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Abstract: Internet of things (IoT) networks dominate industries, homes, 
organisations, and other aspects of life owing to their automation capabilities. 
However, IoT networks are vulnerable to attacks, especially distributed 
denial-of-service (DDoS) attacks, as they tend to have low computational 
capabilities and are highly diverse. While current research shows the potential 
of utilising deep learning methods to detect DDoS attacks, there is a lack of a 
framework that can be used to deploy an effective deep learning algorithm to 
detect DDoS attacks in heterogeneous IoT environments. Accordingly, this 
paper developed a DDoS detection framework based on the CNN-BiLSTM 
model, which can be deployed in a distributed network and includes adequate 
pre-processing. Simulations were also done to demonstrate the application of 
the framework and its effectiveness. 
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1 Introduction 

The rapid growth of internet of things (IoT) networks has ushered in a new era of 
connectivity hence transforming lives and industries. It has brought about unprecedented 
levels of efficiency, automation, and convenience by enabling data exchange and 
seamless communication among everyday devices (Aboubakar et al., 2022). From 
healthcare systems to smart homes and cities, IoT has revolutionised the way human 
beings interact with technology. At its core, the IoT trend encompasses incorporating 
computing and communication capabilities into everyday devices. Accordingly, the 
typical IoT network comprises sensors and actuators, computing, and connectivity 
(Thoutam, 2021). Other components might include security and cloud-based analytics, 
platforms, and visualisation. Because of the immense benefits of IoT networks, the 
market for such systems has grown exponentially in recent years. According to Fortune 
Business Insights (2023), the global IoT market size was valued at $544 billion in 2022 
and it is projected to grow to $3.35 trillion by 2030, which is a compound annual growth 
rate (CAGR) of 26.1%. However, alongside the widespread adoption of IoT, there are 
inherent vulnerabilities that pose significant challenges. These vulnerabilities have made 
IoT environments attractive targets for malicious actors, leading to a surge in security 
threats, especially distributed denial of service (DDoS) attacks. 

A DDoS attack happens when a network or system is flooded with a devastating 
quantity of traffic or requests, rendering it unable to respond to authentic users. In the 
context of IoT, DDoS attacks can be especially overwhelming. Since IoT networks 
comprise many interconnected devices, each with its computing abilities, these attacks 
can exploit the collective power of compromised IoT devices to launch large-scale 
assaults. DDoS attacks targeting IoT networks can compromise the availability, integrity, 
and confidentiality of the data being transmitted (Bhattacharjya, 2022). Whether it is 
sensitive personal information, industrial secrets, or real-time operational data, 
unauthorised access to IoT data can have major repercussions, including espionage, 
identity theft, and financial fraud. Moreover, the reliability, trustworthiness, and 
utilisation of IoT systems themselves can be weakened by DDoS attacks. Indeed, the 
potential benefits of IoT adoption may be overshadowed by concerns about privacy, 
safety, and the overall resilience of the infrastructure. 

The detection of DDoS attacks in IoT environments presents a significant challenge, 
primarily due to the unique characteristics of these networks. Traditional machine 
learning methods, which were primarily designed for conventional networks, exhibit 
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deficiencies when applied to IoT environments for DDoS attack detection (Aktar and 
Nur, 2023). The limitations of traditional machine learning methods in IoT environments 
arise from the distinct features of IoT networks: heterogeneity and resource limitations. 
These networks encompass a wide range of heterogeneous devices with different 
computational capabilities, memory constraints, and communication protocols. 
Consequently, it becomes difficult to devise uniform detection mechanisms that cater to 
the diverse nature of IoT devices and ensure accurate and efficient DDoS attack 
identification across the entire network. However, the detection of DDoS attacks can 
benefit from machine learning, especially deep learning, when implemented using a 
suitable framework (Ali et al., 2023). Deep learning is a subset of machine learning that 
focuses on artificial neural networks (ANNs) with multiple layers. 

This paper aims to make a significant contribution to the field by providing a reliable 
and efficient framework that can be used to create solutions for detecting DDoS attacks in 
IoT environments. By leveraging the power of deep learning techniques and considering 
the unique characteristics of IoT networks, the research enabled the development of a 
robust framework capable of accurately identifying DDoS attacks in real-time. The 
outcomes of this research have the potential to greatly enhance the security posture of IoT 
networks, empowering organisations to detect and respond to DDoS attacks swiftly. By 
implementing the distributed detection framework, organisations can gain better visibility 
into the security of their IoT deployments, mitigate the risks posed by DDoS attacks, and 
ensure the continuous and reliable operation of their IoT-enabled systems and services. In 
addition to protecting the security and privacy of their systems, the framework can 
enhance the adoption of IoT-enabled services. Ultimately, the research aims to contribute 
to the advancement of IoT security practices and support the sustainable growth and 
adoption of IoT technologies across different industries and sectors. The objectives of the 
study are listed below. 

1 To design and implement a distributed DDoS detection framework based on deep 
learning. 

2 To evaluate the performance of the framework using appropriate metrics and a real-
world dataset. 

2 Literature review 

IoT networks, which are an integral part of the IoT ecosystem, consist of interconnected 
devices that support communication and data exchange. These networks connect physical 
devices, sensors, actuators, and other objects to the internet, allowing them to sense and 
exchange data, perform automated actions, and enable remote control and monitoring 
(HaddadPajouh et al., 2021). Understanding the architecture, components, and 
communication protocols of IoT networks is crucial for comprehending the unique 
challenges they present. IoT networks typically follow a decentralised architecture, often 
referred to as the edge computing paradigm. The edge element denotes that data 
processing, storage, and communication take place closer to the IoT devices themselves. 
This decentralised approach minimises latency, reduces bandwidth usage, and allows for 
localised decision-making and data analytics (Mtowe and Kim, 2023). According to Sethi 
and Sarangi (2017), the architecture often comprises three layers: the perception layer 
(devices and sensors), the network layer (connectivity and communication), and the 
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application layer (data processing and analysis). Figure 1 illustrates the common 
architecture of IoT networks. 

