3.1 Encrypt(CApk, AAi,pk, T,K,M)→ (CT)

In this scheme, ciphertext generation is carried out under
the access structure tree, so the generating process of
ciphertext in this paper is divided into two parts: leaf node
and internal node.

a Access tree structure construction Goyal et al. (2006):
let T represent an access structure tree. For a given
tree T , start from the root node R and select a
polynomial qx for each node(including leaves) of T in

a top-down manner. For each node x in the tree, set
dx = kx − 1. The detailed process is described as
follows:

• For the root node R: randomly chooses an
element s ∈ Z∗

q and sets qR(0) = r, where kR is
the threshold value of the root node R, and the
process starts from the root node R. Then assign
a unique index number x for each child of the
root node R, randomly chooses dR other points
of the polynomial qR to fully define it.

• For each non-leaf node N other than R:
randomly pick a polynomial qN of degree
dN = kN − 1 with
qN (0) = qparent(N)(index(N)), where kN is the
threshold value of node N . Then assign a unique
index number x for each child of the node N ,
randomly chooses dN other points of the
polynomial qN randomly to fully define it.

• For each leaf node NL: randomly choose a
polynomial qNL

of degree 0 with
qNL(0) = qparent(NL)(index(NL))

b Ciphertext generation: randomly select a session key
K ∈ GT and K is randomly divided into K1 and K2.
The K2 is saved by user and K1 is used in ciphertext
construction. Then pick a one-way trapdoor function
F , which is a deterministic algorithm, and its inverse
can be calculated when the trapdoor is known. At the
same time, we use the way of aggregating the
ciphertexts of leaf nodes to reduce the overall
ciphertext size to be constant, which is also an
improvement over the previous studies.
Then the resulting ciphertext is as follows:

CT = {T, C̃ = e(g, h)
αβr

K1, C = rg, C ′ = fr,

M̄ = EK(M), CF = F (xi,K1 ⊕ M̄),

{CN = qN (0)VAtt(N)xi,

C ′
N = qN (0)H2(val(N))yi,

C ′′
N = qN (0)H2(val(N))h}

{v̄uid,Att(N)}∀uid∈U
}∀N∈NL

}

(13)

where CN is the sum of ciphertexts at the aggregated
leaf nodes, NL is the set of all leaf nodes, tN and σN

are the leaf node random values corresponding to AA
in the key generation phase, and ϑ is the random
value.

5.3.2 DecryptODCSP (CT, SKuid
)→ (K1)

When the user obtains the ciphertext CT from the CSP,
because the ciphertext decryption has some exponential
operation, our scheme tends to transfer the overhead
calculation to the OD-CSP. After the cloud server gets the
ciphertext, it calculates the key elements by combining the
access policy and the attribute value given by the user with
the computing power that is not doped into the system. The

186 Z. Deng et al.

algorithm inputs specific uid ciphertext CT and key SK
obtained when users interact with different AA, and outputs
the partial session key K1. We specify the decryption
procedure as a recursive algorithm.

Before backtracking to calculate the root node, we take
a bottom-up approach to calculate it, so we first define a
recursive algorithm DecryptNode(CT, SK,N) that takes
the ciphertext CT, the private key SKuid

of user uid, which
SKuid

is associated with a set S of attributes, and a node
N from T . DecryptNode(CT, SKuid

, N) is define below.
If N is a leaf node: Then we aggregate the target leaf

nodes for calculation. If j ∈ SAi , then:

DecryptNode(CT, SKuid
, N)

=
e(Duid,j , vuid,j · CN)

e(D′
uid,j

, C ′
N)e(D′′

uid,j
, C ′′

N)

=

e(v−1

uid,j
(ρN + rN,j)H1(uid)h, (σNv−1

j vuid,j + vuid,j)qN (0)vjg
cN)

e(rN,jgH1(uid), qN (0)H2(val(N))hcN)
·

1

e(σNcNrN,jg ·H1(uid) + ρNcNgvj ·H1(uid), qN (0)h)

=

e(v−1

uid,j
(ρN + rN,j)H1(uid)h, (σNv−1

j vuid,j + vuid,j)qN (0)vjg
cN)

e(h, gcN)rN,jH1(uid)qN (0)vj
·

1

e(gσNrN,jH1(uid), hqN (0)cN)e(gρNvjH1(uid), hqN (0)cN)

=
e(h, g)

H1(uid)(ρN+rN,j)σNqN (0)cN e(h, g)
H1(uid)(ρN+rN,j)qN (0)vjcN

e(g, h)
cNrN,jH1(uid)qN (0)vje(g, h)

σNrN,jH1(uid)qN (0)cN e(g, h)
ρNvjH1(uid)qN (0)cN

=

e(g, h)

H1(uid)ρNσNqN (0)cN e(g, h)
H1(uid)rN,jσNqN (0)cN

e(g, h)
cNrN,jH1(uid)qN (0)vje(g, h)

σNrN,jH1(uid)qN (0)cN e(g, h)
ρNvjH1(uid)qN (0)cN

·

e(g, h)
H1(uid)ρNqN (0)vjcN e(g, h)

H1(uid)rN,jqN (0)vjcN

= e(h, g)H1(uid)ρNσNqN (0)cN

(14)

If j /∈ SAi , then we define

DecryptNode(CT, SKuid
, N)=⊥. (15)

If N is an internal node: For all nodes Nc that are children
of N , it calls DecryptNode(CT, SKuid

, Nc) and stores the
output as FNc . Let SN be an arbitrary kn-sized set of child
nodes Nc such that FNc ̸= ⊥. If no such set exists then the
node was not satisfied and the function returns ⊥.

