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Abstract: Identity-based encryption with equality test (IBEET) provides an attractive method
to test whether two ciphertexts are encryptions of the same plaintext without certificate
managements. However, none of the existing IBEET constructions can provide a way to revoke
the user in the scenario where the user’s private key is compromised or identity gets expired,
which is undesirable for identity-based setting. Furthermore, the user cannot revoke the tester
when it no longer wants the tester to test its ciphertexts. How to achieve both user and tester
revocation in IBEET remains a challenging task. In this paper, we propose a new primitive
called revocable identity-based encryption with equality test (R-IBEET), which can solve the
aforementioned two problems simultaneously, and formalise the security models of R-IBEET
against three types of adversaries. Then we propose a concrete construction of R-IBEET. Our
scheme is pairing-free, thus is more efficient compared with the related work.
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causes new problems for data search owing to the structural
changes in encrypted data. To solve the above-mentioned
issue, Boneh et al. (2004) creatively put forward a notion
called public key encryption with keyword search (PEKS).
In PEKS, the data user can compute a trapdoor for
a keyword using its private key, and sends it to the
cloud server whenever it wants to retrieve documents that
contain the keyword. With the trapdoor, the cloud server

1 Introduction

As cloud storage has grown by leaps and bounds in the 
current big data era, data users can save local storage as 
well as simplify data management by outsourcing their data 
to the cloud. To avoid unauthorised use and disclosure 
of some highly sensitive information, users usually store 
their data in form of ciphertexts on cloud. However, this

Copyright © 2023 Inderscience Enterprises Ltd.
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is able to check whether the ciphertext is the encryption
of the keyword in the issued trapdoor. PEKS is a useful
cryptographic tool and it has been applied in many fields
such as the intelligent 6G wireless systems (Wang et al.,
2023), community segmented vehicular social networks
(Khowaja et al., 2023) and internet of medical things
(Deebak et al., 2022). Nonetheless, PEKS is only feasible
for checking equality between ciphertexts that are generated
from the identical public key.

In Cryptographers’ Track at the RSA Conference
(CT-RSA), Yang et al. (2010) first proposed public key
encryption with equality test (PKEET), which allows
anyone to perform equality test on two ciphertexts
that are generated from different public keys. However,
due to the intricate certificate management problem, the
proposed scheme does not scale well. By combining
identity-based cryptosystem with PKEET, Ma (2016)
presented identity-based encryption with equality test
(IBEET), which solves the certificate management problem
in PKEET. Based on Ma’s work, various subsequent IBEET
schemes (Lin et al., 2018, 2021b; Ming and Wang, 2019;
Ramadan et al., 2020; Alornyo et al., 2020; Susilo et al.,
2020) have been presented.

User revocation is an important problem in
identity-based cryptosystem. However, there are no existing
IBEET constructions that can achieve user revocation.
Without user revocation mechanism, potential attacks may
be mounted by a malicious user in the scenario where the
user’s private key is compromised or identity gets expired.
That is, when a user’s private key is compromised or
identity gets expired, it should no longer be able to decrypt
the ciphertexts. User revocation mechanism guarantees that
user can do decryption only under the condition that it is
not revoked. Besides the issue of user revocation, we notice
that in the related works of IBEET, the tester acquires
permanent test right after being authorised, and it cannot
be revoked when the user no longer wants it to perform
equality test. Inspired by the work of Sun et al. (2020), we
resolve the problem of user and tester revocation through
introducing time keys into our scheme, and present a notion
called revocable identity-based encryption with equality test
(R-IBEET). In our scheme, decryption and test keys are all
time related. When user or tester needs to be revoked, they
will not be able to obtain the current time keys and the
ciphertexts will be updated to new ones by the cloud server.
Due to the lack of the current time keys, the revoked user
and tester are unable to complete decryption and equality
test separately, thus achieving revocation for both user and
tester. Using this way, the ciphertexts will not become
longer and longer with the number of updates, and the
cloud server only need to keep the current ciphertexts,
therefore, it will help to save storage resource.

1.1 Related work

1.1.1 Public key encryption with equality test

In CT-RSA 2010, Yang et al. (2010) first proposed
the primitive PKEET, which allows anyone to check

whether two different ciphertexts are encryptions of the
same plaintext. However, without authorisation mechanism,
anyone can perform equality test without limitation, and
hence causes potential risk to user’s privacy. To overcome
this problem, Tang (2011) proposed the conception
of PKEET with fine-grained authorisation (PKEET-FG).
Subsequently, Tang (2012) presented an all-or-nothing
PKEET (AoN-PKEET) scheme, where a proxy can perform
equality test only if it is authorised by the user. To
strengthen data privacy of the user, Ma et al. (2015)
presented a PKEET scheme with flexible authorisation
(PKEET-FA), which supports four kinds of authorisations.
Lin et al. (2021a) optimised Ma et al.’s scheme and
proposed a new pairing-free PKEET-FA scheme. However,
all the aforementioned schemes suffer from the intricate
certificate management problem.

1.1.2 Identity-based encryption with equality test

To solve the certificate management problem in
traditional public key cryptography, Ma (2016) integrated
identity-based cryptosystem into PKEET and proposed
the primitive IBEET in 2016. However, due to the use
of time-consuming operations like bilinear pairing, Ma’s
scheme is not efficient enough. Later, Wu et al. (2017) and
Wu et al. (2018) improved the efficiency of Ma’s work. To
further enhance the efficiency, Wu et al. (2019) presented
an efficient IBEET scheme without pairings in 2019.

1.1.3 Revocable encryption

Revocation mechanism has been widely studied in PEKS
and identity-based encryption (IBE). In 2005, Abdalla et al.
first proposed a temporarily searchable encryption scheme
where the trapdoor is only issued for some desired time. Yu
et al. (2014) constructed a new revocable PEKS scheme in
2013. In their scheme, the cloud server can perform equality
test only when it is not revoked. Zhang and Mao (2016)
employed hash chain to construct another revocable PEKS
scheme that can resist off-line keyword guessing attacks.

Boneh and Franklin (2001) presented the first revocable
IBE construction in 2001. However, their scheme is not
scalable as the private key generator (PKG) needs to deliver
new private keys for all the non-revoked users per each
time period. Using complete subtree structure, Boldyreva
et al. (2008) constructed the first scalable IBE scheme
which reduces the complexity of updating key from linear
to logarithmic. Following the work of Boldyreva et al.
(2008), many revocable IBE schemes (Libert et al., 2009;
Li et al., 2015; Qin et al., 2015; Wei et al., 2016) have
been proposed later on. Sun et al. (2018) presented a
revocable IBE scheme with ciphertext evolution in the
cloud. In their scheme, PKG periodically delivers time keys
to non-revoked users as well as the cloud server. This work
was extended to broadcast setting in Sun et al. (2020).
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1.2 Contribution

Below, we will list the contributions of our study.

1 In this paper, we first introduce revoke mechanism
into IBEET and propose a notion called revocable
identity-based encryption with equality test
(R-IBEET). R-IBEET can achieve both user and tester
revocation according to the practical needs.

2 We prove that our R-IBEET scheme can achieve
OW-sID-CCA security against type-I adversary,
OW-sID-CPA security against type-II adversary, as
well as IND-sID-CCA security against type-III
adversary.

3 Taking advantage of Shamir’s secret sharing, we
propose an efficient R-IBEET scheme without bilinear
pairings. Our scheme enjoys especially high test
efficiency compared with the related work.

2 Preliminaries

2.1 Computational Diffie-Hellman (CDH) problem:

Given (g, ga, gc) ∈ G3 for a, c ∈ Zp, where G is a cyclic
group of prime order p, and g is a random generator
of G. We define the advantage of any probabilistic
polynomial-time algorithm A in computing gac as

AdvCDHA,G
def
= Pr[A(g, ga, gc) = gac].

The CDH assumption holds provided that AdvCDHA,G is
negligible.

2.2 Shamir’s secret sharing

Shamir (1979) first proposed a secret sharing scheme based
on Lagrange difference polynomials, and the detail is as
follows:

Let (x1, y1), . . . , (xt, yt) be t different points, these t
points can uniquely determine a polynomial f(x) of degree
(t− 1) satisfying f(xi) = yi for 1 ≤ i ≤ t, where

f(x) =
t∑

i=1

f(xi)
∏

1≤j ̸=i≤t

x− xj

xi − xj
.

