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Abstract: A potential paradigm called edge computing (EC) has recently come 
to light that supports internet of things (IoT) applications that are resource 
allocation with low latency services at the network edge. For scheduling the 
application tasks, the edge server’s constrained processing capabilities present 
significant difficulties. The IoT-EC scenario is used in this research to study the 
task scheduling problem, and various jobs are scheduled to virtual machines 
(VMs) set up the edge server by maximising long-term task satisfaction. The 
proposed optimal task scheduling considers parameters like makespan, 
execution time, execution cost, and risk probability. Particularly, the risk 
probability estimation is done by the deep convolutional neural network  
(D-CNN). This estimation is based on task security and VM security. The 
scheduling of tasks is carried out via the new hybrid bald eagle Archimedes 
optimisation (HBEAO) by considering a multi-objective to minimise the 
makespan, execution time, execution cost, and risk probability. The proposed 
model is validated with existing models in terms of execution cost, execution 
time, fitness, makespan, risk probability, etc. It is observed that the HBEAO 
model attains less execution cost ($37.27), execution time (0.99 seconds), 
fitness (3.48%), risk probability (0.19%) and computation time (2,325.87 sec) 
respectively. 

Keywords: task scheduling; deep learning; edge computing; server; 
optimisation; internet of things; IoT; deep convolutional neural network;  
D-CNN. 
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1 Introduction 

The edge computing (EC) paradigm moved the processing capacity as close to the user as 
feasible by creating a new tier between the cloud and the field tier (Gezer and Wagner, 
2021). This led to the emergence of the EC paradigm, in which a large number of  
small-scale computing facilities, known as edge servers, were built at the network edge 
along the path from the user end to the cloud to receive offloaded tasks from mobile 
devices. EC was intended to significantly reduce task reaction time in an energy-efficient 
manner while also improving security and privacy (Cai et al., 2021). Computational 
resources were moved closer to the sources of information generation in EC, which 
reduced the network latency and bandwidth use frequently associated with cloud 
computing (CC) (Zhao et al., 2021). The edge server in an EC system serves and 
processes task requests and produces data from internet of things (IoT) devices nearby. 
The edge server’s proximity to the IoT device reduced the time it took to respond to 
requests for work compared to the centralised cloud data centre (Huang et al., 2020). 

Scheduling jobs to suitable edge servers for execution in accordance with 
performance and resource needs was a workable solution. An effective work scheduling 
algorithm could actually greatly increase users’ quality of experience while 
simultaneously increasing the efficiency of resources (Cai et al., 2021). However, task 
scheduling using FIFO might reduce the throughput of EC nodes due to a mismatch 
between the job and the hosting node (Ullah and Youn, 2020). The major emphasis of CC 
was how to distribute incoming task requests among numerous resource units of a cloud 
cluster because there was no difference in scheduling costs while sending work to 
different resource units (Huang et al., 2020). The length of time was taken for running 
processes to complete is clearly impacted by an edge server’s excessive resource 
contention. To handle scenarios where an edge server is significantly overloaded, an 
effective work or task scheduling mechanism must be presented (Liu et al., 2019). 
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To optimise the number of successful jobs, a deep quantum network (DQN)-based 
task scheduling method was investigated in CC (Sheng et al., 2021). Collaborative task 
scheduling beats historical scheduling methods in terms of the deadline fulfilment ratio of 
time-critical workloads while maintaining deadlines for local tasks in IoT devices (Liu  
et al., 2019). With the help of the Trans EC-DQL algorithm, scheduling decisions were 
made after learning the vector representations of the nodes and tasks. In addition, to 
improve scalability, the algorithm’s state was changed to a distribution dependent on 
resource levels (Tang et al., 2022). Traditionally, the K-means clustering technique is 
used to categorise the work in the KTCS scheme, and the node usage is evaluated. After 
that, tasks are allocated to the node that matches the requested resource. While real EC 
scenarios involve many heterogeneous nodes and tasks, current DL methods presume an 
environment with comparatively limited state sets and action sets. Processing a lot of data 
is necessary for this (Lv et al., 2021; Mukherjee et al., 2021; Yamuna and Usha Rani, 
2022). Additionally, each node or task has its own characteristics, such as resource 
capabilities for nodes and resource requests, allocations, etc. for tasks. These make it 
harder to store all the data immediately and can also cause dimensional disasters. 
Consequently, it is a significant problem to schedule the tasks, conserve computing 
resources, and arrive at quick decisions (Zhou et al., 2021; Fang et al., 2019; Liu et al., 
2021). It fully utilises the processing power and computer resources of the peer-to-peer 
network, decomposes complicated computational tasks, and distributes them to the 
selected node for shared computing, greatly improving the utilisation efficiency of the 
available computational resources and workflow execution as a whole. In order to 
employ the other EC nodes to process the delay-sensitive tasks, it is critical to plan the 
jobs effectively in order to ensure the load balance of the entire EC network and to 
complete the task as quickly as practical. The main contributions are: 

1 Proposing an optimisation-based task scheduling process in IoT-EC with the 
consideration of multi-objectives like makespan, execution time, execution cost, and 
risk probability. 