IoT devices possess specific characteristics that differentiate them from traditional 
computing devices. According to Noaman et al. (2022), these features include limited 
computational capability and heterogeneity. As such, IoT networks are vulnerable to a 
myriad of attacks. To start with, IoT systems exhibit weak authentication mechanisms 
(Williams et al., 2022). Many IoT devices employ weak or default credentials, making 
them vulnerable to brute-force attacks and unauthorised access. Additionally, the lack of 
end-to-end encryption in IoT networks exposes data to interception and unauthorised 
access (Williams et al., 2022). Furthermore, IoT devices often lack robust update 
mechanisms, making them susceptible to attacks targeting vulnerabilities in their 
firmware. Finally, IoT devices are susceptible to physical tampering, which poses a 
significant risk to IoT devices deployed in uncontrolled or publicly accessible 
environments. Attackers can manipulate devices, extract sensitive data, inject malicious 
code, or gain unauthorised physical access, compromising the security and integrity of 
the entire network. 

Figure 1 Architecture of IoT networks (see online version for colours) 

  

The consequences associated with exploiting the vulnerabilities can be dire. For example, 
weak security measures can result in unauthorised access to personal information, 
compromising user privacy. This can lead to identity theft, unauthorised surveillance, and 
misuse of personal data. In addition, compromised IoT devices can serve as platforms for 
launching malware attacks, such as botnets, which can propagate across networks and 
disrupt critical infrastructure or conduct large-scale cyberattacks. Attackers can also 
exploit vulnerabilities in IoT devices to launch DoS attacks, overwhelming networks with 
an influx of traffic and rendering them unavailable or unreliable. This can cause severe 
disruptions in critical systems or services. The deployment of IoT networks often entails 
making a trade-off between security and usability. Based on Di Nocera and Tempestini 
(2022), implementing strong security measures often introduces complexity, 
inconvenience, and additional costs. Balancing security requirements with user 
experience and ease of use is crucial to ensure wider adoption and acceptance of IoT 
technologies. 

There are several types of DDoS attacks affecting IoT networks. SYN floods take 
advantage of the three-way handshake mechanism in TCP/IP to overwhelm IoT devices 
with a flood of connection requests (Lygerou et al., 2022). By exhausting the device’s 
resources, SYN floods render it unable to accept legitimate connections. Furthermore, 
TCP ACK floods flood IoT devices with a high volume of TCP ACK packets, consuming 
their processing power and network bandwidth. This attack exhausts device resources, 
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leading to service unavailability. Additionally, TCP exhaustion attacks exploit IoT device 
limitations by establishing and maintaining many legitimate TCP connections 
simultaneously, ultimately exhausting the device’s available connection slots. 

The application layer of the IoT framework is vulnerable to diverse attacks. 
Applications often have vulnerabilities that can be exploited in an attack. For instance, 
HTTP/HTTPS floods target IoT devices by overwhelming them with a massive number 
of HTTP/HTTPS requests. These floods aim to exhaust the device’s processing power, 
memory, or network resources (Lygerou et al., 2022). Similarly, DNS amplification 
attacks entail amplifying the volume of traffic directed towards IoT devices. By 
exploiting the DNS protocol’s recursive query functionality, attackers achieve greater 
attack bandwidth, overwhelming the targeted devices. Some DDoS attacks focus on 
exploiting vulnerabilities in IoT-specific protocols, such as MQTT, CoAP, or SNMP 
(Lygerou et al., 2022). By targeting weaknesses in these protocols, attackers can disrupt 
IoT device functionality and compromise the entire IoT ecosystem. 

The primary objective of DDoS attacks in IoT environments is to disrupt the 
availability of IoT services, rendering them inaccessible to legitimate users. This can 
cause financial losses, reputational damage, and potential safety risks in critical IoT 
deployments (Mishra and Pandya, 2021). DDoS attacks can also aim to exhaust the 
network, computational, or memory resources of IoT devices, rendering them incapable 
of performing their intended functions. This resource depletion affects the overall 
performance and reliability of IoT systems (Mishra and Pandya, 2021). Moreover, DDoS 
attacks can act as a smokescreen, diverting attention from other malicious activities, such 
as data breaches, unauthorised access, or malware propagation. Attackers often leverage 
DDoS attacks to mask their true objectives and exploit security vulnerabilities within the 
IoT environment. 

Detecting DDoS attacks in IoT environments is a crucial task to ensure the security 
and availability of IoT systems. Numerous methods and techniques have been proposed 
in the literature to detect DDoS attacks effectively. Firstly, flow-based detection methods 
focus on analysing network flows, which are a sequence of packets sharing common 
characteristics (e.g., source and destination IP addresses, ports, protocols) (Adedeji et al., 
2023). These methods involve collecting flow data from IoT devices and applying 
various analysis techniques, such as entropy-based analysis, statistical analysis, or pattern 
recognition, to identify anomalies or patterns indicative of DDoS attacks (Singh and 
Bhandari, 2020). Flow-based approaches are advantageous in IoT environments as they 
provide a lightweight solution suitable for resource-constrained IoT devices. 