Let s ∈ Zp be a secret satisfying s = f(0) = a0. Choose
uniform a1, . . . , at ∈ Zp, and then compute the polynomial
f(xi) = s+

∑t
i=1 aix

i. Each share of s is denoted as
(xi, f(xi)) for 1 ≤ i ≤ n. The secret s can be reconstructed
by pooling any t shares together as below

s = f(0) =
t∑

i=1

f(xi)
∏

1≤j ̸=i≤t

xj

xj − xi
.

3 Definition

3.1 System model

The system model of R-IBEET is shown in Figure 1. There
are four participants and the detail is depicted as follows:

1 Private key generator (PKG): it can generate users’
private/public key pairs and issue revoke keys for
non-revoked users, as well as issue evolve keys for
the cloud server to evolve the ciphertexts.

2 User: the user registers itself at PKG and issues test
key for the tester to do equality test on its ciphertexts,
as well as issues test key for the PKG to generate the
evolve key.

3 Tester: it is responsible for doing equality test with
test key and users’ ciphertexts.

4 Cloud server: when the user or the tester need to be
revoked, it will update the user’s ciphertexts stored on
it.

Figure 1 System model of our R-IBEET scheme
(see online version for colours)

(a)

(b)
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3.2 Algorithms

Definition 3.1: A R-IBEET scheme is made up of the
following ten algorithms: Setup, Extract, TimeKeyTest,
TimeKeyRev, TimeKeyEvo, Encrypt, Decrypt, Test,
Revoke, CiphertextEvolve, where M is its plaintext space
and C is its ciphertext space.

1 Setup(λ): given a security parameter λ, this
algorithm outputs a public parameter parm and a
master secret key msk.

2 Extract(msk, ID): given the public parameter parm,
the master secret key msk and an identity ID, this
algorithm outputs a private key SKID and the
corresponding public key PKID for that identity,
which are sent to the user. It is run by the PKG.

3 TimeKeyTest(SKID, t): given a private key SKID

and a time tag t, this algorithm outputs a test key
TestKeyID,t and the corresponding public test key
PKtest,ID,t, which are sent to the tester and the
PKG. It is run by the user.

4 TimeKeyRev(msk, ID, t): given the master secret
key msk, an identity ID and a time tag t, this
algorithm outputs a revoke key RevKeyID,t and the
corresponding public revoke key PKrev,ID,t, which
are sent to the user. It is run by the PKG.

5 TimeKeyEvo(msk, ID, t, TestKeyID,t): given the
master secret key msk, an identity ID, a time tag t
and a test key TestKeyID,t, this algorithm outputs
an evolve key EvoKeyID,t, which is sent to the
cloud server. It is run by the PKG.

6 Encrypt(m,PKID, PKrev,ID,t, PKtest,ID,t): given
m ∈M, a public key PKID, a public revoke key
PKrev,ID,t and a public test key PKtest,ID,t, this
algorithm outputs a ciphertext CID,t ∈ C.

7 Decrypt(CID,t, SKID, RevKeyID,t): given a
ciphertext CID,t, a private key SKID and a revoke
key RevKeyID,t, this algorithm outputs a message
m or a failure symbol ⊥. It is run by the user.

8 Test(CIDi,tα , T estKeyIDi,tα , CIDj ,tβ , T estKeyIDj ,tβ ):
given a ciphertext CIDi,tα ∈ C with time tα of user
Ui with identity IDi, a test key TestKeyIDi,tα with
time tα of user Ui with identity IDi, a ciphertext
CIDj ,tβ ∈ C with time tβ of user Uj with identity
IDj and a test key TestKeyIDj ,tβ with time tβ of
user Uj with identity IDj , this algorithm outputs 1
if messages hidden within CIDi,tα and CIDj ,tβ are
the same, or 0 otherwise.

9 Revoke(ID, t): given an identity ID and a time tag
t, the PKG stops issuing the revoke key
RevKeyID,t for the user with identity ID at time t.

10 CiphertextEvolve(CID,t, ID,EvoKeyID,t,
EvoKeyID,t′): given a ciphertext CID,t ∈ C with
time t, an identity ID, two evolve keys

EvoKeyID,t with time t, and EvoKeyID,t′ with
time t′, this algorithm outputs a ciphertext CID,t′

with time t′. It is run by the cloud server.

3.3 Security models

We formally define the following three types of adversaries
for security models of R-IBEET. These three types of
adversaries are chosen based on the system model. The
PKG and the sender are seen as honest, so they are not
chosen to be adversaries. The revoked user and the cloud
server have private key and evolve key, respectively that
may be helpful to obtain plaintext from the ciphertext, so
they are chosen to be adversaries. In addition to these two
types of adversaries, it is generally necessary to consider
the outsider, who can obtain ciphertext but does not have
any key.

1 Type-I adversary: this adversary is a malicious
revoked user who has private key and test key, but
does not have revoke key and evolve key. Given the
challenge ciphertext, this adversary aims to decode the
plaintext hidden within.

2 Type-II adversary: this adversary can be the
semi-trusted cloud server who has evolve key, and
who might have test key as well as revoke key (‘−’
in Table 1 denotes ‘might have’), but does not have
user’s private key. Given the challenge ciphertext, this
adversary aims to decode the plaintext hidden within.

3 Type-III adversary: this adversary is an outsider who
has none of private key, test key, revoke key and
evolve key. It aims to distinguish which of the two
messages is the challenge ciphertext encrypted from.

Table 1 Types of adversaries

Private key Test key Revoke key Evolve key

Type-I adversary X X × ×
Type-II adversary × − − X
Type-III adversary × × × ×

3.3.1 OW-sID-CCA security against type-I adversary

ExpOW-sID-CCA
R-IBEET,A1

: let A1 be a type-I adversary. It interacts
with the challenger G via the following game. Init: A1

outputs an identity ID∗ and a time tag t∗ to be challenged.

1 Setup: given a security parameter λ, G runs the
algorithm Setup to provide the public parameters
parm to A1, while keeps the master secret key msk
for itself.

2 Phase 1: A1 can make the following queries
adaptively in this phase. The constraint is that
⟨ID∗, t∗⟩ does not appear in any ORevKey query and
OEvoKey query.

• OExtKey query ⟨ID⟩: G runs algorithm Extract
to obtain the private key SKID and the
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corresponding public key PKID for that identity.
It sends SKID and PKID to A1.

• OTestKey query ⟨ID, t⟩: G runs algorithm
Extract to obtain the private key SKID. It then
runs algorithm TimeKeyTest to obtain the test
key TestKeyID,t and the corresponding public
test key PKtest,ID,t using the private key
SKID. It sends TestKeyID,t and PKtest,ID,t to
A1.

• ORevKey query ⟨ID, t⟩: G runs algorithm
TimeKeyRev to obtain the revoke key
RevKeyID,t and the corresponding public
revoke key PKrev,ID,t. It sends RevKeyID,t

and PKrev,ID,t to A1.

• OEvoKey query ⟨ID, t⟩: G runs algorithm
Extract to obtain the private key SKID. It then
runs algorithm TimeKeyTest to obtain the test
key TestKeyID,t using the private key SKID.
Then, it runs algorithm TimeKeyEvo to obtain
the evolve key EvoKeyID,t using the test key
TestKeyID,t. It sends EvoKeyID,t to A1.

• ODec query ⟨CID,t, ID, t⟩: G runs algorithm
Extract to obtain the private key SKID. It then
runs algorithm TimeKeyRev to obtain the revoke
key RevKeyID,t. Then, it runs algorithm
Decrypt to decrypt the ciphertext into a plaintext
using the private key SKID and the revoke key
RevKeyID,t. Finally, return the plaintext to A1.

3 Challenge: G randomly selects a message m ∈M and
encrypts the message via algorithm Encrypt to
CID∗,t∗ . Finally, return the challenge ciphertext
CID∗,t∗ to A1.