2 Applying the deep convolutional neural network (D-CNN) concept is for estimating 
the risk probability while scheduling the tasks, which will be based on task security 
and virtual machine (VM) security. 

3 Proposes a new optimisation technique, hybrid bald eagle Archimedes optimisation 
(HBEAO) for scheduling the task with the above-mentioned constraints. 

The organisation of the paper is: The review of previous research is shown in Section 2, a 
system model is explained in Section 3, the proposed optimisation for scheduling the task 
with deep learning-based risk probability prediction is explained in Section 4, HBEAO 
based scheduling process is shown in Section 5, result is discussed in Section 6, and 
references are shown in Section 7. 

2 Literature review 

In 2021, Sheng et al. (2021) have developed a policy-based REINFORCE method to 
address the problem of work schedule, and a fully connected neural network (FCN) was 
utilised to extract the features. The given deep reinforcement learning (DRL)-based task 
scheduling method outperforms the currently recommended methods in the literature, 
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according to simulation results that show average task satisfaction levels and success 
rates. 

In 2021, Cai et al. (2021) have developed a task scheduling technique for a  
failure-resistant directed acyclic graph (DAG) to reduce the reaction time that the tasks 
encounter. An approach called context-aware greedy task scheduling (CaGTS) was 
presented in order to solve the DAG task allocation problem. A dependency aware task 
rescheduling (DaTS) technique was subsequently developed to address the edge server 
failure occurrence. Extensive tests had been performed on a Python-developed simulator 
to gauge how well the proposed methods performed. According to experimental results 
with a variety of parameter settings and DaTR could successfully prevent task scheduling 
interruptions brought on by server failure events. 

In 2021, Zhao et al. (2021) have created the low-load distributed intrusion detection 
system (DIDS) task scheduling method for reinforcement learning, which is based on the 
Q-Learning approach. By altering scheduling techniques dynamically in reaction to 
network changes in the EC environment, this approach can balance the two diametrically 
opposed signs of low load and packet loss rate. The aim was to maintain a minimum 
overall DIDS load. Indicators like the rate at which malicious features are detected are 
not greatly affected by the proposed strategy, simulation trials demonstrate, and it 
performs better under low demand than existing scheduling strategies. 

In 2021, Zhang et al. (2021) have proposed a joint task scheduling and containerising 
(JTSC) scheme for task scheduling. The resource usage of container operations was 
initially measured through experiments. To reflect the properties of task execution in 
containers on a network edge with multiple processors, system models for the system 
were then developed. Initially, tasks were scheduled without taking containerisation into 
account, which led to earlier timetables. Second, a number of containerisation methods 
were created to map jobs to containers using the system concepts and principles gleaned 
from the first schedules. Third, the task schedules were adjusted to reflect the updated 
task execution durations, which included the time needed for inter-container interactions. 
Numerous simulations were used to assess the JTSC method. According to the results, it 
significantly decreased wasteful container activities and increased application execution 
efficiency by 60%. 

In 2019, Liu et al. (2019) have developed fuzzy clustering technique is utilised in this 
algorithm to narrow the search space range, hence lowering the complexity of the 
scheduling process and the number of repetitions. Additionally, the ant colony 
algorithm’s powerful global search capability is used to identify the scheduling problem’s 
ideal solution. 

In 2020, Tang et al. (2022) have deployed DRL-based method was designed to 
accommodate dynamic changes in nodes and tasks as well as to address the issues faced 
by DRL methods due to the large number dimensions, when the input size is large. To be 
more precise, 

1 They use representation methods of learning to categorise various EC nodes and 
activities. Nodes and jobs are mapped to compatible vector sub-spaces in order to 
minimise dimensions and store vector data effectively. 

2 Scheduling decisions were made utilising the space remaining after image 
compression to learn the associated with the suggested nodes and jobs. 
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3 Real-world data was used in the studies, and the findings demonstrate that the 
suggested representation technique using a DRL-based procedure outperforms the 
baselines by 18.04% and 9.94%, accordingly, in terms of energy usage and service 
level agreement violation (SLAV). 

In 2021, Abd Elaziz et al. (2021) have developed AEOSSA, a new artificial  
ecosystem-based optimisation (AEO)-based alternative task scheduling method for IoT 
requests in a cloud-fog context. This patch was built utilising the SSA operators in an 
effort to increase the AEO’s ability to exploit data while looking for the best solution to 
the issue at hand. The usefulness of the proposed AEOSSA approach to solve the task 
scheduling problem is evaluated using a variety of synthetic and real-world datasets of 
different sizes. 

In 2020, Shi and Shi (2020) have established a multi-node task scheduling with a 
multi-objective optimisation that took into account the impact of energy use, load 
balancing, and job completion time. To fulfil the needs of delay-sensitive activities, task 
scheduling was turned into a bidding system and a real-time dumping ground for 
subtasks. Their final argument was that the method for scheduling tasks over several 
nodes, which offers fresh suggestions for allocating EC work, was created through 
simulation testing. Table 1 shows the benefits and drawbacks of task scheduling 
techniques. 
Table 1 Features and challenges of previous task scheduling techniques 

Author 
[citation] Methodology Benefits Drawbacks 

Sheng et al. 
(2021) 

REINFORCE 
algorithm 

Good convergence 
performance 

It is necessary to focus more 
on communication delay 

Cai et al. 
(2021) 

CaGTS In server failure events, 
it effectively performs 
the task scheduling 

The impact is a 
communication link failure 

Zhao et al. 
(2021) 

DIDS task scheduling 
Q-learning algorithm 

It has better low-load 
performance 

The q-table is very large and 
the update time was increased 

Zhang et al. 
(2021) 

JTSC It improves execution 
efficiency and decreases 
ineffective container 
activities. 