Otherwise, we compute

FN =
∏

Nc∈SN

F
∆n,S′

N
(0)

Nc

=
∏

Nc∈SN

(ωρNσNcNH1(uid)·qNc (0))
∆n,S′

N
(0)

=
∏

Nc∈SN

(ωρNσNcNH1(uid)·qparent(Nc)(index(Nc)))
∆n,S′

N
(0)

=
∏

Nc∈SN

ωρNσNcNH1(uid)·qN (n)·∆n,S′
N
(0)

= ωρNσNcNH1(uid)·qN (0)

(16)

where ω = e(g, h), n = index(Nc), S′
N = {index(Nc) :

Nc ∈ SN}.
Now we set A = DecryptNode(CT, SKuid

, R) when
the tree is satisfied by S, and then returns

A = DecryptNode(CT, SKuid
, R)

= e(g, h)
ρRσRcRH1(uid)·qR(0)

= e(g, h)
ρRσRcRH1(uid)·qR(0)

(17)

Finally the partial session key K1 can be obtained by
computing the formula A · C̃/(e(C,Duid

) · C ′) where

A · C̃
e(C,Duid

) · C ′

=
e(g, h)

ρRσRcRH1(uid)·r · e(g, h)αβrK1

e(rg, αh+ ρRσRcRH1(uid)h)e(g, h)
α(β−1)r

=
e(g, h)

ρRσRcRH1(uid)·r · e(g, h)αβrK1

e(g, h)
αr+ρRσRcRH1(uid)re(g, h)

α(β−1)r

=
e(g, h)

ρRσRcRH1(uid)·r · e(g, h)αβrK1

e(g, h)
ρRσRcRH1(uid)re(g, h)

αβr

= K1

(18)

5.4 Audit

5.4.1 AuditAA(AAi,sk, CT,DecryptODCSP (CT, SKuid
))

→ (1/0)

AA runs the algorithm after receiving the result K1 output
by outsourced decryption CSP. Then AA calculates the
one-way trapdoor function by using its private key to
obtains the XOR result of the function value and the partial
session key K1. If F−1(ci, CF)⊕K1 = M̄ , then it means
that the decryption result of the outsourced decryption
CSP is correct temporarily, and the values of the partial
session key K1 and M̄ are consistent and unified, so the
preliminary audit is correct and then the algorithm returns 1;
Otherwise, it indicates that the outsourced decryption CSP
has an error and returns 0. Finally, the AA cannot decrypt
a plaintext message even if it retains part of the session key
K1.

The rationale for double auditing is as follows: why
should AA serve as an auditor when it is not fully trusted?
Cannot we just rely on CA for auditing? Consider a
scenario where a large number of users need to decrypt
simultaneously at the beginning. If all decryption requests
were forwarded to CA for processing, it would cause
significant overhead and put the CA under a lot of pressure.
Therefore, we propose a method where the partial session
key, denoted as K1, obtained from ODCSP is first sent
to AA for processing. AA’s computation can be done in
parallel, allowing for the cost of operations to be split
between AA and CA. Consequently, the final overhead of
CA is reduced to running a symmetric decryption algorithm.
The intermediate differences will be elaborated in detail
later.

5.4.2 AuditCA(AuditAA(∗) == 1, CApk, CT,K,M) →
(1/0)

After receiving the preliminary audit results from AA, then
CA calls the algorithm AuditCA. The algorithm will judge
the result returned by the AuditAA, if it returns 1, the
algorithm can be successfully executed; otherwise, it will
fall back to the previous step. The algorithm takes the
CA’s public key, the ciphertext CT, and the session key

PPADMA-ABE: a novel privacy-preserving and auditable attribute-based encryption 187

K (since the CA is absolutely trusted, the CA can obtain
the partial session key K2 of the user. Combined with
the partial session key K1 of the ODCSP, the complete
session key K is obtained). If EK(M) = M̄ , that is, the
value of M̄ and M are kept unified. Tracing back to the
source shows that both the outsourcing decryption CSP
and the AA are calculated correctly, then the algorithm
returns 1. At the same time, CA returns the correct
partial session key K1 transmitted by the outsourcing
decryption CSP to DU, and DU recovers the plaintext M
by using the symmetric decryption algorithm; Otherwise, if
EK(M) ̸= M̄ , it indicates that there is collusion between
the outsourcing decryption CSP and AA, or at least one
party has calculation error. Then DU can launch the
outsourcing calculation request again and repeat steps 5.6
and 5.7 until the algorithm AuditAA outputs 1, and then
call the algorithm AuditCA for audit.

5.5 Decryption by user

5.5.1 DecryptDU (AuditCA(∗) == 1, cert(uid), CT,
K1,K2)→ (M/⊥)

The algorithm will judge the result returned by the
AuditCA, when the algorithm AuditCA outputs 1, then
user uid submits his partial session key K2 and own
identity certificate. After the verification is passed, he will
receive the correct partial session key K1 jointly audited
by AA and CA, then recover the complete session key
according to the two partial session keys, and finally the
plaintext M can be recovered by using the symmetric
decryption algorithm, that is DK(M̄) = M .

6 Security analysis

In this section, we will focus on proving that the scheme in
our paper is selectively secure under the previously defined
security model.

Theorem 1: The proposed PPADMA-ABE scheme is secure
against chosen-ciphertext attack(CCA) in selective model
under the DBDH assumption.

Proof: Assuming that there exists an adversary that can
break our scheme in probabilistic polynomial time, then we
can construct an algorithm to break the DBDH assumption
by taking advantages of the adversary’s capability. Suppose
we have an adversary A, which has a non-negligible
advantage ϵ = AdvA in the selective security game against
our scheme. Here, we assume that the challenger is given
relevant parameters. If the challenger wants to break the
DBDH assumption, he needs at least 1

2 + ε probability to
determine whether Z = e(g, h)

abc or not. We now build
a simulator Be that plays DBDH problem. The details as
follows:

• Init: Given a DBDH instance (G1, G2, GT , q, g, h,
e, ag, bg, cg, ah, bh, ch, Z), the challenger follows
step 3 of the AASetup() algorithm to generate two
users and {Vj , {v̄uid,j}∀j∈SAi

}. Meanwhile, the
challenger publishes PK = {G1, G2, GT , e, H , g, h,
f = e(αg, βh− h), e(αg, βh), {Vj , {v̄uid,j}∀j∈SAi

}}
and set the master key MK = {α, β}. The simulator
Be inputs a DBDH challenge and other parameters,
and the adversary selects a challenge access policy T ∗

and sends it to the simulator. After that, the simulator
creates a list LSK for storing the subsequent values,
and simulates the oracles in Phase 1.

• Setup: The challenger runs CASetup() and
AASetup(). For all corrupted AAs (Ak ∈ CA): The
simulator Be picks ck ← Zq and sets Xk = gck ,
Yk = hck . Therefore, the public-secret key pairs for
Ak ∈ CA is given as {(ck), (Xk = gck , Yk = hck)}.
Then the simulator Be provides the public-secret key
pairs of the corrupted AAs to the adversary. Now the
adversary can get the SKuid,k(Duid

, Duid,k,
D′

uid,k
, D′′

uid,k
) alone for user uid. The simulator only

sends public key to the adversary for the remaining
AAs that are not corrupted.