4 Phase 2: A1 continues to issue more queries as below:

• OExtKey query ⟨ID⟩: G performs as in Phase 1.
• OTestKey query ⟨ID, t⟩: G performs as in

Phase 1.
• ORevKey query ⟨ID, t⟩ ̸= ⟨ID∗, t∗⟩: G performs

as in Phase 1.
• OEvoKey query ⟨ID, t⟩ ̸= ⟨ID∗, t∗⟩: G performs

as in Phase 1.
• ODec query ⟨CID,t, ID, t⟩ ̸= ⟨CID∗,t∗ , ID

∗, t∗⟩:
G performs as in Phase 1.

Notice that ⟨ID∗⟩ could appear in OExtKey query
and ⟨ID∗, t∗⟩ could appear in OTestKey query.

4 Guess: A1 outputs a guess m′ and wins if m = m′.

We define the advantage of A1 in the above game as

AdvOW-sID-CCA
R-IBEET,A1

(λ) = |Pr[m = m′]|.

Definition 3.2 We say that a R-IBEET scheme is
OW-sID-CCA secure, if for each type-I adversary,
AdvOW-sID-CCA

R-IBEET,A1
(λ) is negligible in the security parameter λ.

3.3.2 OW-sID-CPA security against type-II adversary

ExpOW-sID-CPA
R-IBEET,A2

: let A2 be a type-II adversary. It interacts
with the challenger G via the following game. Init: A2

outputs an identity ID∗ and a time tag t∗ to be challenged.

1 Setup: given a security parameter λ, G runs the
algorithm Setup to provide the public parameters
parm to A2, while keeps the master secret key msk
for itself.

2 Phase 1: A2 can make OExtKey query ⟨ID⟩,
OTestKey query ⟨ID, t⟩, ORevKey query ⟨ID, t⟩, and
OEvoKey query ⟨ID, t⟩ adaptively in this phase. The
constraint is that ⟨ID∗⟩ does not appear in any
OExtKey query.

3 Challenge: G picks a random message m ∈M and
encrypts the message via algorithm Encrypt to
CID∗,t∗ . Finally, return the challenge ciphertext
CID∗,t∗ to A2.

4 Phase 2: A2 continues to issue more queries as below:

• OExtKey query ⟨ID⟩ ≠ ⟨ID∗⟩: G performs as in
Phase 1.

• OTestKey query ⟨ID, t⟩: G performs as in
Phase 1.

• ORevKey query ⟨ID, t⟩: G performs as in
Phase 1.

• OEvoKey query ⟨ID, t⟩: G performs as in
Phase 1.

Notice that ⟨ID∗, t∗⟩ could appear in OEvoKey query.
To maximise capability of the type-II adversary, here
we also allow ⟨ID∗, t∗⟩ to appear in OTestKey query
and ORevKey query.

5 Guess: A2 outputs a guess m′ and wins if m = m′.

We define the advantage of A2 in the above game as

AdvOW-sID-CPA
R-IBEET,A2

(λ) = |Pr[m = m′]|.

Definition 3.3: We say that a R-IBEET scheme is
OW-sID-CPA secure, if for each type-II adversary,
AdvOW-sID-CPA

R-IBEET,A2
(λ) is negligible in the security parameter λ.

3.3.3 IND-sID-CCA security against type-III adversary

ExpIND-sID-CCAR-IBEET,A3
: let A3 be a type-III adversary. It interacts

with the challenger G via the following game. Init: A3

outputs an identity ID∗ and a time tag t∗ to be challenged.

1 Setup: given a security parameter λ, G runs the
algorithm Setup to provide public parameters parm to
A3, while keeps the master secret key msk for itself.

2 Phase 1: A3 can make OExtKey query ⟨ID⟩,
OTestKey query ⟨ID, t⟩, ORevKey query ⟨ID, t⟩,
OEvoKey query ⟨ID, t⟩ and ODec query
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⟨CID,t, ID, t⟩ adaptively in this phase. The
constraints are that ⟨ID∗⟩ does not appear in any
OExtKey query, ⟨ID∗, t∗⟩ does not appear in any
OTestKey query, ORevKey query and OEvoKey query.

3 Challenge: A3 outputs two equal length messages m0

and m1, G randomly chooses b ∈ {0, 1} and encrypts
the message mb via algorithm Encrypt to output a
challenge ciphertext CID∗,t∗ . Finally, return the
challenge ciphertext CID∗,t∗ to A3.

4 Phase 2: A3 continues to issue more queries as below:

• OExtKey query ⟨ID⟩ ̸= ⟨ID∗⟩: G performs as in
Phase 1.

• OTestKey query ⟨ID, t⟩ ̸= ⟨ID∗, t∗⟩: G performs
as in Phase 1.

• ORevKey query ⟨ID, t⟩ ̸= ⟨ID∗, t∗⟩⟩: G
performs as in Phase 1.

• OEvoKey query ⟨ID, t⟩ ̸= ⟨ID∗, t∗⟩: G performs
as in Phase 1.

• ODec query ⟨CID,t, ID, t⟩ ̸= ⟨CID∗,t∗ , ID
∗, t∗⟩:

G performs as in Phase 1.

5 Guess: A3 outputs a guess b′ ∈ {0, 1} and wins if
b = b′.

We define the advantage of A3 in the above game as

AdvIND-sID-CCAR-IBEET,A3
(λ) = |Pr[b = b′]− 1

2
|.

Definition 3.4: We say that a R-IBEET scheme is
IND-sID-CCA secure, if for each type-III adversary,
AdvIND-sID-CCAR-IBEET,A3

(λ) is negligible in the security parameter λ.

4 Construction

We present the construction of R-IBEET below.

1 Setup(λ): on input a security parameter λ ∈ Z+, this
algorithm outputs the public parameter parm and the
master secret key msk as below:

a Generate a group G of prime order p and
randomly selects a generator g of G.

b Select seven hash functions H1 : {0, 1}∗ → Zp,
H2 : {0, 1}∗ → Zp, H3 : {0, 1}λ → Zp,
H4 : G→ {0, 1}λ+l, H5 : G→ {0, 1}λ+l,
H6 : G→ {0, 1}4l, H7 : G→ G, where l is
bit-length of elements in Zp.

c Randomly pick (s, s′) ∈ Z2
p as the master secret

key msk.

d Pick γ1, γ2, γ3, γ4, γ5, γ6 ∈ {0, 1}λ randomly.

e Output parm = {G, p, g,H1,H2,H3, H4,H5,
H6,H7, γ1, γ2, γ3, γ4, γ5, γ6}, and msk = (s,
s′).

2 Extract(msk, ID): given ID ∈ {0, 1}∗, the
algorithm computes the private key
SKID = H1(s||ID) of the user and the
corresponding public key PKID = gSKID .

3 TimeKeyTest(SKID, t): the algorithm computes test
key TestKeyID,t = H2(SKID||t) as the test key of
the tester and the corresponding public test key
PKtest,ID,t = gTestKeyID,t , where t is the time tag.

4 TimeKeyRev(msk, ID, t): the algorithm computes
revoke key RevKeyID,t = H1(s

′||ID||t) as the
revoke key of the user and the corresponding public
revoke key PKrev,ID,t = gRevKeyID,t , where t is
the time tag.

5 TimeKeyEvo(msk, ID, t, TestKeyID,t): the
algorithm first computes
RevKeyID,t = H1(s

′||ID||t), then sets
EvoKeyID,t = (RevKeyID,t, T estKeyID,t) as the
evolve key of the cloud server.