Collaborative filtering techniques leverage the collective knowledge and behaviour of 
multiple IoT devices or network entities to detect DDoS attacks. These approaches 
involve sharing information and aggregating feedback from various IoT devices in  
real-time to identify abnormal patterns or deviations from the expected behaviour 
(Gaurav and Singh, 2017). Collaborative filtering can help detect sophisticated DDoS 
attacks that may exhibit low-level attack traffic, making them difficult to detect using 
traditional methods. 

Statistical approaches, which entail analysing statistical properties of network traffic 
to identify DDoS attacks, can also be utilised. These methods often use metrics such as 
traffic volume, packet rate, inter-packet arrival time, and packet size distribution 
(Banitalebi et al., 2021). Deviations from the expected statistical patterns can indicate the 
presence of an ongoing DDoS attack. Statistical-based approaches can be efficient for 
detecting both volumetric and application-layer DDoS attacks in IoT environments. Some 
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authors have adopted hybrid approaches that combine multiple detection techniques to 
improve the accuracy and robustness of DDoS attack detection. Such approaches 
leverage the strengths of different methods to overcome their individual limitations and 
enhance the overall detection capability. 

Machine learning-based approaches have gained significant attention in DDoS attack 
detection due to their ability to learn and recognise complex patterns in network traffic 
data. Machine learning enables the transition from signature-based DDoS detection 
methods, which are unable to detect novel attacks. According to Adedeji et al. (2023), 
signature-based detection entails comparing known attack signatures with current traffic 
patterns to detect attacks. This implies that only attacks that have been identified 
previously can be detected. While signature-based approaches are highly accurate when it 
comes to detecting known attacks, they cannot detect the same attacks when the 
signatures are altered. Machine learning alleviates this issue by providing a mechanism 
for detecting novel attacks. Although traditional learning methods have shown immense 
success in anomaly detection, they continue to undeform as compared to deep learning 
(Bahashwan et al., 2023). Examples of these traditional methods include SVMs, K-means 
clustering, and decision trees. 

Deep learning leverages deep neural networks to automatically extract relevant 
features and classify network traffic. Deep learning is inspired by the structure and 
function of the human brain’s neural networks (Ali et al., 2023). It is characterised by the 
utilisation of deep neural networks, which consist of multiple layers of interconnected 
artificial neurons. These networks are capable of learning hierarchical representations of 
data, enabling them to automatically extract meaningful features from raw input. The 
most used deep learning architectures include convolutional neural networks (CNNs) for 
image processing, recurrent neural networks (RNNs) for sequential data analysis, and 
generative adversarial networks (GANs) for generating synthetic data. 

The development of efficient training algorithms has been a significant advancement 
in deep learning. Backpropagation, coupled with stochastic gradient descent, is the 
cornerstone algorithm for training deep neural networks (Tian et al., 2023). However, 
variations such as batch normalisation, dropout, and adaptive learning rate optimisation 
techniques have enhanced training efficiency, convergence speed, and generalisation 
performance. Researchers have introduced innovative deep-learning architectures to 
address specific challenges. For example, CNNs have demonstrated remarkable success 
in image classification, object detection, and semantic segmentation tasks (Sanzana et al., 
2022). RNNs, with variations like long short-term memory (LSTM) and gated recurrent 
units (GRUs), excel in modelling sequential data, enabling tasks like language translation 
and sentiment analysis (Sanzana et al., 2022). Attention mechanisms have improved the 
performance of deep learning models by selectively focusing on relevant information. 
Transfer learning has gained prominence in deep learning, allowing models to leverage 
knowledge learned from one task or domain to improve performance on related tasks 
with limited data. Pre-training on large-scale datasets, such as ImageNet, followed by 
fine-tuning on target tasks, has become a common practice to achieve state-of-the-art 
results in various applications. 

Convolutional neural network-bidirectional long short-term memory (CNN-BiLSTM) 
can be an effective algorithm for detecting DDoS attacks. Essentially, CNN-BiLSTM is a 
deep learning architecture that combines the power of CNNs and bidirectional long short-
term memory (BiLSTM) networks (Lu et al., 2023). It is commonly used for tasks 
involving sequential data, which makes it ideal for DDoS traffic classification. CNNs 
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excel at capturing spatial hierarchies and local patterns, making them ideal for image-
processing tasks (Lu et al., 2023). However, they have limited ability to model long-
range dependencies in sequential data. The bidirectional nature of the BiLSTM allows it 
to effectively model dependencies in both directions, making it well-suited for tasks 
where context from both past and future is crucial, such as natural language processing. 

The CNN-BiLSTM architecture, therefore, combines the strengths of CNNs in 
capturing local features and spatial hierarchies with the ability of BiLSTMs to model 
long-range dependencies in sequential data. This architecture is commonly used for text 
classification tasks, where the CNN component processes the input text at a local level, 
extracting relevant features, while the BiLSTM component captures the contextual 
information across the entire sequence (Halder and Chatterjee, 2020). The creation of the 
typical CNN-BiLSTM model starts with the input layer, which represents the input data, 
such as word embeddings or one-hot encoded vectors (Lu et al., 2023). Next 
convolutional filters are applied to capture local features and patterns in the input. 
Thereafter pooling layers are used to down-sample the feature maps to reduce 
dimensionality. There are also the BiLSTM layers that capture long-range dependencies 
by processing the feature maps in both forward and backward directions (Halder and 
Chatterjee, 2020). Subsequently, fully connected layers are implemented to perform 
classification or regression based on the learned representations. Finally, the output layer 
generates the final output, such as predicted labels or probabilities. By combining CNN 
and BiLSTM layers, the model can effectively learn hierarchical representations and 
contextual information from sequential data, making it a powerful architecture for various 
classification tasks. 