• Phase 1: The simulator Be using the KeyGen()
algorithm to get the private key SKuid

according to
Si for each AAs. When the adversary need to ask for
the private key of the ith authority corresponding to a
user uid that he wants to query, then the Be return
SKuid,i and store SKuid,i in LSK . When the
adversary makes the decryption query, he will send
the ciphertext to the simulator in advance, and
simulator Be will judge whether it’s a correctly
constructed ciphertext, and if not, the output will be
⊥. Otherwise, the simulator Be first checks whether
there exists a private key SKuid,i in LSK that can
decrypt CT. If so, Be decrypts CT by using SKuid,i

and then returns the final result to A. If not, then the
simulator Be will create a pseudo-user w and take
user w’s private key to decrypt the ciphertext CT.
Details are as follows.

1 Randomly select the following elements which
are{
{ρi, σi}∃i∈SAA

∈ Z∗
q

{vw,j , ri,j}∃i∈SAA,j∈Suid

∩
SAi
∈ Z∗

q

2 Compute

{
CN = vw,att(N)CN

}
∀N∈NL{

v̄w,j = σw

∏
∀k∈U

v−1
k,j + vw,j mod q

}
j∈Suid

∩
SAi

(19)

where CN is retrieved from CT and refreshed the
credential information for pseudo-users w in this
step.

188 Z. Deng et al.

3 Calculate the private key SKuw of pseudo user w
as follows:

Duw = αh+ ρiσiciH1(uw)h

{Duw,j = hv−1
w,j(ρi + ri,j) ·H1(uw)}∀j∈Suid

∩
SAi

{D′
uw,j = ri,jg ·H2(h

tuw)}∀j∈Suid

∩
SAi

{D′′
uid,j = σiciri,jg + ρicigvj}∀j∈Suid

∩
SAi

(20)

4 Take user w’s private key SKuw to decrypt the
CT and return the final result to adversary.

Algorithm 1 The challenge CT (T,N,C0) algorithm

for each N ∈ T do
initialise a tree T ∗ with only a leaf (the root);
T = T ∪ T ∗;

end for
if (N is a leaf node) then
Set j = att(N) and m = val(N)
Compute CN = vatt(N)C0∀N∈NL

Compute C′
N = qN (0)H2(val(N))

Compute C′′
N = H2(val(N))vatt(N)

Store ({CN , C′
N , C′′

N}N∈NL
) in LC

else
Randomly select kN − 1 elements di ∈ Z∗

q

for each child NC of the node N do
Set η = index(NC);
if (kN − 1 > 0) then

Compute C′
0 = C0 +

kN−1∑
i=1

diηQ

else
C′

0 = C0

end if
Call challenge CT (T,NC , C

′
0)

end for
end if

• Challenge: When all the preset work is ready, the
adversary will send two messages M0 and M1 to the
simulator. After receiving the (M0,M1, T

∗), the
simulator Be creates a set list LC and makes R
become the root node of the access tree T ∗ sent by
the adversary. Then the simulator defines a recursive
algorithm challenge CT (T ∗, R, αQ) in Algorithm 1
for recursively computing the ciphertext value at the
root node R from the leaf nodes. And it is also used
to store the ciphertext value of the challenged node
{CN , C ′

N , C ′′
N}N∈NL

in the list LC . Therefore, the
final ciphertext node ĈN value is obtained by the
above nodes aggregation. The Be randomly selects a
b ∈ {0, 1} and K ′ ∈ GT , and let the message chosen
by the challenger be denoted as Mb where b = 0 or 1
and calculates the ciphertext
CT ∗ = {T ∗, C̃ = ZK1, C = γg, C ′ = Z

e(αg,γh) ,

M̄b = EK′(Mb), CF = F (xi,K1 ⊕ M̄b),
ĈN = {CN , C ′

N , C ′′
N , {v̄uid,Att(N)}∀uid∈U

}
N∈NL

},

where the encrypted value of the node is retrieved
from the encrypted list LC . In addition, we emphasise
that CT ∗ is a valid encrypted information of the
message Mb if Z = e(g, h)

abc; otherwise, the CT ∗ is
just random value. If there exists SKuid,k ∈ LSK that
can decrypt the ciphertext, the challenge will be
aborted; otherwise, the Be returns the CT ∗ to A.

• Phase 2: The adversary continues to query as in
phase 1, but restricts it to not be able to make
decryption queries.

• Guess: Finally, the adversary A gets his guess b′ for
b. If b′=b, the Be outputs 1 and guess that
Z = e(g, h)

abc(means it is a valid BDH-tuple).
Otherwise, the adversary is wrong and Be outputs 0,
which denotes the Z is a random element in GT .
Thus it can be seen that if an adversary breaks our
scheme with non-negligible advantage at least ε in
polynomial time, which means that a challenger has a
non-negligible ε′ to break the DBDH assumption
where ε′ ≥ ε− δ and δ is a negligible advantage. If
Z = e(g, h)

abc, then we can get
Pr[Be(g, h, ag, bg, cg, ah, bh, ch, e(g, h)

abc
) = 1] =

Pr[b′ = b] where
∣∣Pr[b′ = b]− 1

2

∣∣ ≥ ε. Otherwise, the
Z is a random element in GT , and we have
Pr[Be(g, h, ag, bg, cg, ah, bh, ch, Z) = 1] = Pr[b′ = b]
with

∣∣Pr[b′ = b]− 1
2

∣∣ ≤ δ where δ is the advantage of
breaking the semantic security of EK . Finally, we
have

| Pr[Be(g, h, ag, bg, cg, ah, bh, ch, e(g, h)
abc

) = 1]

− Pr[Be(g, h, ag, bg, cg, ah, bh, ch, Z) = 1]|

≥
∣∣∣∣(1

2
± ε

)
−
(
1

2
± δ

)∣∣∣∣
≥ ε− δ

(21)

Theorem 2 (collusion resistance): The PPADMA-ABE
scheme is collusion-resistant against colluding users or
attribute authorities.