6 Encrypt(m,PKID, PKrev,ID,t, PKtest,ID,t): to
encrypt a message m ∈ {0, 1}λ, the algorithm
generates a ciphertext CID,t = (C1

ID,t, C
2
ID,t,

C3
ID,t, C

4
ID,t, C

5
ID,t) as follows:

a Compute three points:

P1 = (H3(γ1 ⊕m),H3(γ2 ⊕m)),

P2 = (H3(γ3 ⊕m),H3(γ4 ⊕m)),

P3 = (H3(γ5 ⊕m),H3(γ6 ⊕m)).

b Construct a quadratic polynomial f(x) that
passes through three points: P1, P2, P3.

c Compute two random points (x1, y1), (x2, y2)
on f(x), where x1, x2 ∈ {0, 1}l.

d Pick two random values r1, r2 ∈ Zp, then
compute

C1
ID,t = gr1 , C2

ID,t = gr2 ,
C3

ID,t = (m||r2)⊕H4(PKr1
ID)

⊕H5(PKr2
Rev,ID,t),

C4
ID,t = (x1||x2||y1||y2)

⊕H6(PKr2
test,ID,t),

C5
ID,t = H7(H5(PKr2

Rev,ID,t), C
1
ID,t, C

2
ID,t,

C3
ID,t, C

4
ID,t).

7 Decrypt(CID,t, SKID, RevKeyID,t): let CID,t

= (C1
ID,t, C

2
ID,t, C

3
ID,t, C4

ID,t, C5
ID,t). This

algorithm performs the following steps:

a Compute TestKeyID,t = H2(SKID||t).

b Recover m||r2 by computing

C3
ID,t ⊕H4((C

1
ID,t)

SKID )

⊕H5((C
2
ID,t)

RevKeyID,t).
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c Recover x1||x2||y1||y2 by computing

C4
ID,t ⊕H6((C

2
ID,t)

TestKeyID,t .

d Compute P1, P2, P3 with m and the six random
numbers γ1, γ2, γ3, γ4, γ5, γ6, then reconstruct
a quadratic polynomial f(x) with them. If
C2

ID,t = gr2 , C5
ID,t =

H7((C
2
ID,t)

RevKeyID,t , C1
ID,t, C

2
ID,t, C

3
ID,t, C

4
ID,t),

f(x1) = y1, f(x2) = y2, output m; or an error
symbol ⊥ otherwise.

8 Test(CIDi,tα , T estKeyIDi,tα , CIDj ,tβ , T estKeyIDj ,tβ ):
the algorithm computes

x1||x2||y1||y2 = C4
IDi,tα

⊕H6((C
2
IDi,tα)

TestKeyIDi,tα ),

x′
1||x′

2||y′1||y′2 = C4
IDj ,tβ

⊕H6((C
2
IDj ,tβ

)TestKeyIDj,tβ ).

Then, it reconstructs quadratic polynomials

f(x)← ((x1, y1), (x2, y2), (x
′
1, y

′
1)),

f(x)′ ← ((x′
1, y

′
1), (x

′
2, y

′
2), (x1, y1)),

and retrieves secrets ϑ and ϑ′ hidden within those
two quadratic polynomials

ϑ = f(0), ϑ′ = f(0)′.

It outputs 1 if ϑ = ϑ′ holds, which indicates
m = m′, or 0 otherwise.

9 Revoke(ID, t): if a user with identity ID needs to
be revoked at time t, the PKG stops issuing the
revoke key RevKeyID,t for the user at time t.

10 CiphertextEvolve(CID,t, ID,EvoKeyID,t,
EvoKeyID,t′): to transform a ciphertext CID,t of
ID at time t into a new ciphertext CID,t′ of ID at
the current time t′ > t, the algorithm computes:

C1
ID,t′ = C1

ID,t, C
2
ID,t′ = C2

ID,t,

C3
ID,t′ = C3

ID,t ⊕H5((C
2
ID,t)

RevKeyID,t)

⊕H5((C
2
ID,t)

RevKeyID,t′ ),

C4
ID,t′ = C4

ID,t ⊕H6((C
2
ID,t)

TestKeyID,t)

⊕H6((C
2
ID,t)

TestKeyID,t′ ),

C5
ID,t′ = H7(H5(C

2
ID,t)

RevKeyID,t′ , C1
ID,t′ ,

C2
ID,t′ , C

3
ID,t′ , C

4
ID,t′).

Then, it outputs a ciphertext

CID,t′ = (C1
ID,t′ , C

2
ID,t′ , C

3
ID,t′ , C

4
ID,t′ , C

5
ID,t′).

5 Security analysis

Below we will formally give security proofs of our scheme
via a sequence of games.

Theorem 1: The R-IBEET construction is OW-sID-CCA
secure against any probabilistic polynomial time (PPT)
type-I adversaries provided that CDH assumption holds.

Proof: Suppose A1 is a PPT type-I adversary who manages
to break the OW-sID-CCA security with advantage
AdvOW-sID-CCA

R-IBEET,A1
(λ). Assume it makes queries to Hd(d =

1, 2, 3, 4, 5, 6, 7) oracles for up to qHd
times, and it makes

at most qExtKey private key queries, qTestKey test key
queries, qRevKey revoke key queries, qEvoKey evolve
key queries, and qDec decryption queries. We analyse the
security via a series of games as below.

Game 1.0

Init: A1 outputs an identity ID∗ and a time tag t∗ to be
challenged.

1 parm← {G, p, g,H1, H2,H3,H4,H5,H6,H7, γ1, γ2,
γ3, γ4, γ5, γ6}, (s, s′)← Z2

p, msk = (s, s′).

2 state← A

OH1
,OH2

,OH3
,OH4

,OH5
,OH6

,OH7
,

OExtKey,OTestKey,ORevKey,
OEvoKey,ODec

1 (parm,
ID ∈ {ID1, . . . , IDn}, t), where the oracles work in
the following way.

• OH1 query ⟨µ1, µ2⟩: on input µ1 and µ2, the
challenger randomly picks h1 ∈ Zp and sends h1

to A1. The challenger adds (µ1, µ2, h1) into table
T1 for OH1 .

• OH2 query ⟨µ1, µ2⟩: on input µ1 and µ2, the
challenger randomly picks h2 ∈ Zp and sends h2

to A1. The challenger adds (µ1, µ2, h2) into table
T2 for OH2

.

• OH3 query ⟨µ1⟩: on input µ1, the challenger
randomly picks h3 ∈ Zp and sends h3 to A1. The
challenger adds (µ1, h3) into table T3 for OH4 .

• OH4 query ⟨µ1⟩: on input µ1, the challenger
randomly picks h4 ∈ {0, 1}λ+l and sends h4 to
A1. The challenger adds (µ1, h4) into table T4

for OH4 .

• OH5 query ⟨µ1⟩: on input µ1, the challenger
randomly picks h5 ∈ {0, 1}λ+l and sends h5 to
A1. The challenger adds (µ1, h5) into table T5

for OH5 .

• OH6 query ⟨µ1⟩: on input µ1, the challenger
randomly picks h6 ∈ {0, 1}4l and sends h6 to
A1. The challenger adds (µ1, h6) into table T6

for OH6 .

• OH7 query ⟨µ1, µ2, µ3, µ4, µ5⟩: on input
µ1, µ2, µ3, µ4 and µ5, the challenger randomly
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picks h7 ∈ G sends h7 to A1. The challenger
adds (µ1, µ2, µ3, µ4, µ5, h7) into table T7 for
OH7 .

• OExtKey query ⟨ID⟩: on input an identity ID,
the challenger sends
(SKID, PKID)← Extract(parm,msk, ID) to
A1.

• OTestKey query ⟨ID, t⟩: on input an identity ID
and a time tag t, the challenger sends
(TestKeyID,t, PKtest,ID,t)←
TimeKeyTest(SKID, t) to A1.

• ORevKey query ID, t⟩: on input an identity ID
and a time tag t, the challenger sends
(RevKeyID,t, PKrev,ID,t)←
TimeKeyRev(msk, ID, t) to A1.

• OEvoKey query ⟨ID, t⟩: on input an identity ID
and a time tag t, the challenger sends
EvoKeyID,t ←
TimeKeyEvo(msk, ID, t, TestKeyID,t) to A1.

• ODec query ⟨CID,t, ID, t⟩: on input a ciphertext
CID,t, an identity ID and a time tag t, the
challenger sends
m← Decrypt(C, SKID, RevKeyID,t) to A1.