Applications that cannot be 
categorised as task workflows 

Liu et al. 
(2019) 

ACO Achieved near-optimal 
task throughput 

It requires more storage 
capacity 

Tang et al. 
(2022) 

DRL Energy consumption, 
SLAV, and the cost are 
low 

It needs a lot of data and a lot 
of computation 

Abd Elaziz 
et al. 
(2021) 

SSA Improves the task 
completion ratio 

Must be improved with a 
more complex load-balancing 
scheme 

Shi and Shi 
(2020) 

Multi-objective 
optimisation model 

Energy consumption was 
low and task completion 
time was faster 

It is necessary to take into 
account the relationships 
between the activities and 
challenging arrival scenarios. 

Despite the fact that numerous algorithms have been developed for task scheduling, 
different meta-heuristic algorithms, and deep learning concepts play a significant part in 
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task scheduling. However, the existing models have a variety of shortcomings in terms of 
performance efficiency. A very quick multi-objective optimisation model was used to 
address the issue of energy consumption efficiency (Shi and Shi, 2020). But it does not 
take into account how the tasks are interdependent, or how difficult arrival scenarios can 
be. The MAR model must also take complicated load balancing into account. Some deep 
learning models like CNN, LSTM, and Bi-GRU reduce costs, but they still require 
improved convergence toward decision-making for the given task. To address the  
above-mentioned constraints, the HBEAO optimisation method is used to improve the 
scheduling of tasks. 

3 System model 

The edge server receives jobs produced by IoT apps for scheduling tasks in an EC 
systems. Edge server configured with several VMs. To keep things simple, we merely 
pay attention to the computational resources for job scheduling. Task sizes, expected 
finish durations, processing rates (measured in MIPS), and waiting periods are just a few 
of the information the scheduler keeps track of regarding incoming tasks and VMs that 
have an impact on scheduled decisions. Based on the data collected, (i.e., which VM is 
assigned to each job), the scheduler chooses when to schedule, (i.e., the order of the tasks 
in the schedule and their start timings) and where to schedule. Figure 1 shows the 
architecture of task scheduling in EC. The backlog of tasks in the queue and the waiting 
set inside the circle are the two groupings of work that are available for scheduling. 
Unlike the number of jobs in the backlog queue, which can only be viewed by the 
scheduler, the number of tasks in each waiting set, which occupy waiting slots that can be 
completely noticed, can be seen by the scheduler. At each scheduling time step, the 
scheduler chooses a maximum of one work from the waiting slot for scheduling. This 
research investigates the work scheduling in EC with a single deployed edge server. 

3.1 Task scheduling mechanism 

Tasks and VMs are the two primary elements of EC and are also crucial to task 
scheduling. IoT applications generate the tasks, which are then forwarded to edge servers 
for processing. While EC owns the edge servers, which offer computational resources. 
Let S = (S1, S2, …. SN) and VM = (VM1, VM2, …. VMn) denote the sets of tasks and nodes 
respectively. Where S1 is a first task and N denotes the total number of tasks, VM1 
denoted the first VM; n denotes the total number of VM. 

The defined objective is to raise the overall task satisfaction over the long term, 
which is represented in equation (1). Here G1, G2, G3, G4 indicates the makespan, 
execution time, execution cost, and risk probability respectively, w1, w2, w3, w4 indicates 
the weights, that are assigned to each parameter G1, G2, G3, G4. 

( )1 1 2 2 3 3 4 4min + + +O w G w G w G w G= ∗ ∗ ∗ ∗  (1) 

In equation (1), weights w are calculated using Dirichlet distribution. The Dirichlet 
distribution is defined as a distribution over vectors w satisfying the  
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constraints 
1

0 1,
n

i i
i

w w
=

> =  where n = 4. The probability density function p of a 

Dirichlet-distributed random vector X is proportional to equation (2), where α is a vector 
containing the positive concentration parameters. 

1

1

( ) i

k

i
i

p x xα −

=

∝ ∏  (2) 

The method uses the following property for computation: let Y be a random vector that 

has components that follow a standard gamma distribution, then 

1

1
k

ii

X
Y

=

=


 is 

Dirichlet distributed. 

Figure 1 Task scheduling architecture of EC (see online version for colours) 

  IOT 

S1 S2 …. SN S1 S2 …. SN S1 S2 …. SN 

Interface 

Users 

S1, S2…SN -TASK 

 

Task dependencies can be found by examining the connections between tasks and 
figuring out which ones need to be finished before beginning or ending. That is, you must 
take into account both your forebears and your successors. A start-to-finish (SF) 
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dependency occurs when you can only finish the prior task if the one after it has begun. 
One of the rarest kinds of dependencies in real-world settings, this kind of reliance 
typically arises from scheduling-related events involving the handoff of one task to 
another. Task dependencies show the sequence in which tasks must be finished. 
Dependencies allow you to find the optimal task sequencing that will get you through the 
research the quickest. While a VM is accessible, it is allocated a task; while it is busy, it 
is not assigned any tasks. 