Proof: For colluding users: In terms of user collusion,
the proposed scheme utilises the unique global identity of
all users to prevent collusion attacks. In the decryption
process, the user needs to calculate SKuid

and submit it to
the outsourced decryption cloud server, then get the partial
session key K1 by computing e(g, h)

ρRσRcRH1(uid)·qR(0),
where uid is the unique global identity and qR(0) is the
value of the root node of the current access control tree T .
To achieve this, the collusion user needs to calculate the
exponential value on the bilinear pair, which is bound to the
user’s GID. Hence, if two or more users having different
GID try to collude the term e(g, h)

ρRσRcRH1(uid)·qR(0)

would not cancel out and it is impossible for two users to
generate decryption credential for third user.

PPADMA-ABE: a novel privacy-preserving and auditable attribute-based encryption 189

Without loss of generality, suppose that our scheme
involves only three attribute authorities, denoted by A1,
A2, and A3, and that there are two users, denoted by u1

and u2. Furthermore, suppose that the data owner (DO)
encrypts the content message using the policy < a1,1 ∩
a2,1 ∩ a3,1 >, where for simplicity, we assume that the
policy takes a conjunction form. Here, ai,j represents the
jth attribute managed by the ith attribute authority. It is
known that user u1 possesses attribute a1,1, while user u2

possesses attributes a2,1, a3,1. It is not difficult to observe
that neither u1 nor u2 alone can decrypt the content as they
do not satisfy the access policy. However, if u1 and u2

collude, they possess all the attributes required to satisfy
the access policy, and each of them generates a private key
accordingly as follows:

SKu1 =

Du1 = αh+ ρ1σ1c1H1(u1)h

Du1,1 = v−1
u1,1

(ρ1 + r1,1) ·H1(u1)

D′
u1,1 = r1,1g ·H1(u1)

D′′
u1,1 = σ1c1r1,1g + ρ1c1gv1

(22)

SKu2
=

Du2 = αh+ ρ2σ2c2H1(uid)h

{Du2,j = v−1
u2,j

(ρ2 + r2,j) ·H1(u2)}∀j∈{2,3}

{D′
u2,j = r2,jg ·H1(u2)}∀j∈{2,3}

{D′′
u2,j = σ2c2r2,jg + ρ2c2gvj}∀j∈{2,3}

(23)

Next, they combine their respective private keys and
separately invoke the recursive algorithm DecryptNode()
on the access tree structure, with the modified key
parameter of the combined private keys of the colluding
users u1 and u2. The calculation process is as follows.

DecryptNode(CT, SKu1 ∪ SKu2 , N)

=
e(Du1,1, v̄u1,1 · CN)

e(D′
u2,2, C

′
N)e(D′′

u2,3, C
′′
N)

=
e(v−1

u1,1
(ρN + rN,1) ·H1(u1), (σNv−1

1 vu1,1 + vu1,1)qN (0)v1hg
cN)

e(rN,2gH1(u2), qN (0)H2(val(N))hcN)

· 1

e(σNcNrN,3g ·H1(u2) + ρNcNgv3 ·H1(u2), qN (0)h)

=
e(ρNh ·H1(u1), σNqN (0)gcN)e(rN,1h ·H1(u1), qN (0)σNgcN)

e(rN,2h ·H1(u2), qN (0)v2gcN)e(rN,3h ·H1(u2), qN (0)σNgcN)

· e(ρNh ·H1(u1), qN (0)v3g
cN)e(rN,3h ·H1(u1), qN (0)v1g

cN)

e(ρNh ·H1(u2), qN (0)v3gcN)

=
e(rN,1h ·H1(u1), qN (0)v1g

cN)e(rN,1h ·H1(u1), qN (0)σNgcN)

e(rN,2h ·H1(u2), qN (0)v3gcN)e(rN,3h ·H1(u2), qN (0)σNgcN)

· e(ρNh ·H1(u1), qN (0)gcN)

e(ρNh ·H1(u2), qN (0)gcN)
· e(ρNh ·H(u1), σNqN (0)gcN)

(24)

The above equation structure reveals that, because the
attributes held by u1 and u2 cannot be directly merged
for computation, even with colluding private keys, the AA
index numbers associated with their respective attributes
will affect the calculation of the secret value of the root
node subset of the access tree structure. When performing
recursive calculations, the exponent values of bilinear

pairings cannot be cancelled out (e.g., rN,j), and the hash
value of the user’s GID is also difficult to eliminate, which
affects the acquisition of the secret value at the root node
of the access tree, and ultimately prevents the acquisition of
partial session key K1. This explains why malicious users
cannot collude successfully. Therefore, the collusion cannot
be realised and our scheme can resist against malicious user
collusion.

For colluding AAs: on the one hand, they would need
to forge user identities to obtain the hash value of user IDs
during the key generation phase. On the other hand, during
the decryption phase, the authority would need to obtain
two parts of the session key, namely K1 and K2. Even if
an authority could obtain K1 by forging or other means,
it would still be challenging to guarantee that it would be
recognised during the key extraction agreement with the
data owner. Therefore, obtaining the complete session key
is difficult, and the collusion is likely to fail.

Furthermore, the scheme involves two audit operations,
and the results of AA’s initial audit must undergo a
second audit by CA. As outlined in Subsection 3.1.2,
the main purpose of CA’s audit is to ensure that AA’s
operations are correct and to compare the content from
AA audit outsourcing cloud decryption service to detect
any collusion. Thus, if malicious AAs collude, CA would
detect it during the second audit. As a completely trusted
entity in the system, CA is a fundamental guarantee that
collusion between malicious AAs cannot succeed.

Theorem 3 (Backward and forward secrecy): The proposed
PPADMA-ABE scheme promises the backward and forward
secrecy against the users.

Proof: When a user leaves the system, their credentials are
revoked and the code of the revoked attribute is updated. If
a new user with a revoked attribute joins the system, their
key is bound to the latest credential record of the current
system, and the previously published ciphertext is updated
with the latest attribute code and credential. This allows
the newly added user to decrypt the previously published
ciphertext if they satisfy the access policy. As a result, this
approach ensures forward security.

However, if a user is revoked, they cannot decrypt
the associated ciphertext in the current system even if
they still have a decryption key that satisfies the access
policy. Additionally, they cannot decrypt updated ciphertext
without updating their key. While the updated key is still
associated with the user’s global identity, a revoked user
cannot use the updated keys of other non-revoked users
to update their own keys. Therefore, if ciphertext data
is downloaded, the user cannot decrypt it as usual. This
scheme ensures backward security.