3 m← {0, 1}λ, r1, r2 ← Zp, CID∗,t∗ = (C1
ID∗,t∗ ,

C2
ID∗,t∗ , C

3
ID∗,t∗ , C

4
ID∗,t∗ , C

5
ID∗,t∗) defined as

follows:

C1
ID∗,t∗ = gr1 , C2

ID∗,t∗ = gr2 ,

C3
ID∗,t∗ = (m||r2)⊕H4(PKr1

ID∗)⊕H5(PKr2
Rev,ID∗,t∗),

C4
ID∗,t∗ = (x1||x2||y1||y2)⊕H6(PKr2

test,ID∗,t∗),

C5
ID∗,t∗ = H7(H5(PKr2

Rev,ID∗,t∗), C
1
ID∗,t∗ , C

2
ID∗,t∗ ,

C3
ID∗,t∗ , C

4
ID∗,t∗).

The points (x1, y1) and (x2, y2) are generated
randomly on a quadratic polynomial f(x) which is
generated by passing through three points:
P1 = (H3(γ1 ⊕m),H3(γ2 ⊕m)),
P2 = (H3(γ3 ⊕m),H3(γ4 ⊕m)),
P3 = (H3(γ5 ⊕m),H3(γ6 ⊕m)).

4 m′ ← A

OH1 ,OH2 ,OH3 ,OH4 ,OH5 ,OH6 ,OH7 ,
OExtKey,OTestKey,ORevKey,

OEvoKey,ODec

1 (state,
CID∗,t∗).

Denote by S1.0 the event that m = m′ in Game 1.0. Then

AdvOW-sID-CCA
R-IBEET,A1

(λ) = Pr[S1.0]. (1)

Game 1.1

Init: A1 outputs an identity ID∗ and a time tag t∗ to be
challenged.

1 parm← {G, p, g,H1,H2,H3,H4,H5, H6,H7, γ1, γ2,
γ3, γ4, γ5, γ6}, (s, s′)← Z2

p, msk = (s, s′).

2 state← A

OH1 ,OH2 ,OH3 ,OH4 ,OH5 ,OH6 ,OH7 ,
OExtKey,OTestKey,ORevKey,

OEvoKey,ODec

1 (parm,
ID ∈ {ID1, . . . , IDn}, t), where the oracles work in
the following way:

• OH1 query ⟨µ1, µ2⟩, OH2 query ⟨µ1, µ2⟩, OH3

query ⟨µ1⟩, OH4 query ⟨µ1⟩, OH5 query ⟨µ1⟩,
OH6 query ⟨µ1⟩, OH7 query ⟨µ1, µ2, µ3, µ4, µ5⟩,
OExtKey query ⟨ID⟩, OTestKey query ⟨ID, t⟩,
ORevKey query ⟨ID, t⟩, OEvoKey query ⟨ID, t⟩:
Same as those in Game 1.0.

• ODec query ⟨CID,t, ID, t⟩: The challenger
queries to H4 on input (C1

ID,t)
SKID to get h4

and queries to H5 on input (C2
ID,t)

RevKeyID,t to
get h5. It computes m′||r′2 = C3

ID,t ⊕ h4 ⊕ h5. It
then computes P1, P2 and P3 with m′ and the
six random numbers γ1, γ2, γ3, γ4, γ5, γ6, and
reconstructs a quadratic polynomial f(x) with
them. Then the challenger queries
(H5((C

2
ID,t)

RevKeyID,t , C1
ID,t, C

2
ID,t, C

3
ID,t, C

4
ID,t)

to OH7 to get answer h7. If either of
C2

ID,t = gr2 , C5
ID,t = h7, f(x1) = y1,

f(x2) = y2 fails to hold, return ⊥ to A1;
Otherwise, return m′ to A1.

3 m ← {0, 1}λ, r1, r2 ← Zp, W ∗
1.1 ← {0, 1}λ+l,

CID∗,t∗= (C1
ID∗,t∗ ,C2

ID∗,t∗ , C
3
ID∗,t∗ ,C

4
ID∗,t∗ ,C

5
ID∗,t∗)

defined as follows:

C1
ID∗,t∗ = gr1 , C2

ID∗,t∗ = gr2 ,
C3

ID∗,t∗ = (m||r2)⊕H4(PKr1
ID∗)⊕W ∗

1.1,

C4
ID∗,t∗ = (x1||x2||y1||y2)⊕H6(PKr2

test,ID∗,t∗),

C5
ID∗,t∗ = H7(W

∗
1.1, C

1
ID∗,t∗ , C

2
ID∗,t∗ , C

3
ID∗,t∗ ,

C4
ID∗,t∗).

The points (x1, y1) and (x2, y2) are generated in the
same way as that in Game 1.0. Add the tuple
((C2

ID∗,t∗)
RevKeyID∗,t∗ ,W ∗

1.1) into table T5 for OH5 ,
and tuple (W ∗

1.1, C
1
ID∗,t∗ , C

2
ID∗,t∗ , C

3
ID∗,t∗ ,

C4
ID∗,t∗ , C

5
ID∗,t∗) into table T7 for OH7 .

4 m′ ← A

OH1
,OH2

,OH3
,OH4

,OH5
,OH6

,OH7
,

OExtKey,OTestKey,ORevKey,
OEvoKey,ODec

1 (state,
CID∗,t∗).

Let S1.1 be the event that m = m′ in Game 1.1. It
is because the random oracle is ideal that there is no
difference between Games 1.1 and 1.0. Then

Pr[S1.0] = Pr[S1.1]. (2)

Game 1.2

Init: A1 outputs an identity ID∗ and a time tag t∗ to be
challenged.
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1 parm← {G, p, g,H1,H2,H3,H4, H5,H6,H7, γ1, γ2,
γ3, γ4, γ5, γ6}, (s, s′)← Z2

p, msk = (s, s′).

2 state← A

OH1 ,OH2 ,OH3 ,OH4 ,OH5 ,OH6 ,OH7 ,
OExtKey,OTestKey,ORevKey,

OEvoKey,ODec

1 (parm,
ID ∈ {ID1, . . . , IDn}, t), where the oracles work in
the same way as those in Game 1.1.

3 r1, r2 ← Zp, W ∗
2.2 ← {0, 1}λ+l, CID∗,t∗ = (C1

ID∗,t∗ ,

C2
ID∗,t∗ , C

3
ID∗,t∗ , C

4
ID∗,t∗ , C

5
ID∗,t∗) defined as

follows:

C1
ID∗,t∗ = gr1 , C2

ID∗,t∗ = gr2 ,
C3

ID∗,t∗ = W ∗
2.2,

C4
ID∗,t∗ = (x1||x2||y1||y2)⊕H6(PKr2

test,ID∗,t∗),

C5
ID∗,t∗ = H7(W

∗
2.1, C

1
ID∗,t∗ , C

2
ID∗,t∗ , C

3
ID∗,t∗ ,

C4
ID∗,t∗).

The points (x1, y1) and (x2, y2) are generated in the
same way as that in Game 1.0. Add the tuple
((C2

ID∗,t∗)
RevKeyID∗,t∗ ,W ∗

2.2⊕
H4(C

1
ID∗,t∗)

SKID∗ ⊕ (m||r2)) into table T5 for OH5 ,
and tuple (W ∗

2.2 ⊕H4(C
1
ID∗,t∗)

SKID∗ ⊕
(m||r2), C1

ID∗,t∗ , C
2
ID∗,t∗ , C

3
ID∗,t∗ , C

4
ID∗,t∗ , C

5
ID∗,t∗)

into table T7 for OH7 .

4 m′ ← A

OH1
,OH2

,OH3
,OH4

,OH5
,OH6

,OH7
,

OExtKey,OTestKey,ORevKey,
OEvoKey,ODec

1 (state,
CID∗,t∗).

• If A1 queries (C2
ID∗,t∗)

RevKeyID∗,t∗ to OH5 ,
then denote this event by E1.1.

• If A1 queries (C1
ID∗,t∗ , C

2
ID∗,t∗ , (C

3
ID∗,t∗)

′,

C4
ID∗,t∗ , C

5
ID∗,t∗) to ODec, where (C3

ID∗,t∗)
′ ̸=

(C3
ID∗,t∗), ⊥ is returned.

Let S1.2 be the event that m = m′ in Game 1.2. It is
because the random oracle is ideal that the challenge
ciphertexts in Game 1.1 and Game 1.2 are same in
distribution. Hence, there will be no difference between
Game 1.2 and Game1.1 if E1.1 does not happen. Then

|Pr[S1.1]− Pr[S1.2]| ≤ Pr[E1.1]. (3)

In the following lemma, we will prove that the probability
that E1.1 happens is negligible.

Lemma 1: The probability that the event E1.1 happens
in Game1.2 is negligible provided that CDH assumption
holds.