Various studies have examined the performance of different deep learning models in 
the classification of DDoS traffic. For example, Aswad et al. (2023) examined the 
effectiveness of RNN, CNN, LSTM, and CNN-BiLSTM in detecting and distinguishing 
DDoS traffic from legitimate traffic. The study established that the ensemble model 
comprising CNN and BiLSTM was the most effective. Likewise, Roopak et al. (2019) 
compared the effectiveness of four deep learning models: MLP, CNN, LSTM, and 
CNN+LSTM. Based on the findings, the final model (CNN+LSTM) had the best 
accuracy. Diro and Chilamkurti (2018) proposed a distributed architecture for IoT 
networks in which fog nodes were utilised to train models and host attack detection 
systems. At the same time, master nodes were designed to conduct collaborative 
parameter sharing and optimisation. The architecture made use of a deep learning model, 
which was tested using the NSL-KDD dataset (Diro and Chilamkurti, 2018). The findings 
demonstrated that a distributed model was more effective as compared to a centralised 
one. 

While the utilisation of machine learning methods to detect DDoS attacks in IoT 
environments has been widely examined, there lacks a framework that can be deployed to 
detect DDoS attacks in a distributed architecture while performing the required  
pre-processing tasks. Lawal et al. (2021), for example, studied the detection of DDoS 
attacks in IoT networks using the k-NN classification algorithm. Similarly, Kumar et al. 
(2021) made use of random forest (RF) and XGBoost to detect DDoS. Accordingly, there 
is a need for a framework that leverages an effective deep learning algorithm and that can 
be deployed in a distributed network architecture to detect DDoS attacks. The framework 
must be able to work well in different environments (wired, wireless, and a combination 
of both wired and wireless connectivity). Furthermore, it should help in detecting 
different types of DDoS attacks, including zero-day attacks, with optimal accuracy. 
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The detection of DDoS attacks is largely centralised despite the ongoing adoption of 
fog computing. According to Alghazzawi et al. (2021), deep learning detection methods 
can be deployed strategically across a distributed network of computing nodes, situated at 
fog or edge layers. The distributed approach could enhance the responsiveness and 
efficiency of DDoS detection by minimising the latency associated with transmitting 
large volumes of data to a centralised location for analysis. As such, the detection 
framework presented in this paper aligns with the conventional three-layered IoT 
architecture. To start with, the cloud layer is designed to possess the global model for 
detecting DDoS attacks. This model is constituted by the current gradient weights 
obtained from fog nodes. The fog nodes, which represent the second layer of the 
architecture, are designed to train the deep learning model in a distributed format using 
pre-processed data obtained from the edge layer. A coordinating master is implemented 
in the fog layer to manage parameter optimisation, validation, and exchange. To evaluate 
the framework, the confusion matrix was used to display the predicted and actual labels 
of a dataset 

3 Methodology 

3.1 Dataset 

The dataset that was utilised to evaluate the proposed framework is called  
DoS/DDoS-MQTT-IoT (Alatram et al., 2023). A key strength of this dataset is that it 
includes data obtained using the message queuing telemetry protocol (MQTT), which has 
become a popular protocol for machine-to-machine IoT communications. Since this is the 
only current real-world dataset available that includes MQTT data, it can be utilised to 
evaluate the effectiveness of the countermeasures implemented to deal with modern 
attacks targeting IoT systems (Alatram et al., 2023). The creation of the dataset entailed 
constructing a physical IoT testbed and generating a large volume of IoT data, which 
encompassed the standard MQTT traffic and ten denial-of-service scenarios. MQTT is a 
messaging protocol designed for efficient device communication, particularly in 
resource-limited or unreliable networks that characterise contemporary IoT systems 
(Sanjuan et al., 2020). It follows the publish-subscribe model in which devices can 
publish messages on specific topics, and others can subscribe to those topics to receive 
messages. 

The DoS/DDoS-MQTT-IoT dataset has various attributes that made it ideal for the 
study: the utilisation of a realistic testbed, collection of realistic traffic data, labelled 
dataset, and the inclusion of IoT data, MQTT attack data, and MQTT DoS/DDoS attack 
data (Alatram et al., 2023). Therefore, the setup and arrangement of the simulation 
environment closely resemble real-world conditions, facilitating accurate testing and 
experimentation. Additionally, the data was authentic and representative hence 
mimicking patterns and behaviours of actual network traffic. The DoS/DDoS-MQTT-IoT 
dataset is also accompanied by descriptive tags or identifiers, allowing for clear 
categorisation and analysis. The data was generated by IoT devices, with this data 
comprising instances of security attacks specifically targeting the message queuing 
telemetry transport (MQTT) protocol (Alatram et al., 2023). Finally, the dataset 
comprised information about DDoS attacks specifically directed at MQTT protocol 
implementations. 
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The development of the DoS/DDoS-MQTT-IoT dataset entailed collecting normal 
data as well as various variations of DoS attacks against the MQTT protocol. According 
to Alatram et al. (2023), the abnormal data relating to the various attacks were simulated: 
CONNECT flooding attack (BF_DoS and BF_DDoS), Delayed CONNECT flooding 
attack (Delay_DoS and Delay_DDoS), invalid subscription flooding attack (Sub_DoS 
and Sub_DDoS), CONNECT flooding with WILL payload attack (WILL_DoS and 
WILL_DDoS), and TCP SYN flooding attack (SYN_DoS and SYN_DDoS). The normal 
MQTT traffic was captured by utilising the normal states of the protocol. Table 1 
summarises the MQTT-IoT datasets, which include both malicious and benign data. 
Table 1 MQTT-IoT datasets 