190 Z. Deng et al.

Table 2 Comparison of security and functionality among different schemes

Schemes CA MA OD AU DN CR PP CCS GID MC Hardness Model

Chase and Chow (2009) ×
√

× × ×
√ √

× Privacy CPA DBDH ROM
Premkamal et al. (2020b)

√
×

√
×

√ √ √ √
Privacy CPA DBDH ROM

Han et al. (2015) ×
√

× × × ×
√

× Public CPA q-PBDHE q-SDH ROM
Deng (2014)

√
× × ×

√
× × × Public CPA q-BDHE ROM

Rahulamathavan et al. (2016) ×
√

× × ×
√ √

× Privacy CPA DBDH ROM
Fan et al. (2014)

√
× × ×

√
×

√
× Privacy CCA DBDH Standard

Ling et al. (2021)
√ √

× × ×
√ √

× Public CPA q-PBDHE ROM
Ning et al. (2017)

√
×

√
× ×

√ √
× Private CPA q-BDHI ROM

Our scheme
√ √ √ √ √ √ √ √

Privacy CCA DBDH Standard

Notes: Abbreviated symbol description: MA – multi-authority, OD – outsourced decryption, AU – auditability, DN – dynamicity,
CR – collusion resistance, PP – privacy protection, CCS – constant ciphertext size, GID – global identity, MC – message
confidentiality.

7 Performance comparison

7.1 Theoretical analysis

7.1.1 Feature and security comparisons

The performance comparison among the proposed scheme
and some existing schemes is shown in Table 2. Clearly,
some challenging features, such as traceability, policy
updating and data access restrictions, have been addressed
in schemes in Premkamal et al. (2020a), Ling et al. (2021)
and Lian et al. (2019). However, our proposed scheme
also addresses the problem of achieving a good balance
between dynamicity and multi-authorities, which enhances
the system’s practicality and flexibility. Furthermore, we
incorporate an auditing feature to ensure the correctness of
the decrypted ciphertext by the ODCSP, which helps to
improve the system’s security. Our research also provides
resistance against collusion attacks, thus enhancing user
privacy and ensuring the confidentiality of the system.

Table 3 Notations used in performance evaluation

Notation Meaning

tp The time for single pairing operation
te The time for single exponentiation operation
nu The number of a user’s attributes
na The number of authorities
nτ The number of attributes in the access tree
nc The number of attributes associated to a ciphertext
nnl The number of non-leaf nodes in the access tree
|U | The number of universal attributes
|G*| The number of the elements in G*

l The number of rows of the matrix in LSSS scheme

We can see that the scheme in Deng (2014) has some
dynamic features, but it does not realise the protection
of user privacy, and does not discuss the collusion
situation reasonably. Although, Fan et al. (2014) also has
a certain dynamic policy updating, it does not integrate
multi-authority attributes, and the practicability of the
system needs to be improved. The scheme in Ling et al.
(2021) can realise the collusion resistance and protect the

privacy, but it does not provide the auditing functionality.
And all the schemes suffer from efficiency issues.

7.1.2 Computational analysis

Here, we present a comparison of the computational costs
of the proposed scheme with other existing schemes.
We define the relevant symbols used in the comparison
process in Table 3. Our computational cost analysis includes
the pairing and exponentiation operations required for
key generation, encryption (user), decryption (user), and
outsourced decryption, as detailed in Table 4. The results
presented in Table 4 show that our scheme has lower key
cost compared to other existing schemes, and it requires
fewer exponentiation operations than Fan et al. (2014).
Moreover, our DU does not require any exponentiation or
pairing operations during the decryption process, thereby
significantly reducing the decryption cost for clients.
Furthermore, our client-side decryption overhead is much
lower than schemes with outsourced decryption, such as
Premkamal et al. (2020a) and Ning et al. (2017). In our
scheme, the decryption overhead of DU is outsourced
to OD-CSP, and the computational cost of this part is
(3nτ + 4)tp + nnlte. Thus, the total decryption cost can
be calculated by combining the two results. Compared to
other outsourced schemes in Premkamal et al. (2020a) and
Ning et al. (2017), our PPADMA-ABE scheme requires less
computation time.

The key generation overhead represents the cost
required by all attribute authorities to generate decryption
keys for users. Encryption (decryption) overhead refers to
the combination of all exponentiation and pairing operations
used during the encryption (decryption) of messages using
access policies. Hash and group operation overheads are
negligible and are therefore ignored. From Table 4, we
can observe that the computational overhead of all ABE
schemes increases linearly with the number of members and
attributes.

PPADMA-ABE: a novel privacy-preserving and auditable attribute-based encryption 191

Table 4 Theoretical comparison of computational cost among different schemes

Schemes Key generation Encryption Decryption (user) Outsourced decryption

Chase and Chow (2009) (na
2 + 1)te (nτ + 2)te (na + 3)tp + te -

Han et al. (2015) 10nate (na + 3)te + nctp (4nu + 2l)tp -
Rahulamathavan et al. (2016) 5ncte 2ncte + nctp (nc + na + 1)tp -
Ling et al. (2021) 2nute (nc + 1)tp + 3ncte 5nc(tp + te) -
Premkamal et al. (2020a) (nu + 3)te (nτ + 2)te te (nu + 2)tp + nnlte
Deng (2014) (3 + nu)te + 2tH (nc + 1)te + tp (2nu + 1)tp -
Fan et al. (2014) 1 (2nc + 1)te + tp (nu + 1)tp + nnlte -
Ning et al. (2017) (nu + 5)te (5nτ + 2)te te (3nτ + 3)tp + lte
Our scheme 1 (nc + 1)te + tp 1 (3nτ + 4)tp + nnlte

Table 5 Theoretical comparison of storage size among different schemes

Schemes Size of public parameters Size of private key Size of ciphertext

Chase and Chow (2009) |G1|+ |G2|+ |GT | (nu + 1) |G| (nc + 2) |G|
Premkamal et al. (2020a) |G|+ |Gt| (nu + 3) |G| (nc + 1) |G|+ |Gt|
Han et al. (2015) 2 |G|+ |GT | 6nu |G|+ |GT | (2l + 3) |G|+ |GT |
Deng (2014) 2 |G| (nu + 2) |G| (l2 + 2) |G|
Rahulamathavan et al. (2016) 2 |G1|+ |G2| 3nu |G1| (2nc + 1) |G1|+ |G2|
Fan et al. (2014) |G0|+ |G1|+ |GT | 3nu |G0|+ |G1| 2 |G0|+ (3nc + 1) |GT |
Ling et al. (2021) 3 |G|+ |GT | (4nu + 1) |G| (5l + 1) |G|+ |GT |
Ning et al. (2017) 2 |GT | (2nu + 4) |GT | (3l + 1) |GT |
Our scheme |G1|+ |G2|+ |GT | 3 |G1|+ nu |G2| |G∗|

Figure 2 Computational costs comparison among different
schemes (see online version for colours)

0

200

400

600

800

1000

1200

1400

1600

5 10 15 20 25 30 35 40 45 50

T
im

e
C
os
t
(m

s)

Number of policy attributes

KeyGen Cost

Ours

Rahulamathavan et al.