Proof: Assume that the probability that E1.1 happens is
non-negligible. We can build a PPT algorithm B1 who
invokes A′

1 with the aim to solve the CDH problem. Given
an instance of the CDH problem: (G, p, g, ga, gc), B1 works
in the following way:

1 B1 sets parm← {G, p, g,H1,H2, H3,H4,H5,H6,
H7, γ1, γ2, γ3, γ4, γ5, γ6}. It selects (s, s′)← Z2

p, and
sets msk = (s, s′), PKrev,ID∗,t∗ = ga, which implies
RevKeyID∗,t∗ = a and
EvoKeyID∗,t∗ = (a,H2(SKID∗ ||t∗)). Then it runs
algorithm TimeKeyRev to generate all other revoke
key RevKeyID,t and the corresponding public revoke
key PKrev,ID,t, where (ID, t) ̸= (ID∗, t∗).

2 state← A′
1

OH1
,OH2

,OH3
,OH4

,OH5
,OH6

,OH7
,

OExtKey,OTestKey,ORevKey,
OEvoKey,ODec (parm,

ID ∈ {ID1, . . . , IDn},
t), where the oracles work in the following way.

• OH1 query ⟨µ1, µ2⟩, OH2 query ⟨µ1, µ2⟩, OH3

query ⟨µ1⟩, OH4 query ⟨µ1⟩, OH5 query ⟨µ1⟩
OH6 query ⟨µ1⟩, OH7 query ⟨µ1, µ2, µ3, µ4, µ5⟩,
OExtKey query ⟨ID⟩, OTestKey query ⟨ID, t⟩,
ORevKey query ⟨ID, t⟩, OEvoKey query ⟨ID, t⟩:
Same as those in Game 1.2.

• ODec query ⟨C, ID, t⟩: B1 searches table T4 on
input (C1

ID,t)
SKID to get h4, searches table T5

to get h5, searches table T6 on input
(C2

ID,t)
TestKeyID,t to get h6 and searches T7 on

input (h5, C
1
ID,t, C

2
ID,t, C

3
ID,t, C

4
ID,t) to get h7,

then it computes x1||x2||y1||y2 = C4
ID,t ⊕ h6.

For each tuple (µ1, h5), B1 performs as follows:

a Compute m′||r′2 = C3
ID,t ⊕ h4 ⊕ h5.

b Compute P1, P2, P3 with m′ and the six
random numbers γ1, γ2, γ3, γ4, γ5, γ6, then
reconstruct a quadratic polynomial f(x) with
them.

c If C2
ID,t = gr2 , C5

ID,t = H7(h5, C
1
ID,t,

C2
ID,t, C

3
ID,t, C

4
ID,t), f(x1) = y1 and

f(x2) = y2 all hold, return m′ to A′
1; if

there exists no such tuple in table T5, return
⊥ to A′

1.

3 r1 ← Zp, (W ∗
2.2)

′ ← {0, 1}λ+l, CID∗,t∗ = (C1
ID∗,t∗ ,

C2
ID∗,t∗ , C

3
ID∗,t∗ , C

4
ID∗,t∗ , C

5
ID∗,t∗ ) defined as

follows:

C1
ID∗,t∗ = gr1 , C2

ID∗,t∗ = gc,

C3
ID∗,t∗ = (W ∗

2.2)
′
,

C4
ID∗,t∗ = (x1||x2||y1||y2)⊕H6((C

2
ID,t)

TestKeyID,t),

C5
ID∗,t∗ = H7((W

∗
2.1)

′
, C1

ID∗,t∗ , C
2
ID∗,t∗ , C

3
ID∗,t∗ ,

C4
ID∗,t∗).

The points (x1, y1) and (x2, y2) are generated in the
same way as that in Game 1.0.

4 m′ ← A′
1

OH1
,OH2

,OH3
,OH4

,OH5
,OH6

,OH7
,

OExtKey,OTestKey,ORevKey,
OEvoKey,ODec (state,

CID∗,t∗ ).

• If A′
1 queries (C2

ID∗,t∗)
RevKeyID∗,t∗ = gac to

OH5 , then denote this event by D1.1.
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• If A′
1 queries (C1

ID∗,t∗ , C
2
ID∗,t∗ , (C

3
ID∗,t∗)

′,

C4
ID∗,t∗ , C

5
ID∗,t∗) to ODec, where (C3

ID∗,t∗)
′ ̸=

(C3
ID∗,t∗), ⊥ is returned.

It is obvious that both of randomness and correctness
properties hold for the above simulation. Hence, we just
need to analyse the decryption queries as below:

1 In the case where A′
1 has already queried (C2

ID,t)
a to

H5 before a decryption query
(C1

ID,t, C
2
ID,t, C

3
ID,t, C

4
ID,t, C

5
ID,t), the value h5 can

be uniquely determined. Hence, the simulation of the
decryption oracle is perfect.

2 In the case where A′
1 has not yet queried (C2

ID,t)
a to

H5 before a decryption query
(C1

ID,t, C
2
ID,t, C

3
ID,t, C

4
ID,t, C

5
ID,t), ⊥ is returned.

The simulation fails if (C1
ID,t, C

2
ID,t, C

3
ID,t,

C4
ID,t, C

5
ID,t) is a valid ciphertext. However, it is

because the random oracle is ideal that the probability
that it occurs is no more than 1

2λ+l .

Denote the event D1.2 that a valid ciphertext is rejected
in the simulation. Then we have Pr[D1.2] ≤ qDec

2λ+l , which
is negligible. Thus, B1 performs decryption simulation
correctly except with negligible probability.

Probability of successful simulation: since there is no
abort in the simulated game, the probability of successful
simulation is 1.

Analysis: the probability that (C2
ID∗,t∗)

a is queried to
OH5 by A′

1 is Pr[D1.1]. Hence, B1 can break the CDH
assumption with probability Pr[D1.1]

qH5
. That is, Pr[D1.1] =

qH5Adv
CDH. Furthermore, if D1.2 does not occur, the

simulated game is indistinguishable from the Game 1.2.
Hence, Pr[D1.1|¬D1.2] = Pr[E1.1].

Pr[D1.1] = Pr[D1.1|D1.2]Pr[D1.2]

+ Pr[D1.1|¬D1.2]Pr[¬D1.2]

≥ Pr[D1.1|¬D1.2]Pr[¬D1.2]

= Pr[E1.1](1− Pr[D1.2])

≥ Pr[E1.1]− Pr[D1.2].

Hence, qH5Adv
CDH ≥ Pr[E1.1] − qDec

2λ+l . That is,

Pr[E1.1] ≤ qH5Adv
CDH +

qDec

2λ+l
,

which is negligible. This completes the proof of
Lemma 1. �

Finally, we analyse the challenge ciphertext CID∗,t∗ in
Game 1.2:

C1
ID∗,t∗ = gr1 , C2

ID∗,t∗ = gc,
C3

ID∗,t∗ = W ∗
2.2,

C4
ID∗,t∗ = (x1||x2||y1||y2)⊕H6(PKr2

test,ID∗,t∗),

C5
ID∗,t∗ = H7(W

∗
2.1, C

1
ID∗,t∗ , C

2
ID∗,t∗ , C

3
ID∗,t∗ , C

4
ID∗,t∗).

It is because the random oracle is ideal and the hash
function is one-way that A1 can figure out m by the
challenge ciphertext with negligible probability ϵ. Then,

Pr[S1.2] ≤ ϵ. (4)

Combining equations (1)–(4), we have that

AdvOW-sID-CCA
R-IBEET,A1

(λ) ≤ qH5Adv
CDH +

qDec

2λ+l
+ ϵ,

which is negligible. The proof of Theorem 1 is
complete. �

Theorem 2: The R-IBEET construction is OW-sID-CPA
secure against any PPT type-II adversaries provided that
CDH assumption holds.

Proof: Suppose A2 is a PPT type-II adversary who
manages to break the OW-sID-CPA security with advantage
AdvOW-sID-CPA

R-IBEET,A2
(λ). Assume it makes queries to Hd(d =

1, 2, 3, 4, 5, 6, 7) oracles for up to qHd
times, and it makes

at most qExtKey private key queries, qTestKey test key
queries, qRevKey revoke key queries, and qEvoKey evolve
key queries. We analyse the security via a series of games
as below.