4 Proposed optimisation for scheduling the task with deep learning-based 
risk probability estimation 

As stated above, the proposed task scheduling mechanism in EC considers parameters 
like makespan, execution time, execution cost, and risk probability. The risk probability 
can be predicted by using D-CNN. The defined parameters are as follows: 

4.1 Makespan (G1) 

It is defined as the overall completion time needed to execute all tasks. Makespan 
(Mapetu et al., 2019) is represented in equation (3) 

{ }
1
max i

i k
MP CT

≤ ≤
=  (3) 

where k indicates the number of VM. CTi is represented in equation (4) 

1

.
.Pr .

m
j

i
j jj

S l
CT

VM VM mips=

=
×  (4) 

where m denotes the number of tasks in VM, S denotes the task, l indicates the size of S, 
Pr indicates the number of processing elements in VM, mips represents (million 
instruction per second) execution speed per processing element of a VM. 

For example, the four jobs to process in parallel on two processors, and the 
processing times for each job are as follows: job 1: four units of time, job 2: three units of 
time, job 3: two units of time, job 4: five units of time. Using a scheduling algorithm, you 
might schedule the jobs as follows: processor 1: job 1 (four units), job 3 (two units), 
processor 2: job 2 (three units), job 4 (five units). The makespan in this case would be the 
time it takes for the last job to finish on processor 2: makespan = 3 units (job 2) + 5 units 
(job 4) = 8 units of time. So, the makespan for these parallel processing jobs on two 
processors is 8 units of time. 

4.2 Execution time (G2) 

The duration of time taken by the VM to execute each task is denoted as execution time 

4.3 Execution cost (G3) 

Execution costs are fees paid by the user to the provider in exchange for the usage of 
resources to carry out the task. 
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4.4 D-CNN-based risk probability estimation (G4) 

Risk probability (Verma, 2022; Li et al., 2021) can be predicted by using D-CNN, where 
the inputs are considered as task security (Hai et al., 2023) (Ss) and VM security (Hai  
et al., 2023) (Vs), based on which the model is trained to obtain the risk. A detailed 
explanation of the model is given below. 

CNN is a deep feed-forward ANN class that is extensively utilised in computer vision 
issues like data classification. CNN differs from a ‘simple’ multilayer perception (MLP) 
network in that it employs convolutional layers, pooling, and nonlinearities like tanh, 
sigmoid, and ReLU (Teow, 2017). 

The convolutional layer is made up of a filter that is used to ‘slide’ through the size of 
incoming data and generates task scheduling parameters. As a result, a 2-dimensional 
activation map made up of the filter’s reactions at certain places will be created. The 
pooling layer then decreases the size of the data in accordance with the result of a 
convolution filter. This results in down-sampling, or scaling back of the parameterisation 
of the model. The proposed deep CNN is presented in Figure 2. 

Figure 2 Layer-wise architecture of proposed deep CNN 
  

Input layer 

Convolutional layer 

Pooling layer 

Dropout layer 

Convolutional layer 

Pooling layer 

                S and V  

Dropout layer 

Output layer 

Targeted Risk  
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4.4.1 Input layer 
Task security (Ss) and VM security (Vs) are the inputs for deep CNN. Ss and Vs are 
generated randomly between the numbers 1 to 5. 

4.4.2 Convolutional layer 
When back propagation training is used to train the trainable convolution kernels in this 
layer, the kernel weights are automatically adjusted to take into account the features of 
the input data. The convolution layer’s input features can be processed for use in other 
computational operations by the following algorithmic levels. This unsupervised 
convolutional feature learning method is neutrally motivated by the work on the 
recognition model and receptive field theory. The output is a convolved feature map (fc) it 
was represented in equation (5) where ⊗ indicates a 2D discrete convolutional operator, 
convolutional kernel is represented in K spatially slides over the input data I to compute 
the element-wise multiplication and sum to produce an output, a convolved feature map 
(fc). 

( )
( ) ( )
,

( ) , ( , ) ,
c s s

s s s sm n

f conv T V

I K S V I m n K S m V n

=

= ⊗ = − − 
 (5) 

4.4.3 Pooling layer 
In order to reduce the spatial dimensionality of the corrected feature map and produce a 
more compact feature representation for processing, a pooling layer subsamples the 
corrected feature map. (fp) indicates the output of the pooled featured map. It is 
represented in equation (6). 

( ) ,
1, s sp s s S Vm

f pool S V x
M

= =   (6) 

4.4.4 Dropout layer 
CNN has a lot of parameters, particularly in the fully connected layer, and having too 
many parameters can cause over fitting. Typically, a model combination made up of 
many distinct networks is trained to avoid over fitting. The fundamental principle of 
dropout is that at each training stage, a portion of units are randomly dropped with 
probability 1-p (or kept with probability p), and p can be established by experimentation. 
To put it another way, the networks are different from one another and become thinner 
than a typical neural network after dropout is used, which increases the model’s resilience 
to over fitting and speeds up training. Each neuron within the combination of these 
thinning networks participates in prediction, and the model as a whole. Dropout hence 
can prevent overfitting. 