Han et al.

Ling et al.

Chase et al.

Moreover, let us recall the discussion in Subsection 4.1
concerning the initial audit by AAs and secondary audit
by the CA. Consider a scenario where nm messages need
to be decrypted simultaneously, implying that there are
nm values sent by the cloud server requiring auditing. If
we assume that only the CA is responsible for auditing,
then the auditing cost of the CA is to compute nm XOR
values of the trapdoor functions and partial decryption
key values simultaneously and to perform nm symmetric
decryption algorithms. We denote the cost involved in the
CA as O(nm), where big O notation is used to express the
operation cost of auditing. However, if the audit process
is split into two steps, and the AA takes the role of the
initial auditor, then the XOR overhead originally calculated

by the CA is shifted to the AA, and the cost is evenly
amortised to each AA, which becomes O(nm)/na. Now,
the CA only needs to be responsible for the auditing
of the results checked by the AA, which is performing
only the symmetric decryption algorithm. Therefore, the
audit overhead of the CA is O(1), which is a significant
improvement. In total, the amortised cost of auditing is
O(nm)/na, and thus, the overall system efficiency is
improved. Hence, this explains why two audits are required
from a data perspective, and it provides a qualitative answer
to the reasons for requiring two audits.

7.1.3 Storage overhead

In this section, we mainly consider the comparison of
storage costs for public parameters, private key sizes, and
ciphertext sizes. The storage sizes associated with past ABE
schemes have been shown in detail in Table 5, from which
we can observe that the proposed scheme is consistent
with the storage overhead used by Fan et al. (2014)
and Jarecki and Liu (2009) to store public parameters.
Moreover, our work achieves a slightly lower private key
size than other schemes while ensuring accurate and secure
decryption. One of the factors that affects the storage cost
of scheme is the size of the group elements. Furthermore,
as shown in Table 5, the cost increases even further if an
attribute association coefficient is incorporated prior to this
value. Generally, the value of a variable with an attribute
coefficient is higher than that of a variable with a constant
coefficient, which theoretically leads to a greater overhead
for such a scheme. Hence, this information can be used to
compare the differences between schemes more intuitively.
In order to ensure the high efficiency and security of the

192 Z. Deng et al.

system, how to strike a balance between storage cost and
security efficiency also needs to be further balanced and
considered.

7.2 Experimental analysis

In this section, we conducted simulation experiments
to demonstrate the performance differences between the
proposed scheme and other schemes. All tests were
carried out on a computer running Ubuntu 18.04 with an
Intel(R) Core i5-7200U quad CPU, 3.60 GHz, and 8 GB
RAM. The simulation experiments were implemented using
Python 3.5.2 programming software, with Charm-Crypto
library and Pairing-Based Cryptography library as the
main function libraries. To standardise the experimental
comparison scale and make the comparison results more
objective, we selected four ABE schemes with multiple
authority settings in the above scheme for comparison. We
assumed that the number of users and attribute authority
remained constant at 10 and 20, respectively, and gradually
increased the number of attributes in the policy from
5 to 50. In the simulation experiment, all simulation
results were averaged after being tested 50 times. The

unit of storage size and computational consumption in
the comparison results are kilobytes (Kb) and milliseconds
(ms), respectively.

Figures 2 and 3 display the computational overhead
comparison based on the simulation experiment conducted
in this paper. Specifically, Figure 2 illustrates the key
generation overhead, whereas Figure 3 presents encryption
and decryption cost. In the decryption phase of our
scheme, since the user overhead is at a constant
level, we quantified the decryption overhead into system
decryption (outsourcing decryption and user decryption).
It is noteworthy that the decryption cost of this scheme
is considerably high, as evident from Figure 3(b), which
is why we chose to outsource decryption. The storage
overhead comparison results are presented in Figure 4,
where Figure 4(a) displays the key storage size, and
Figure 4(b) shows the ciphertext storage size. Furthermore,
the experimental results indicate that the calculation cost of
all ABE schemes increases linearly with the growth of the
number of attributes in the policy, which is consistent with
the theoretical analysis mentioned above.

Figure 3 Computational costs comparison among different schemes (see online version for colours)

0

200

400

600

800

1000

1200

5 10 15 20 25 30 35 40 45 50

T
im

e
C
o
st

(m
s)

Number of policy attributes
(a)

Encryption Cost

Ours

Rahulamathavan et al.

Han et al.

Ling et al.

Chase et al.

0

500

1000

1500

2000

2500

5 10 15 20 25 30 35 40 45 50

T
im

e
C
os
t(
m
s)

Number of policy attributes
(b)

Decryption Cost

Ours

Rahulamathavan et al.

Han et al.

Ling et al.

Chase et al.

Figure 4 Storage size comparison among different schemes (see online version for colours)

0

2

4

6

8

10

12

14

16

18

5 10 15 20 25 30 35 40 45 50

S
iz
e
in

K
b
y
te
s(
K
b
)

Number of policy attributes
(b)

Comparison of ciphertext sizes

Ours

Rahulamathavan et al.

Han et al.

Ling et al.

Chase et al.

0

1

2

3

4

5

6

7

5 10 15 20 25 30 35 40 45 50

S
iz
e
in

K
b
y
te
s(
K
b
)

Number of policy attributes
(a)

Comparison of private key sizes

Ours

Rahulamathavan et al.

Han et al.

Ling et al.

Chase et al.