Game 2.0

Init: A2 outputs an identity ID∗ and a time tag t∗ to be
challenged.

1 parm← {G, p, g,H1,H2, H3,H4,H5,H6,H7,
γ1, γ2, γ3, γ4, γ5, γ6}, (s, s′)← Z2

p, msk = (s, s′).

2 state← A

OH1 ,OH2 ,OH3 ,OH4 ,OH5 ,OH6 ,OH7 ,
OExtKey,OTestKey,ORevKey,

OEvoKey

2 (parm,
ID ∈ {ID1, . . . , IDn}, t), where the oracles work in
the following way.

• OH1 query ⟨µ1, µ2⟩, OH2 query ⟨µ1, µ2⟩, OH3

query ⟨µ1⟩, OH4 query ⟨µ1⟩, OH5 query ⟨µ1⟩,
OH6 query ⟨µ1⟩, OH7 query ⟨µ1, µ2, µ3, µ4, µ5⟩,
OExtKey query ⟨ID⟩, OTestKey query ⟨ID, t⟩,
ORevKey query ⟨ID, t⟩, OEvoKey query ⟨ID, t⟩:
Same as those in Game 1.0.

3 m← {0, 1}λ, r1, r2 ← Zp, CID∗,t∗ = (C1
ID∗,t∗ ,

C2
ID∗,t∗ , C

3
ID∗,t∗ , C

4
ID∗,t∗ , C

5
ID∗,t∗) defined as

follows:

C1
ID∗,t∗ = gr1 , C2

ID∗,t∗ = gr2 ,
C3

ID∗,t∗ = (m||r2)⊕H4(PKr1
ID∗)

⊕H5(PKr2
Rev,ID∗,t∗),

C4
ID∗,t∗ = (x1||x2||y1||y2)⊕H6(PKr2

test,ID∗,t∗),

C5
ID∗,t∗ = H7(H5(PKr2

Rev,ID∗,t∗), C
1
ID∗,t∗ , C

2
ID∗,t∗ ,

C3
ID∗,t∗ , C

4
ID∗,t∗).

The points (x1, y1) and (x2, y2) are generated in the
same way as that in Game 1.0.
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4 m′ ← A

OH1 ,OH2 ,OH3 ,OH4 ,OH5 ,OH6 ,OH7 ,
OExtKey,OTestKey,ORevKey,

OEvoKey

2 (state,
CID∗,t∗).

Denote by S2.0 the event that m = m′ in Game 2.0. Then

AdvOW-sID-CPA
R-IBEET,A2

(λ) = Pr[S2.0]. (5)

Game 2.1

Init: A2 outputs an identity ID∗ and a time tag t∗ to be
challenged.

1 parm← {G, p, g,H1,H2,H3,H4, H5,H6,H7,
γ1, γ2, γ3, γ4, γ5, γ6}, (s, s′)← Z2

p, msk = (s, s′).

2 state← A

OH1
,OH2

,OH3
,OH4

,OH5
,OH6

,OH7
,

OExtKey,OTestKey,ORevKey,
OEvoKey

2

(parm, ID ∈ {ID1, . . . , IDn}, t), where the oracles
work in the same way as those in Game 2.0.

3 m← {0, 1}λ, r1, r2 ← Zp, W ∗
1.1 ← {0, 1}λ+l,

CID∗,t∗ = (C1
ID∗,t∗ , C

2
ID∗,t∗ , C

3
ID∗,t∗ ,

C4
ID∗,t∗ , C

5
ID∗,t∗) defined as follows:

C1
ID∗,t∗ = gr1 , C2

ID∗,t∗ = gr2 ,
C3

ID∗,t∗ = (m||r2)⊕W ∗
1.1 ⊕H5(PKr2

Rev,ID∗,t∗),

C4
ID∗,t∗ = (x1||x2||y1||y2)⊕H6(PKr2

test,ID∗,t∗),

C5
ID∗,t∗ = H7(H5(PKr2

Rev,ID∗,t∗), C
1
ID∗,t∗ , C

2
ID∗,t∗ ,

C3
ID∗,t∗ , C

4
ID∗,t∗).

The points (x1, y1) and (x2, y2) are generated in the
same way as that in Game 1.0. Add the tuple
((C1

ID∗,t∗)
RevKeyID∗,t∗ ,W ∗

1.1) into table T4 for OH4 .

4 m′ ← A

OH1 ,OH2 ,OH3 ,OH4 ,OH5 ,OH6 ,OH7 ,
OExtKey,OTestKey,ORevKey,

OEvoKey

2 (state,
CID∗,t∗).

Let S2.1 be the event that m = m′ in Game 2.1. It
is because the random oracle is ideal that there is no
difference between Game 2.1 and Game 2.0. Then

Pr[S2.0] = Pr[S2.1]. (6)

Game 2.2

Init: A2 outputs an identity ID∗ and a time tag t∗ to be
challenged.

1 parm← {G, p, g,H1,H2,H3,H4, H5,H6,H7,
γ1, γ2, γ3, γ4, γ5, γ6}, (s, s′)← Z2

p, msk = (s, s′).

2 state← A

OH1
,OH2

,OH3
,OH4

,OH5
,OH6

,OH7
,

OExtKey,OTestKey,ORevKey,
OEvoKey

2

( parm , ID ∈ {ID1, . . . , IDn}, t), where the oracles
work in the same way as those in Game 2.1.

3 m← {0, 1}λ, r1, r2 ← Zp, W ∗
2.1 ← {0, 1}λ+l,

CID∗,t∗ = (C1
ID∗,t∗ , C

2
ID∗,t∗ , C

3
ID∗,t∗ ,

C4
ID∗,t∗ , C

5
ID∗,t∗) defined as follows:

C1
ID∗,t∗ = gr1 , C2

ID∗,t∗ = gr2 ,
C3

ID∗,t∗ = (m||r2)⊕W ∗
2.1,

C4
ID∗,t∗ = (x1||x2||y1||y2)⊕H6(PKr2

test,ID∗,t∗),

C5
ID∗,t∗ = H7(H5(PKr2

Rev,ID∗,t∗), C
1
ID∗,t∗ , C

2
ID∗,t∗ ,

C3
ID∗,t∗ , C

4
ID∗,t∗).

The points (x1, y1) and (x2, y2) are generated in the
same way as that in Game 1.0. Add the tuple
((C2

ID∗,t∗)
RevKeyID∗,t∗ ,W ∗

2.1 ⊕
H5((C

2
ID∗,t∗)

RevKeyID∗,t∗ )) into table T4 for OH4 .

4 m′ ← A

OH1
,OH2

,OH3
,OH4

,OH5
,OH6

,OH7
,

OExtKey,OTestKey,ORevKey,
OEvoKey

2 (state,
CID∗,t∗ ).

• If A2 queries (C1
ID∗,t∗)

SKID∗ to OH4 , then
denote this event E2.1.

Let S2.2 be the event that that m = m′ in Game 2.2. It
is because the random oracle is ideal that the challenge
ciphertexts in Game 2.1 and Game 2.2 are same in
distribution. Hence, there will be no difference between
Game 2.2 and Game 2.1 if E2.1 does not happen. Then

|Pr[S2.1]− Pr[S2.0]| ≤ Pr[E2.1]. (7)

In the following lemma, we will prove that the probability
that E2.1 happens is negligible.

Lemma 2: The probability that the event E2.1 happens
in Game 2.2 is negligible provided that CDH assumption
holds.

Proof: Assume that the probability that E2.1 happens is
non-negligible. We can build a PPT algorithm B2 who
invokes A′

2 with the aim to solve the CDH problem. Given
an instance of the CDH problem: (G, p, g, ga, gc), B2 works
in the following way.

1 B2 sets
parm← {G, p, g,H1, H2,H3,H4,H5,H6,H7,
γ1, γ2, γ3, γ4, γ5, γ6}. It selects (s, s′)← Z2

p, and sets
msk = (s, s′), PKID∗ = ga, which implies
SKID∗ = a and
EvoKeyID∗,t∗ = (H1(s

′||ID∗||t∗), H2(a||t∗)).