Dataset name File size Quantity of files #Records per file 
Normal MQTT 50 MB 20 ≈ 490000 

200 MB 30 ≈ 1900000 
BF_DoS 50 MB 20 ≈ 510000 

200 MB 10 ≈ 2000000 
BF_DDoS 50 MB 20 ≈ 510000 

200 MB 10 ≈ 2000000 
Delay_DoS 50 MB 20 ≈ 500000 

200 MB 10 ≈ 660000 
Delay_DDoS 50 MB 20 ≈ 510000 

200 MB 10 ≈ 2000000 
Sub_DoS 50 MB 20 ≈ 130000 

200 MB 10 ≈ 800000 
Sub_DDoS 50 MB 20 ≈ 200000 

200 MB 10 ≈ 750000 
WILL_DoS 50 MB 20 ≈ 190000 

200 MB 10 ≈ 650000 
WILL_DDoS 50 MB 20 ≈ 250000 

200 MB 10 ≈ 1000000 
SYN_DoS 50 MB 33 ≈ 500000 

200 MB 10 ≈ 1500000 
SYN_DDoS 50 MB 20 ≈ 500000 

200 MB 10 ≈ 1500000 

The datasets comprised 30 features as shown in Table 2. 
Table 2 Feature description and the associated data type 

No Description Feature Data type (number 
or string) 

1 Epoch time frame.time_epoch N 
2 Frame length frame.len N 
3 Time delta from previous 

displayed frame 
frame.time_delta_displayed N 
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Table 2 Feature description and the associated data type (continued) 

No Description Feature Data type (number 
or string) 

4 Time since reference or first frame frame.time_relative N 
5 Source IP address ip.src S 
6 Protocol ip.proto S 
7 Stream index tcp.stream N 
8 iRTT tcp.analysis.initial.rtt N 
9 Time since first frame in this TCP 

stream 
tcp.time_relative N 

10 TCP segment len tcp.len N 
11 Calculated window size tcp.window_size N 
12 Syn tcp.flags.syn S 
13 Reset tcp.flags.reset S 
14 Acknowledgment tcp.flags.ack S 
15 Message type mqtt.msgtype S 
16 QoS level mqtt.qos S 
17 QoS level flag mqtt.conflag.qos S 
18 MQTT subscriber QoS mqtt.sub.qos N 
19 Clean session flag mqtt.conflag.cleansess S 
20 Keep alive mqtt.kalive N 
21 User name length mqtt.username_len N 
22 Password length mqtt.passwd_len N 
23 Retain mqtt.retain N 
24 Will retain mqtt.conflag.retain S 
25 Will flag mqtt.conflag.willflag S 
26 Will message length mqtt.willmsg_len N 
27 Will topic length mqtt.willtopic_len N 
28 Topic length mqtt.topic_len N 
29 Msg. len mqtt.len N 
30 Return code mqtt.conack.val N 

3.2 Deep learning algorithm 

CNN-BiLSTM was selected for this study as it is ideal for supervised learning and 
exhibits excellent performance with highly correlated features. It is a type of neural 
network architecture used for various sequence-based tasks, including DDoS attack 
classification. For example, in a study by Aswad et al. (2023), CNN-BiLSTM realised an 
accuracy of 99.76% and a precision of 98.9% when utilised to detect DDoS attacks. 
Indeed, ensemble models combine the benefits of each model while suppressing  
the individual weaknesses hence producing optimal outcomes. Essentially, the  
CNN-BiLSTM algorithm combines the strengths of two different architectures: BiLSTM 
and CNN. 
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Although CNNs are primarily used for image processing, they can also be applied to 
sequential data like text. In the context of the CNN-BiLSTM model, CNNs are used to 
extract local features or patterns from the input sequence. A basic one-dimensional 
convolutional neural network (1D CNN) architecture for text data encompasses applying 
multiple convolutional filters with different kernel sizes over the input sequence 
(Alghazzawi et al., 2021). Each filter slides over the sequence and performs a 
convolution operation, capturing different n-gram features. This is often followed by a 
max-pooling layer to minimise the dimensionality of the extracted features. 

Figure 2 CNN-BILSTM model (see online version for colours) 

  

The LSTM is a type of RNN architecture designed for capturing long-range dependencies 
in sequences. This approach attempts to address one of the limitations of standard LSTMs 
in that conventional LSTMs process sequences in a unidirectional manner hence failing 
to capture the context from both past and future data points (Staffini, 2023). On the 
contrary, in the BiLSTM, one has two sets of LSTM cells: one set for processing the 
sequence forward and another set for processing the sequence backward. The outputs 
from both sets of LSTM cells are concatenated in each phase, crafting a richer 
representation that encompasses context from both past and future data points. 

In this paper, the utilised CNN is one-dimensional and comprises a convolutional 
layer, pooling later, and a fully connected layer (Zang et al., 2020). The CNN performs 
convolution operations and pooling operations to capture implicit features from input 
data. Thereafter, the features extracted are merged and fed into the fully connected layer 
(Zang et al., 2020). Finally, an activation function is applied to ensure that the output of 
the neuron is nonlinear. Convolutional layers possess multiple convolutional kernels that 
are convolved with input information to capture hidden features and form feature maps 
(Li et al., 2016). A non-linear activation function is utilised to transform feature maps 
into the output of the convolutional layer. The convolutional layer is expressed as shown 
below:  

( )*i i i ic f w x b= +  (1) 
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where xi represents the input of the convolution layer, ci is the ith output feature map, wi is 
a weight matrix, bi is the bias vector, and f(⋅) denotes the activation function. The 
rectified linear unit (ReLU) function, which is shown below, is often used as the 
activation function of CNNs: 

( ) ( )0,i i ic f h max h= =  (2) 

where, hi is the component of feature maps. 
Max pooling is implemented to cut down the dimensions of feature maps and prevent 

over-fitting. This is done by computing the maximum value of an assigned area in feature 
maps as demonstrated in equations (3) and (4). 