PPADMA-ABE: a novel privacy-preserving and auditable attribute-based encryption 193

8 Conclusions

Our proposed scheme combines multi-authority and
dynamicity based on ABE to optimise the performance
of the system and enhance the practicality and flexibility
of ABE. Decryption outsourcing is used to reduce system
overhead, and the outsourcing results are audited twice
without introducing a third party to ensure information
integrity, correctness, and system security. The nonlinear
coupling of ciphertext in the scheme also makes the
system resistant to collusive attacks, preventing malicious
authorities and users from combining keys to obtain access
rights, which is also proved in our scheme. Moreover,
we prove that the PPADMA-ABE scheme can achieve
CCA security without the random oracle, and it reduces
the decryption cost on the client side to a constant level,
demonstrating strong practical scalability. Finally, we also
carried out the simulation experiment of the scheme, and
the results show that it has a good performance. Thus,
our scheme enhances user privacy while resisting collusion
from malicious users or authorities, with forward and
backward security being realised. These advantages make
ABE more efficient and flexible for real-world applications.

Acknowledgements

This work has been partly supported by self-determined
research funds of CCNU from the colleges’ basic research
and operation of MOE under Grand No. CCNU22JC001.

References

Armknecht, F., Bohli, J.M., Karame, G.O., Liu, Z. and
Reuter, C.A. (2014) ‘Outsourced proofs of retrievability’,
Computer and Communications Security, ACM,
DOI: 10.1145/2660267.2660310.

Beimel, A. (1996) Secure Schemes for Secret Sharing and
Key Distribution, PhD thesis, Israel Institute of Technology
Technion.

Bethencourt, J., Sahai, A. and Waters, B. (2007) ‘Ciphertext-policy
attribute-based encryption’, IEEE Symposium on Security &
Privacy (SP ‘07), Berkeley, France, May.

Boneh, D. (2001) ‘Identity-based encryption from the Weil pairing’,
Advances in Crytology, Crypto 2001.

Boneh, D. and Shoup, V. (2020) A Graduate Course in Applied
Cryptography, Draft 0.5.

Camenisch, J. and Lysyanskaya, A. (2001) An Efficient System
for Non-Transferable Anonymous Credentials with Optional
Anonymity Revocation, Springer, Berlin, Heidelberg.

Chase, M. (2007) ‘Multi-authority attribute based encryption’, Theory
of Cryptography Conference.

Chase, M. and Chow, S. (2009) ‘Improving privacy and security
in multi-authority attribute-based encryption’, Proceedings of
the 2009 ACM Conference on Computer and Communications
Security, CCS 2009, 9–13 November, Chicago, Illinois, USA.

Chow, S. (2009) ‘Removing escrow from identity-based encryption:
new security notions and key management techniques’, Public
Key Cryptography – PKC, pp.256–276.

Deng, Y.Q. (2014) ‘Dynamic attribute-based encryption scheme’,
Computer Engineering & Science, pp.312–325.

Dodis, Y. and Yampolskiy, A. (2004) ‘A verifiable random function
with short proofs and keys’, in Vaudenay, S. (Eds.): Public Key
Cryptography – PKC 2005, Lecture Notes in Computer Science,
Springer, Berlin, Heidelberg, Vol. 3386.

Fan, C.I., Huang, S.M. and Ruan, H.M. (2014) ‘Arbitrary-state
attribute-based encryption with dynamic membership’, IEEE
Transactions on Computers, Vol. 63, No. 8, pp.1951–1961.

Fujisaki, E. and Okamoto, T. (1999) ‘Secure integration of
asymmetric and symmetric encryption schemes’, International
Cryptology Conference, pp.80–101.

Gennaro, R., Jarecki, S., Krawczyk, H. and Rabin, T. (2007) ‘Secure
distributed key generation for discrete-log based cryptosystems’,
Journal of Cryptology, Vol. 20, No. 1, pp.51–83.

Goyal, V., Pandey, O., Sahai, A. and Waters, B. (2006)
‘Attribute-based encryption for fine-grained access control of
encrypted data’, Proceedings of the 13th ACM Conference on
Computer and Communications Security, CCS 2006, ACM,
Alexandria, VA, USA, 30 October–3 November.

Green, M., Hohenberger, S. and Waters, B. (2011) ‘Outsourcing
the decryption of ABE ciphertexts’, Proceedings of the 20th
USENIX conference on Security.

Han, J., Susilo, W., Mu, Y., Zhou, J. and Au, M. (2015) ‘Improving
privacy and security in decentralized ciphertext-policy
attribute-based encryption’, IEEE Transactions on Information
Forensics and Security, Vol. 10, No. 3, pp.665–678.

Hohenberger, S. and Waters, B. (2014) ‘Online/offline attribute-based
encryption’, International Workshop on Public Key
Cryptography.

Huang, L., Cao, Z., Liang, X. and Shao, J. (2008) ‘Secure threshold
multi authority attribute based encryption without a central
authority’, International Conference on Cryptology in India:
Progress in Cryptology, pp.2618–2632.

Hui, M., Rui, Z., Wan, Z., Yao, L. and Lin, S. (2017) ‘Verifiable
and exculpable outsourced attribute-based encryption for access
control in cloud computing’, IEEE Transactions on Dependable
& Secure Computing, Vol. 14, No. 6, pp.679–692.

Jarecki, S. and Liu, X. (2009) ‘Efficient oblivious pseudorandom
function with applications to adaptive OT and secure
computation of set intersection’, Theory of Cryptography, 6th
Theory of Cryptography Conference, TCC 2009, Proceedings,
15–17 March, San Francisco, CA, USA.

Jin, L., Huang, Q., Chen, X., Chow, S. and Xie, D. (2011)
‘Multi-authority ciphertext-policy attribute-based encryption
with accountability’, ACM Symposium on Information.

Kan, Y. and Jia, X. (2012) ‘Attributed-based access control for
multi-authority systems in cloud storage’, IEEE International
Conference on Distributed Computing Systems.

Lai, J., Deng, R.H., Guan, C. and Weng, J. (2013) ‘Attribute-based
encryption with verifiable outsourced decryption’, IEEE
Transactions on Information Forensics and Security, Vol. 8,
No. 8, pp.1343–1354.

Lewko, A. and Waters, B. (2011) Decentralizing Attribute-Based
Encryption, Springer, Berlin, Heidelberg.

Li, J., Huang, X., Li, J., Chen, X. and Xiang, Y. (2014) ‘Securely
outsourcing attribute-based encryption with checkability’, IEEE
Transactions on Parallel & Distributed Systems, Vol. 25, No. 8,
pp.2201–2210.

194 Z. Deng et al.

Lian, H., Wang, Q. and Wang, G. (2019) ‘Large universe
ciphertext-policy attribute-based encryption with attribute level
user revocation in cloud storage’, International Arab Journal of
Information Technology, Vol. 17, No. 1, pp.107–117.