4.4.5 Output layer 
The output layer presents the risk probability result (Pbj) under varied condition rk. This 
approach results in targeted risk, which has a range of 0 to 3. It is represented in  
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equation (7). If the output denotes 0, which means there is no risk, low risk if it is 1, high 
risk if it is 2, and medium risk if it is 3. 

( )( )
( )

2

3
2

0; 0

1 ; 1

1 ; 2
1; 3

s s

s s

k

V S
k

bj V S

k

k

if r

e if r
P

e if r
if r

−

−

<= 
 
 − = =  
 − = 
 = 

 (7) 

5 HBEAO-based task scheduling process 

5.1 Input solution and objective function 

While scheduling the task using HBEAO, consider the inputs of the edge server have a 
certain number of VMs, and the number of tasks. Each task will be assigned to a 
particular VM for processing. For instance, then number of tasks SN is S1, S2, … SN. 
Also, three numbers of VMs are used to assign the tasks. Based on the objective function 
in equation (1) (makespan, execution time, execution cost, and risk probability), task S1 is 
assigned to the 1st VM, then task 2 is assigned to the 3rd VM, and so on till the10th task. 
Figure 3 shows the task scheduling process solution in HBEAO. 

Figure 3 Task scheduling structure 

  1             3          3         2          1         2        1           1     3        2 VM 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

Task 

 

The HBEAO method, or more particularly Archimedes’ law, is based on physics. This 
algorithm’s originality lies in the solution, which contains three pieces of auditory data 
for the core agents: volume (U), density (B), and acceleration (Gamma). As a result, in 
dim dimensions, the initial group of agents is generated at random (Hashim et al., 2021). 
As additive data, we provide random U, B, and Gamma values. The procedure of 
evaluating each object is then completed to determine which the best Ubest is. To change 
the acceleration based on the idea of task collision throughout the HBEAO process, 
density and volume are updated. This step is crucial in identifying the innovative position 
of the present solution. 

5.2 Initialisation 

In this phase, we initialise the real population (according to this work, it is a task) of M 
objects using equation (8). Additionally, density (Bi), volume (Ui), and acceleration (Γi) 
of each object are constructed using the equations (9), (10), and (11). Where Ji indicates 
the ith object, andMax Min

i iU U  are the search maximal spaces and minimal bounds, r1, r2, 
r3 and r4 are random numbers that range from [0, 1]Dim. 
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( )min
1+ ; 1, 2, .....,Max Min

i i i iJ J r J J i M= × − =  (8) 

2iB r=  (9) 

3iU r=  (10) 

( )4Γ Γ + Γ Γ ; 1, 2, .....,Max Max Min
i i i ir i M= × − =  (11) 

To determine which object is the best (Jbest) in the population, the best values of each 
candidate’s density (Bbest), volume (Ubest), and acceleration (Γbest) will be combined after 
a population analysis in which each candidate is given a score is completed. 

5.3 Density and volume adjustments 

At this stage, the density (Hashim et al., 2021) and volume (Hashim et al., 2021) values 
for each object are modified by selecting the optimal density and volume using  
equation (12) and equation (13). Initialise the volume and density for each ith object. 

( )+1
1+St St St

Besti iJ J s J J= × −  (12) 

( )+1
2+It It It

Besti i iU U s U U= × −  (13) 

where Jbest and Ubest are the volume and density for the optimal object. Here s1 and s2 
indicates the random values between [0, 1]. 

5.4 Transfer coefficient and density scalar 

Until the equilibrium state is established, this process involves object collisions. 
According to equation (14), the transition from the exploration phase to the exploitation 
phase is predominantly controlled by the transfer function (Fc). Over time, the (Fc) grows 
exponentially until it reaches 1. St indicates the current iteration; Stmax indicates the 
maximum number of iterations. On the other hand, the global search employing  
equation (15) is expected to be converted to a local search by gradually decreasing the 
density factor bs. 

exp Max
c

Max

St StF
St
− =  

 
 (14) 

+1 exp MaxSt
s

Max Max

St St Stb
St St
−   = −   

   
 (15) 

5.5 Proposed exploration phase 

An assortment of materials chosen at random causes the agents to collide in this step. 
Consequently, the BES algorithm is used to update the acceleration objects when the 
transfer coefficient value is less than or equal to 0.5 (Alsattar et al., 2020). The BES 
algorithm, which replicates bald eagle hunting behaviour, justifies the results of each 
hunting step. The three parts of this method are picking the search space, looking inside 
the chosen search space, and swooping. It is shown by equation (16). Where q(i) is 
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expressed in equation (17), v(i) is expressed in equation (18). Where qr(i) expressed in 
equation (19), vr(i) expressed in equation (20), θ(i) expressed in equation (21) and r(i) 
expressed in equation (22). 