( ) ( )1 1, ,i i i iγ c c max c c− −=  (3) 

( )1,i i i ip γ c c −= + β  (4) 

where γ(⋅) is the max pooling subsampling function, pi denotes the output of the 
maxpooling layer, βi is the bias. 

The fully connected layer computes the final output vector as demonstrated in the 
equation below:  

( )i i i iy f t p δ= +  (5) 

where yi denotes the final output vector, δi represents bias, and ti denotes the weight 
matrix. 

In the proposed algorithm, CNN and BiLSTM are combined to improve performance. 
Therefore, the output of the CNN model is fed into the BiLSTM model. The basic 
architecture of the BiLSTM model comprises the outputs of forward and backward 
hidden layers. The outputs of the forward layer and hidden sequences are calculated 
iteratively using inputs in an orderly fashion (Staffini, 2023). The same is done for the 
backward layer and hidden sequences but in the opposite direction. These iterations are 
done using LSTM. Therefore, the additional BiLSTM layer produces an output vector in 
which each element is calculated using the equation (6): 

( ),t t ty σ h h=
 

 (6) 

where th


 and th


 are the outputs of forward and backward hidden layers, respectively, 
and the σ function is utilised to couple the two sequences. The σ function can be a 
summation, mutilation, average, or concatenation function. 

During training, the algorithm was fed with labelled sequences of network traffic 
data, where each sequence is associated with a label indicating whether it contains a 
DDoS attack or not. The algorithm’s weights were updated through backpropagation to 
minimise the classification error using a loss function. During inference, the trained 
algorithm was used to classify new sequences of network traffic data. The algorithm 
assigned a class label (‘normal’ or ‘DDoS attack’) to each input sequence based on its 
learned patterns and features. 
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3.3 Distributed DDoS-IoT detection approach 

The framework implementation is illustrated in Figure 3. The experimental approach 
included model training, integration into an IoT network infrastructure, and the detection 
of attacks as an already pre-processed dataset was leveraged. 

Figure 3 DDoS-IoT detection experimental framework (see online version for colours) 

 

Figure 4 Distributed DDoS-IoT detection framework (see online version for colours) 

 

The training and testing of the CNN-BiLSTM framework using the normal MQTT data 
derived from the DoS/DDoS-MQTT-IoT dataset were the initial steps. Next, the 
integration of the detection system into the IoT architecture adopted the three layers of 
most IoT deployments: edge, fog, and cloud layers. While the edge layer consists of 
smartphones, smart cars, and other limited-resource devices, the fog layer acts as an 
intermediary computing layer. Devices in the fog layer have considerable computing and 
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storage capabilities, and their utilisation increases network performance and minimises 
latency. The cloud layer offers vast storage capabilities and high-performance servers. 
Similarly, the deep learning-based attack detection architecture had three layers: the 
cloud layer had a global model that utilises gradient weights to detect DDoS attacks, the 
fog layer provided the gradient weights and trained the machine learning model, and the 
edge layer provided pre-processed data to fog nodes. At the start of the process, each 
edge device downloaded the global model from the cloud layer for training. As such, the 
global model was authenticated and updated in the cloud layer. 

Figure 4 illustrates the developed DDoS-IoT detection framework. It combines  
pre-processing with the distributed nature of IoT systems to enhance the accuracy of 
DDoS attack detection. 

The update formula ( )1

n
fi

MW MW mean W
=

= + Δ  is an important aspect of this 

framework as it represents an update rule commonly used in the context of neural 
networks, where MW represents the current weights of a model and ∆Wf represents the 
change in weights during each iteration. 

3.4 Evaluation 

The evaluation process aimed to establish the performance of the proposed distributed 
system with the centralised one. To do so, the deep learning model was deployed on the 
server for the centralised system and multiple coordinated nodes for the distributed 
method. Accordingly, we varied the number of machines utilised for training the network 
as a function of the training accuracy. After hyper-parameter optimisations, the deep 
learning system had three CNN layers, two BiLSTM layers, and a kernel size of five. The 
model had 64 batch sizes in 100 epochs and trained with dropout to avoid overheating 
problems. The LSTM units were 128 and the number of filters was 64. The learning rate 
was 0.0001 and the Adam optimiser was utilised. 

The confusion matrix was utilised to assess the framework’s predictive capabilities. 
The confusion matrix provided a breakdown of the predicted labels and true labels, 
enabling the calculation of various evaluation metrics such as accuracy, precision, recall, 
and F1-score. The accuracy metric determined the overall correctness of the predictions, 
while precision measured the proportion of true DDoS attack instances among the 
predicted DDoS attacks. Recall evaluated the framework’s ability to identify DDoS 
attacks correctly, and the F1-score provided a balanced measure of the framework’s 
performance. The analysis also included comparing the performance of the proposed 
model to other machine learning models and performing cross-validation. 