Lin, H., Cao, Z., Liang, X. and Shao, J. (2010) ‘Secure threshold
multi authority attribute based encryption without a central
authority’, Information Sciences: An International Journal,
Vol. 180, No. 13, pp.2618–2632.

Ling, J., Chen, J., Chen, J. and Gan, W. (2021) ‘Multiauthority
attribute-based encryption with traceable and dynamic policy
updating’, Security and Communication Networks, Vol. 2021,
No. 6, pp.1–13.

Liu, Z., Jiang, Z.L., Wang, X. and Yiu, S.M. (2018) ‘Practical
attribute-based encryption: outsourcing decryption, attribute
revocation and policy updating’, Journal of Network &
Computer Applications, April, Vol. 108, No. C, pp.112–123.

Liu, H., Ping, Z., Chen, Z., Peng, Z. and Jiang, Z.L. (2017a)
‘Attribute-based encryption scheme supporting decryption
outsourcing and attribute revocation in cloud storage’,
IEEE International Conference on Computational Science &
Engineering.

Liu, L., Wang, S. and Yan, Q. (2017b) ‘A multi-authority key-policy
ABE scheme from lattices in mobile ad hoc networks’, Ad-Hoc
& Sensor Wireless Networks, Vol. 37, Nos. 1–4, pp.117–143.

Liu, L., Wang, S., He, B. and Zhang, D. (2019)
‘A keyword-searchable ABE scheme from lattice in cloud
storage environment’, IEEE Access, Vol. PP, No. 99, p.1.

Ma, S., Deng, R.H., Liu, S. and Qin, B. (2015) ‘Attribute-based
encryption with efficient verifiable outsourced decryption’, IEEE
Transactions on Information Forensics & Security, Vol. 10,
No. 7, pp.1384–1393.

Naor, M., Pinkas, B. and Reingold, O. (2008) ‘Distributed
pseudo-random functions and KDCs’, Advances in
Cryptology-Eurocrypt’99, Vol. 1592, pp.327–346.

Ning, J., Cao, Z., Dong, X., Liang, K., Ma, H. and Wei, L.
(2017) ‘Auditable σ-time outsourced attribute-based encryption
for access control in cloud computing’, IEEE Transactions on
Information Forensics and Security, Vol. 13, No. 1, pp.94–105.

Odelu, V., Kumar, A., Sreenivasa, Y., Kumari, S., Khan, M.K. and
Choo, K.K.R. (2017) ‘Pairing-based CP-ABE with constant-size
ciphertexts and secret keys for cloud environment’, Computer
Standards & Interfaces, Vol. 54, pp.3–9.

Ostrovsky, R., Sahai, A. and Waters, B. (2007) Attribute-Based
Encryption with Non-Monotonic Access Structures,
DOI: 10.1145/1315245.1315270..

Pohoata, C. (2008) Boole’s Formula as a Consequence of Lagrange’s
Interpolating Polynomial Theorem, arXiv.

Premkamal, P.K., Pasupuleti, S.K. and Alphonse, P. (2020a)
‘Dynamic traceable CP-ABE with revocation for outsourced big
data in cloud storage’, International Journal of Communication
Systems, No. 6, p.e4351.

Premkamal, P.K., Pasupuleti, S.K. and Alphonse, P.J.A. (2020b)
‘Efficient escrow-free CP-ABE with constant size ciphertext and
secret key for big data storage in cloud’, Int. J. Cloud Appl.
Comput., Vol. 10, No. 1, pp.28–45.

Qian, X., Tan, C., Fan, Z., Zhu, W., Xiao, Y. and Cheng,
F. (2018) ‘Secure multi-authority data access control
scheme in cloud storage system based on attribute-based
signcryption’, IEEE Access, Vol. 6, pp.34051–34074,
DOI: 10.1109/ACCESS.2018.2844829.

Rahulamathavan, Y., Veluru, S., Han, J., Fei, L., Rajarajan, M.
and Lu, R. (2016) ‘User collusion avoidance scheme
for privacy-preserving decentralized key-policy attribute-based
encryption’, IEEE Transactions on Computers, Vol. 65, No. 9,
pp.2939–2946.

Ren, Y.J., Jian, S., Jin, W., Jin, H. and Lee, S.Y. (2015) ‘Mutual
verifiable provable data auditing in public cloud storage’,
Vol. 16, No. 2, pp.317–323.

Rivest, R.L., Shamir, A. and Adleman, L. (1978) ‘A method
for obtaining digital signatures and public-key cryptosystems’,
Communications of the ACM, Vol. 21, No. 2, pp.120–126.

Sahai, B.A. (2005) Fuzzy Identity Based Encryption, pp.457–473,
Springer.

Shamir, A. (1979) ‘How to share a secret’, Communications of the
ACM, November, Vol. 22, No. 11, pp.612–614.

Shamir, A. (1984) Identity-Based Cryptosystems and Signature
Schemes, Vol. 196, Springer, Berlin, Heidelberg.

Taylor, N.E. and Ives, Z.G. (2006) ‘Reconciling while tolerating
disagreement in collaborative data sharing’, Proceedings of the
ACM SIGMOD International Conference on Management of
Data, 27–29 June, Chicago, Illinois, USA.

Waters, B. (2008) ‘Ciphertext-policy attribute-based encryption:
an expressive, efficient, and provably secure realization’,
International Workshop on Public Key Cryptography.

Xu, X., Zhou, J., Wang, X. and Zhang, Y. (2016) ‘Multi-authority
proxy re-encryption based on cpabe for cloud storage systems’,
Journal of Systems Engineering and Electronics, February,
Vol. 27, No. 1, pp.211–223.

Yang, K., Jia, X. and Ren, K. (2013) ‘Attribute-based fine-grained
access control with efficient revocation in cloud storage
systems’, ACM SIGSAC Symposium on Information, p.523.

Yu, S., Wang, C., Ren, K. and Lou, W. (2010) ‘Attribute based data
sharing with attribute revocation’, International Symposium on
ACM Symposium on Information, p.261.

Zhang, R., Wang, M., Hui, M. and Lin, S. (2015) ‘Revisiting
attribute-based encryption with verifiable outsourced
decryption’, IEEE Transactions on Information Forensics and
Security, Vol. 10, No. 10, pp.2119–2130.