( ) ( )+1+ ( ) + ( )new i i i i meanZ Z v i Z Z q i Z Z= ∗ − ∗ −  (16) 

( )
( )( )

max | |
qr iq i

qr
=  (17) 

( )
( )( )

max | |
vr iv i

vr
=  (18) 

( ) ( ) sin( ( ))qr i r i θ i= ∗  (19) 

( ) ( ) cos( ( ))vr i r i θ i= ∗  (20) 

( )θ i a π rand= ∗ ∗  (21) 

( ) ( ) +r i θ i R rand= ∗  (22) 

5.6 Proposed exploitation phase 

As per the proposed logic, the trigonometric operator of the SCA algorithm is used for a 
position update. Here, the sine and cosine functions, as stated in equations (23) or (24), 
can be used to significantly improve the exploitation step of AOA by this operator. 
Where Zbest is the best object at St iteration. Zi is the current solution, β1, β2, β3 and β4 are 
represented in equations (24) to (27). Where s is a constant value 2. Here rand1, rand2, 
rand3 and rand4 is calculated using the Chebyshev map, 

( )
( )

1 2 3 4

1 2 3 4

+ sin . 0.5
+ cos . 0.5

new i best i

new i best i

Z Z Z Z if
Z Z Z Z if

β β β β
β β β β

= ∗ ∗ − <

= ∗ ∗ − ≥
 (23) 

1
max

ss t
T

β = − ∗  (24) 

2 22 iZ randβ = ∗ ∗  (25) 

3 32 randβ = ∗  (26) 

4 4randβ =  (27) 

( )1cos 0.5 cos krand C−= ∗  (28) 

5.7 The update process 

For the exploration phase (Tc ≤ 0.5), equation (29) modifies the position of the ith object 
in iteration St + 1. Where F indicates the transfer operator which is updated by the BES 
swooping stage. It is represented in equation (30). 
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( )++1
2+ t

new best besti norm iX X G C rand acc d F x x−= ∗ ∗ ∗ ∗ ∗ ∗ −  (29) 

( ) + sinh[ ( )]F θ i R rand θ i= ∗ ∗  (30) 

( )++1
1+t t

new randi i norm iX x G C rand acc d x x−= ∗ ∗ ∗ ∗ ∗ −  (31) 

The pseudo-code of HBEAO is as follows: 

Pseudo code of HBEAO 
Step 1: Initialisation 
 Initialise the total number of populations, lower bound, upper bound, maximum iteration, 

chromosome length 
Step 2: Initial solution 
 Generate population positions in a random manner 
 Compute densities and volume via equations (4), (5), and (6) 
Step 3: Fitness function 
 Compute the fitness of each solution and choose the best fitness value 
Step 4: Current iteration = 1 
Step 5: While the current iteration is less than or equal to the maximum iteration 
 For each object 
  Update the density and volume of each object via equation (12) and equation (13) 
  Evaluate the transfer operator and density decreasing factor via equation (14) and 

equation (15) 
  If transfer function ≤ 0.5 
   Update the acceleration via the BES concept as per equation (16) 
   Update the positions of each object via the proposed equation (29) 
  Else 
   Update the acceleration via the BES concept as per equation (23) 
   Update the position of each object via equation (31) 
  End if 
 End for 
Step 6: Compute the fitness of each updated object and select the best fitness 
Step 7: Set iteration = iteration + 1 
Step 8: End while 
Step 9: Return the optimal best solution 
Step 10: Stop 

6 Results 

6.1 Simulation procedure 

Python was used to execute the suggested task scheduling in IoT EC. The HBEAO was 
compared with the various algorithms, namely, deep neural network (DNN) (Chen et al., 
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2020), CHIMP, slime mould algorithm (SMA), Aquila optimisation (AO), tunicate 
swarm algorithm (TSA), Archimedes optimisation algorithm (AROA), K-means 
clustering-based task classification and scheduling (KTCS) (Ullah and Youn, 2020), and 
bald eagle search (BES), respectively. We can gather, visualise, and analyse real-time 
data streams in the cloud using a service provided by the IoT analytics platform called 
Thing Speak. Thing Speak instantaneously visualises the data we send from our devices 
to it. The network of interconnected devices and the technology that allows for 
communication both between the devices and the cloud as well as among them are 
collectively referred to as the ‘internet of things’, or IoT. Internet or networks are both 
referred to as ‘clouds’. This technology replaces local drives with distant servers on the 
internet for online data storage, management, and access. There are many other types of 
data that can be used, including files, photos, documents, audio, and video. 

6.2 Analysis of HBEAO for execution cost ($) 

The computation of the execution cost of the HBEAO is analysed with conventional 
techniques, is represented in Figure 4 and Table 2. The HBEAO achieved the lowest 
execution cost of 37.27 whilst the DNN is 109.25, KTCS is 99.19, CHIMP is 76.61, 
SMA is 84.93, AO is 97.33, TSA is 50.24, AROA is 50.06, ACO is 88.06, AEOSSA is 
63.89 and BES is 70.81, respectively. Furthermore, at the 20th VM, the HBEAO 
generated an execution cost of 37.39, even though the execution cost of 109.52, 98.81, 
76.86, 85.45, 97.13, 50.32, 57.28, 87.83, 63.59 and 71.19, respectively. Generally, it is 
corroborated that the HBEAO works more flawlessly in the task of scheduling. 