4 Findings and discussion 

The CNN-BiLSTM model was trained using samples of benign and DDoS traffic derived 
from the DoS/DDoS-MQTT-IoT dataset and then utilised to classify DDoS attacks using 
Python code. TensorFlow and Keras were utilised for deep learning tasks. The weighted 
moving average update formula for model weights was done at the cloud layer in line 
with the distributed approach of the framework using fog data. The updated model was 
utilised iteratively to evaluate the detection effectiveness of the distributed framework. 
The confusion matrix, which includes accuracy, precision, recall, and F-measure, was 
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created to assess the CNN-BiLSTM model under centralised and distributed approaches. 
Table 3 gives an overview of how each of the two approaches (distributed and 
centralised) compared. 
Table 3 Classification results 

 Accuracy Error Precision Recall f-1 score 
CONNECT flooding attack 
(BF_DDoS) 

     

Centralised detection 0.9845 0.0239 0.917 0.95 0.964 
Distributed detection 0.9986 0.0121 0.99 0.995 0.993 
Delayed connect flooding attack 
(Delay_DDoS) 

     

Centralised detection 0.9776 0.0437 0.949 0.962 0.965 
Distributed detection 0.9976 0.0131 0.991 0.993 0.993 
Invalid subscription flooding 
attack (Sub_DDoS) 

     

Centralised detection 0.9676 0.0457 0.966 0.964 0.975 
Distributed detection 0.9926 0.0141 0.991 0.993 0.989 
CONNECT flooding with WILL 
payload attack (WILL_DDoS) 

     

Centralised detection 0.9771 0.0146 0.961 0.973 0.985 
Distributed detection 0.9973 0.0145 0.988 0.993 0.990 
TCP SYN flooding attack 
(SYN_DDoS) 

     

Centralised detection 0.9476 0.0601 0.953 0.967 0.955 
Distributed detection 0.9977 0.0139 0.991 0.99 0.990 

Figure 5 Detection performance (see online version for colours) 
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Based on the Figures 3 and 4, the distributed algorithm exhibits better performance as 
compared to a centralised one in all four metrics: accuracy, error, precision, recall, and  
f-1 score. Figure 5 illustrates the differences in average performance between centralised 
and distributed detection. As can be seen, the distributed detection exhibits better 
accuracy, precision, and recall. It also has a lower error rate. 

The overall performance of the distributed and centralised models is shown in  
Table 4. 
Table 4 Overall detection performance 

 Accuracy Error Precision Recall f-1 score 
Centralised detection 0.97088 0.0376 0.9492 0.9632 0.9688 
Distributed detection 0.99676 0.0135 0.9902 0.9928 0.991 

We then assessed the performance of the proposed CNN-BiLSTM model in predicting 
DDoS attacks by comparing it to conventional machine learning models. As can be seen 
in Table 5, the proposed model performs better than the other models. 
Table 5 Comparison of the proposed model to other ML models 

 Accuracy Precision Recall f-1 score 
Centralised detection 97.09 94.92 96.32 96.88 
Distributed detection 99.68 99.02 99.28 99.10 
XGBoost 76.32 76.14 76.01 76.32 
Support vector machine 74.15 74.15 74.11 73.98 
Random forest 75.42 75.10 75.12 75.12 
KNN 71.01 71.01 70.87 71.16 
CNN 85.05 84.15 84.99 83.44 
BiLSTM 83.10 86.43 82.04 81.34 
RNN 89.12 93.08 89.01 89.26 

Additionally, as demonstrated in Table 5, both the centralised and distributed deep 
learning models outperformed XGBoost, support vector machine (SVM), RF, and KNN. 
These models were examined in a centralised detection format. XGBoost yielded a score 
of 76% for four measures: precision, recall, F1-score, and accuracy. This poor 
performance can be attributed to the fact that XGBoost is difficult to tweak, requires a 
longer training period, and is vulnerable to overfitting if the data utilised is noisy 
(Khattak et al., 2021). SVM had an accuracy, precision, recall, and f-1 score of 74% for 
each of all these measures. According to Khan et al. (2021), SVM performs poorly 
because it requires longer training times, performs expensive computations, exhibits a lot 
more complexity, and requires larger size requirements for training and testing. 
Concerning the RF, the accuracy, precision, recall, and f-1 score were 75%, 75%, 75%, 
and 75%, respectively. According to Ullah et al. (2021), the RF performs poorly since its 
legitimate predictions take time, it favours comparable sets of related attributes over 
bigger sets, and it works poorly with categorical data. Finally, KNN ranked poorly in 
performance because it had a score of 71% for recall, precision, accuracy, and f-1 score. 
This is because KNN is sensitive to noisy and irrelevant data and requires a lot of time 
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when working with large datasets (Ullah et al., 2021). As can be seen in these outcomes, 
deep learning performs far better than conventional machine learning models. 

The performance of the proposed model also outperformed other deep learning 
models, primarily CNN, BiLSTM, and RNN. For CNN, the accuracy, precision, recall, 
and f-1 score was 85%, 84%, 85%, and 83%, respectively. Although this performance is 
better than that of traditional machine learning models, it was inferior to the proposed 
decentralised model. CNN, on its own, does not produce optimal outputs as it does not 
work well with textual data and requires a large dataset. Regarding BiLSTM, the 
accuracy, precision, recall, and f-1 score was 83%, 86%, 82%, and 81%, respectively. 
BiLSTM also underperformed as it tends to underperform when it comes to extracting 
features. Lastly, RNN achieved suboptimal performance in terms of accuracy, precision, 
recall, and f1-score. This could be attributed to the fact that RNN models are unable to 
manage long-term sequencing. Their inability to retain information for long periods 
means that they are not suited to DDoS detection tasks. As was the case with 
conventional machine learning models, the performance of deep learning models was 
lower than that of the CNN-BiLSTM model. It is also imperative to note that the 
experiment did not do tests on ensemble algorithms, which could exhibit better 
performance. 