2 state← A′
2

OH1
,OH2

,OH3
,OH4

,OH5
,OH6

,OH7
,

OExtKey,OTestKey,ORevKey,
OEvoKey

(parm, ID ∈ {ID1, . . . , IDn}, t), where the oracles
work in the same way as those in Game 2.2.

3 m← {0, 1}λ, r2 ← Zp, (W ∗
2.1)

′ ← {0, 1}λ+l,
CID∗,t∗ = (C1

ID∗,t∗ , C
2
ID∗,t∗ , C

3
ID∗,t∗ ,

C4
ID∗,t∗ , C

5
ID∗,t∗) defined as follows:

C1
ID∗,t∗ = gc, C2

ID∗,t∗ = gr2 ,
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C3
ID∗,t∗ = (m||r2)⊕ (W ∗

2.1)
′,

C4
ID∗,t∗ = (x1||x2||y1||y2)⊕H6(PKr2

test,ID∗,t∗),

C5
ID∗,t∗ = H7(H5(PKr2

Rev,ID∗,t∗), C
1
ID∗,t∗ , C

2
ID∗,t∗ ,

C3
ID∗,t∗ , C

4
ID∗,t∗).

The points (x1, y1) and (x2, y2) are generated in the
same way as that in Game 1.0.

4 m′ ← A′
2

OH1
,OH2

,OH3
,OH4

,OH5
,OH6

,OH7
,

OExtKey,OTestKey,ORevKey,
OEvoKey (state,

CID∗,t∗).

• If A′
2 queries (C1

ID∗,t∗)
SKID∗ = gac to OH4 ,

then denote this event by D2.1.

Probability of successful simulation: since there is no
abort in the simulated game, the probability of successful
simulation is 1.

Analysis: the probability that (C1
ID∗,t∗)

a is queried
to OH4

by A′
2 is Pr[D2.1]. Hence, B2 can break

the CDH assumption with probability Pr[D2.1]
qH4

. That is,
Pr[D2.1] = qH4

AdvCDH. Furthermore, the simulated game
is indistinguishable from the Game 2.2. Hence, Pr[D2.1] =
Pr[E2.1].

Hence, qH4Adv
CDH = Pr[E2.1], which is negligible. This

completes the proof of Lemma 2. �

Finally, we analyse the challenge ciphertext CID∗,t∗ in
Game 2.2:

C1
ID∗,t∗ = gr1 , C2

ID∗,t∗ = gr2 ,
C3

ID∗,t∗ = (m||r2)⊕W ∗
2.1,

C4
ID∗,t∗ = (x1||x2||y1||y2)⊕H6(PKr2

test,ID∗,t∗),

C5
ID∗,t∗ = H7(H5(PKr2

Rev,ID∗,t∗), C
1
ID∗,t∗ , C

2
ID∗,t∗ ,

C3
ID∗,t∗ , C

4
ID∗,t∗).

It is because the random oracle is ideal and the hash
function is one-way that A2 can figure out m by the
challenge ciphertext with negligible probability ϵ. that is,

Pr[S2.2] ≤ ϵ. (8)

Combining equation (5)− (8), we have that

AdvOW-sID-CPA
R-IBEET,A2

(λ) ≤ qH4Adv
CDH + ϵ,

which is negligible. The proof of Theorem 2 is
complete. �

Theorem 3: The R-IBEET construction is IND-sID-CCA
secure against any PPT type-III adversaries provided that
CDH assumption holds.

The proof is similar with that of Theorem 1, so we omit it
here.

6 Performance analysis

In this section, we analyse the performance of our proposal
by comparing it with other related schemes (Yang et al.,
2010; Ma et al., 2015; Ma, 2016; Lin et al., 2021b). Among
these schemes, Yang et al. (2010) is the first PKEET
scheme, Ma et al. (2015) is a PKEET scheme with flexible
authorisation, Ma (2016) is the first IBEET scheme and
Lin et al. (2021b) is an IBEET scheme with date-stamp
authorisation.

In Table 2, the second to fourth rows show the size
of public key, ciphertext and trapdoor, respectively. It
indicates that in contrast with the other six schemes, the size
of our public key and trapdoor is relatively small. The fifth
to eighth rows show the computational cost in encryption,
decryption, authorisation, test and revocation algorithms,
respectively. The result shows that the computational cost
of our test algorithm is significantly lower than that of
the other four schemes. Despite that, our encryption and
decryption algorithms have slightly larger computational
cost than those in Yang et al. (2010). The ninth to tenth
rows list the security and the assumptions. The last row lists
whether or not the schemes have revocation mechanism. As
we can see in Table 2, our scheme is the only one that
achieves both user and tester revocation. Furthermore, our
scheme enjoys especially high test efficiency.

Figure 2 Running time of Enc (see online version for colours)

Figure 3 Running time of Dec (see online version for colours)
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Table 2 Performance analysis

Yang et al. (2010) Ma et al. (2015) Ma (2016) Lin et al. (2021b) Ours

|PK| |G| 3|G| 2|G| |G| |G|
|C| 3|G|+ |Zp| 5|G|+ |Zp| 4|G|+ |Zp| 3|G|+ λ 3|G|+ 5|Zp|+ λ

|Td| − |Zp| |G| 5|G| |Zp|

Enc 3Exp 6Exp 6Exp 9Exp + 2P 6Exp
Dec 3Exp 5Exp 2Exp + 2P 3P 5Exp
Aut − 0 Exp 7Exp 0
Test 2P 2Exp + 2P 4P 2Exp + 2P 2Exp

Security OW-CCA OW-CCA OW-CCA OW-CCA OW-sID-CCA
IND-CCA IND-CCA OW-sID-CPA

IND-sID-CCA
Assumption CDH CDH BDH BDHE CDH
Revocation × × × × X
Notes: Dec – decryption algorithm; Aut – authorisation algorithm; Test – test algorithm; |G|, |Zp| – bit length of an element

in G, Zp, respectively; λ – length of security parameter; |PK|, |C|, |Td| – length of public key, ciphertext and trapdoor,
respectively; Exp – modular exponentiation; P – bilinear pairing; BDH – bilinear Diffie-Hellman assumption;
CDH – computational Diffie-Hellman assumption; BDHE – bilinear Diffie-Hellman exponent assumption.

Figure 4 Running time of Test (see online version for colours)

To visually show the computational comparison, we
implemented the above five schemes using C++ language
on a laptop with Intel i5-10600KF 4.10 GHz processor,
16 GB memory and Windows 10 OS. The experiment is
based on Multiprecision Integer and Rational Arithmetic
C/C++ Library (MiracL) and the results are shown in
Figures 2 to 4. The x-axis of Figures 2 to 4 is the
execution time, and the y-axis is the total running time.
Figure 2 shows that the encryption algorithm of our
scheme and other schemes (Ma et al., 2015; Ma, 2016)
require comparable running time. Figure 3 shows that the
decryption algorithm of our scheme is relatively efficient.
Figure 4 shows that our scheme has the most efficient test
algorithm among the five schemes, it has reduced the time
cost by nearly 82.5%, 73.3% and 63.6% compared with
other schemes (Ma, 2016; Lin et al., 2021b; Yang et al.,
2010), respectively.

Overall, our scheme is the only one among all the
IBEET schemes that can achieve both user and tester
revocation. Besides, it achieves efficient test algorithm
without sacrificing much efficiency in terms of encryption
and decryption.

7 Conclusions

In this paper, we first presented a primitive called revocable
identity-based encryption with equality test (R-IBEET),
which can achieve both user and tester revocation such that
the user is able to get control of the authorisation for the
tester, and the PKG is able to revoke the user whenever the
user’s private key is compromised or identity gets expired.
We also proposed a concrete R-IBEET scheme. Based
on CDH assumption, we proved its security in random
oracle model. Furthermore, our R-IBEET scheme does not
need the time-consuming bilinear pairing operations and
enjoys especially high test efficiency compared with the
related work. However, our scheme only supports user
level authorisation, that is, the tester is able to test all of
the user’s ciphertexts when it is authorised, while in real
application scenarios, users may only want the tester to test
a certain ciphertext or partial ciphertexts. Obviously, the
authorisation method in our scheme is not flexible enough,
and we leave devising an R-IBBET scheme with flexible
authorisation as our future work.
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