Figure 4 Estimation of execution cost of HBEAO and standard approaches (see online version 
for colours) 
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Table 2 Execution cost 

Metrics DNN KTCS CHIMP SMA AO TSA AROA BES AEOSSA ACO HBEAO 
10 109.73 99.00 77.12 85.26 96.77 50.67 56.80 71.31 88.06 63.89 38.31 
20 109.52 98.81 76.87 85.46 97.14 50.32 57.29 71.20 87.83 63.59 37.39 
30 109.33 99.51 77.60 85.97 97.22 50.78 57.58 70.88 88.55 64.18 36.91 
40 109.31 98.81 76.83 85.17 97.25 50.07 56.99 70.69 87.82 63.45 37.53 
50 109.26 99.19 76.61 84.93 97.33 50.24 57.06 70.81 87.90 63.42 37.27 

6.3 Analysis of execution time during task scheduling process of HBEAO and 
other methods 

An execution time analysis is reviewed and computed over the standard approaches to 
demonstrate the viability of the HBEAO. Also, Figure 5 and Table 3 present the pertinent 
results. The minimal execution time obtained in the HBEAO is 0.99 towards the 50th 
VM, in contrast, the DNN = 2.91, KTCS = 2.64, CHIMP = 2.04, SMA = 2.26,  
AO = 2.59, TSA = 1.34, AROA = 1.5, AEOSSA = 2.34, ACO = 1.70 and BES = 1.89, 
respectively. Likewise, the HBEAO maintained 1.02, 0.1, 0.9, and 1.0 execution times 
while scheduling the tasks in 10, 20, 30, and 40 VMs. Therefore, the HBEAO provides 
progressive performances for task scheduling with minimal execution time. 

Figure 5 Estimation of execution time of HBEAO and standard approaches during the scheduling 
process (see online version for colours) 

 

6.4 Analysis of HBEAO-based task scheduling with respect to an objective 

The HBEAO is conflicted with previous methodologies for numerous VMs to fitness. 
The findings for the fitness measure are portrayed in Figure 6 and Table 4. For the 30th 
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VM, the HBEAO scored a fitness of 6.01, although the current methods have obtained a 
fitness of 49.53, 75.38, 20.90, 50.06, 85.34, 22.75, 59.04, 45.05, 31.58 and 20.65, 
respectively. This proves that the proposed method obtains minimal fitness that ensures 
better convergence in scheduling the tasks. The HBEAO achieved diminished fitness to 
39.48, meanwhile, the DNN is 88.97, KTCS is 42.55, CHIMP is 34.14, SMA is 45.74, 
AO is 10.48, TSA is 28.67, AROA is 53.39, AEOSSA is 51.29, ACO is 46.34 and BES is 
32.13, respectively when it experiments with 50 VM. 
Table 3 Execution time (seconds) 

Metrics DNN KTCS CHIMP SMA AO TSA AROA BES AEOSSA ACO HBEAO 
10 2.92 2.64 2.06 2.27 2.58 1.35 1.51 1.9 2.34 1.70 1.02 
20 2.92 2.63 2.05 2.28 2.59 1.34 1.53 1.90 2.34 1.69 0.12 
30 2.92 2.65 2.07 2.29 2.59 1.35 1.54 1.89 2.36 1.71 0.987 
40 2.91 2.63 2.05 2.27 2.59 1.34 1.52 1.89 2.34 1.69 1.00 
50 2.91 2.65 2.04 2.26 2.60 1.33 1.52 1.89 2.34 1.69 0.99 

Figure 6 Estimation of fitness of HBEAO and standard approaches (see online version  
for colours) 

 

Table 4 Fitness 

Metrics DNN KTCS CHIMP SMA AO TSA AROA BES AEOSSA ACO HBEAO 
10 107.77 49.21 40.90 59.85 44.86 22.28 33.15 26.78 45.05 31.58 11.65 
20 72.13 87.54 64.99 42.77 53.22 26.35 27.90 65.40 76.26 45.67 12.99 
30 49.54 75.39 20.90 50.06 85.34 22.75 59.04 20.65 48.14 21.82 6.016 
40 39.14 78.16 24.44 27.56 84.34 68.25 38.59 33.61 51.29 46.34 20.42 
50 88.97 42.55 34.14 45.74 10.47 28.67 53.39 32.13 38.34 31.40 3.48 
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6.5 Analysis of HBEAO-based task scheduling with respect to makespan 

The resemblance of the HBEAO makespan to those of the established methods for the 
distinctive VM is shown in Figure 7 and Table 5. The maximal makespan attained by the 
KTCS in the 10th VM is 144.05, accompanied by a DNN is 127.6921  
and AO is 110.9954, however, the HBEAO acquired the makespan of 37.57. 
Furthermore, the HBEAO gained the makespan of 36.16, which is superior to  
DNN = 127.58, KTCS = 144.02, CHIMP = 90.39, SMA = 106.19, AO = 111.40,  
TSA = 62.05, AROA = 70.18, AEOSSA = 117.29, ACO = 76.29, and BES = 90.83, 
respectively. Consequently, the findings imply that the HBEAO has outperformed other 
alternative plans by a significant margin with less makespan for task scheduling in IoT 
EC. 