The study also encompassed performing cross-validation of the proposed model to 
estimate how it will perform in practice. Specifically, k-fold validation, which entails 
splitting the data into k folds or subnets and performing training on all subnets but 
leaving one out for evaluation purposes. In each iteration, different subnets are reserved 
for the testing. In this study, K = 10 was used, which means that the data was split into 
ten subnets, with the subnets having the same magnitude. Therefore, 9-fold subnets were 
used for training, and 1-fold for testing. The results for the distributed model can be seen 
in Table 6. 
Table 6 Sample randomised 10-fold cross-validation 

 Accuracy Precision Recall f-1 score 
Fold-1 99.81 99.12 99.28 99.12 
Fold-2 99.72 98.73 99.11 99.03 
Fold-3 99.73 99.45 99.23 99.55 
Fold-4 99.61 99.44 99.41 99.41 
Fold-5 99.54 99.23 99.12 99.23 
Fold-6 99.41 98.79 98.05 98.96 
Fold-7 99.89 99.43 98.99 99.33 
Fold-8 99.97 98.01 99.34 98.01 
Fold-9 99.23 98.91 99.29 98.71 
Fold-10 99.34 99.04 99.5 99.24 
Mean 99.625 99.015 99.132 99.059 

The evaluations done above suggest that the proposed model can be effective for 
detecting DDoS attacks. This improved performance could be attributed to the fact that 
DDoS attacks might attack a specific segment of the network without having a major 
effect on the whole network. Therefore, while the network might be performing within 
the normal ranges, some segments might be unavailable. In the proposed distributed 
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approach, both edge and fog layers play a role in the detection process hence allowing for 
localised DDoS identification. According to Febro et al. (2019), distributed detection can 
enhance scalability, allowing the network to accommodate growing network traffic while 
addressing evolving attack tactics. Essentially, decentralisation enhances redundancy and 
addresses issues related to geographical diversity. More importantly, distributed detection 
provides a more comprehensive view of the network, making it easier to identify subtle 
attack patterns or multiple attack vectors that might go unnoticed in a centralised system. 

A possible drawback of the proposed algorithm is that it can increase the 
computational load for IoT devices situated at the edge and fog layers. In this framework, 
edge devices would be expected to process raw data to produce processed data. Similarly, 
devices at the fog layer would be required to download and train the global model using 
the processed data to produce new model weights that will then be used to update the 
global model. At the same time, IoT devices are often resource-restrained when it comes 
to both storage and computational ability. Accordingly, addressing this element is 
imperative to the successful implementation of the algorithm. Furthermore, the proposed 
distributed detection algorithm should be part of a comprehensive DDoS mitigation 
strategy that includes both detection and mitigation techniques. Examples include traffic 
filtering, traffic diversion, and load balancing (Salva-Garcia et al., 2018). Combining 
these approaches can help organisations effectively protect their network infrastructure 
from DDoS attacks. 

5 Conclusions 

The study demonstrated the effectiveness of deep learning, especially the CNN-BiLSTM 
model, in DDoS distributed detection situations. Indeed, deep learning models can learn 
hierarchical representations automatically in data, which is imperative in anomaly 
detection. Similarly, CNN-BiLSTM can extract relevant features from complex and 
unstructured raw network traffic data, hence being able to adapt to changing attack 
patterns without the need for manual feature engineering. Additionally, in DDoS 
detection, network traffic data is sequential, and the utilisation of BiLSTM can help with 
capturing sequential dependencies in the data, enabling the model to detect subtle 
anomalies. Deep learning models are also robust in that they can generalise well to detect 
new and unseen attacks that may have different characteristics from known attacks. 

Deep learning models possess the potential to scale to large datasets and network 
traffic volumes. This is crucial for handling the vast amount of data generated in network 
environments, making them suitable for real-world deployments. Furthermore, deep 
learning models can automate the detection process, allowing for real-time or near-real-
time response to DDoS attacks. Automated detection and mitigation are imperative for 
minimising downtime and service disruptions. Besides CNNs inherently support parallel 
processing, which can speed up the detection process in the event that the network traffic 
is massive. Overall, deep learning models excel at anomaly detection, which is essential 
for DDoS detection since DDoS attacks often involve unusual and unexpected patterns in 
network traffic. 

The findings also illustrated the superiority of distributed DDoS detection versus 
centralised detection. The detection accuracy is better as the algorithm is able to take into 
account local conditions in a given fog layer. Additionally, distributed detection can 
provide lower latency in detecting events and anomalies because data processing and 
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decision-making occur closer to the source of the data. This is crucial for applications 
where real-time or near-real-time responses are required. Furthermore, a distributed 
approach can be more scalable as it distributes the processing load across multiple IoT 
devices or edge nodes and fog layers (Ali et al., 2023). This can make it easier to handle a 
large number of IoT devices within a network without overloading a centralised server. 

A major strength of this study is that it utilised deep learning combined with a  
real-world dataset on DDoS attacks in IoT settings to evaluate the distributed algorithm. 
The deep learning model, CNN-BiLSTM, has been demonstrated to be effective in 
detecting DDoS attacks. The dataset also included various forms of DDoS attacks, which 
enabled the evaluation of the proposed algorithm against different attacks. However, the 
study had a limitation in that the dataset was not categorised into fog networks. To study 
the distributed model, we had to divide the data into hypothetical fog nodes to evaluate 
the distributed framework. The study also made use of a single dataset, which calls into 
question the generalisability of the findings. Accordingly, future research ought to collect 
data at the fog layer rather than at the cloud layer to evaluate the distributed framework in 
detail. Additionally, the proposed model ought to be tested on different datasets. 
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