Figure 7 Estimation of makespan of HBEAO and standard approaches (see online version  
for colours) 

 

Table 5 Makespan 

Metrics DNN KTCS CHIMP SMA AO TSA AROA BES AEOSSA ACO HBEAO 
10 127.69 144.05 90.09 106.25 110.99 62.09 69.57 91.39 117.20 76.21 37.57 
20 127.58 144.02 90.39 106.19 111.40 62.05 70.18 90.83 117.29 76.29 36.15 
30 127.50 144.43 90.16 106.75 111.49 62.43 70.59 91.10 117.20 76.21 35.15 
40 127.44 144.24 89.70 105.97 111.70 61.90 69.91 90.75 116.96 75.80 36.96 
50 127.45 143.92 89.81 105.51 111.63 61.93 69.85 90.63 116.86 75.869 38.97 
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6.6 Analysis of HBEAO-based task scheduling with respect to risk probability 

To substantiate the feasibility of the HBEAO for task scheduling in IoT EC persistence 
over the traditional methods are described in Figure 8 and Table 6. The risk probability of 
the HBEAO for the 40th VM is 0.17, even though the DNN is 0.29, KTCS is 0.34, 
CHIMP is 0.32, SMA is 0.32, AO is 0.35, TSA is 0.33, AROA is 0.33, AEOSSA is 
51.29, ACO is 46.34 and BES is 0.32, respectively. The HBEAO provides impressive 
results with lower risks because its performance is more consistent than that of other 
traditional algorithms. By considering the optimal parameters of optimisation-based task 
scheduling, the HBEAO optimisation technique is used to improve the scheduling of 
tasks. The task scheduling of EC performs with lesser time, less makespan, and minimum 
amount of execution cost by considering the proposed optimisation method. The 
validation of present field of research has focused on using cutting-edge optimisation and 
deep learning approaches to help with task scheduling. The proposed method produces 
better results in task scheduling in terms of optimal parameters. 

Figure 8 Estimation of risk probability of HBEAO and standard approaches (see online version 
for colours) 

 

Table 6 Risk probability (%) 

Metrics DNN KTCS CHIMP SMA AO TSA AROA BES AEOSSA ACO HBEAO 
10 0.35 0.34 0.35 0.36 0.34 0.36 0.36 0.44 0.34 0.34 0.25 
20 0.24 0.35 0.34 0.35 0.36 0.36 0.35 0.32 0.31 0.32 0.21 
30 0.35 0.31 0.32 0.32 0.33 0.33 0.30 0.33 0.33 0.32 0.21 
40 0.29 0.34 0.32 0.32 0.35 0.33 0.33 0.32 0.31 0.31 0.17 
50 0.39 0.32 0.31 0.33 0.31 0.32 0.32 0.27 0.34 0.35 0.19 
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6.7 Convergence analysis on HBEAO-based task scheduling 

The convergence assessment was carried out to determine the performance of the 
HBEAO in comparison to other methods in terms of minimising multi-objective function. 
The outcomes are depicted in Figure 9. During the initial iteration, the HBEAO acquired 
the convergence rate of 11.2, whereas the TSA is 11.3, SMA is 12.4, CHIMP is 12.6, 
BES is 12.5, AEOSS is 12.7, ACO is 12.4 and AROA is 16.2, respectively. However, the 
HBEAO still has the lowest convergence value of 16.2 at the final iteration. As a 
consequence, it can be interpreted that the enhancement in the HBEAO approach 
minimises the makespan, execution cost, execution time, and risk probability and it 
applicable for task scheduling in IoT EC. 

Figure 9 Convergence study on HBEAO and conventional methodologies (see online version  
for colours) 

 

6.8 Statistical analysis 

Despite its random nature, the method of optimisation is exposed to several runs in order 
to ascertain the final results in terms of statistical metrics. The proposed statistical 
analysis for the HBEAO system is compared with more conventional approaches in  
Table 7. Five different case studies were used to evaluate the minimum, the maximum, 
the mean, the median, and the standard deviation. The proposed model has a mean of 
84.9%, which is better than the average for standard methods which are 10.41%, 9.88%, 
9.69%, 8.87%, 9.30%, and 9.50%, respectively. The HBEAO approach yields the least 
mean value. The CHIMP approach yields the cost function of 8.58 %, followed by the 
BES method at 8.37% and the AROA method at 8.31%, while the proposed HBEAO 
model achieved the minimum cost function of 8.18%. Similarly, the proposed HBEAO 
model’s median is 8.33%. The maximum values of the existing methods and proposed 
technique are 11.6%, 8.48%, 10.55%, 0.80%, 43.83%, and 11.6%. Consequently, the 
statistical analysis demonstrates the suggested algorithm’s hopeful performance in 
choosing the best attributes for accurate task scheduling. 
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6.9 ROC-AUC analysis 

Figure 10 displays the analysis of the ROC and AUC curves. The AUC-ROC curve is an 
efficacy measure for problems with classification at various threshold values. The y-axis 
analysis shows the genuine positive rate, and the X-axis analysis shows the false positive 
level. The AUC obtained, 0.86, is almost 1. In comparison to some of the past efforts, the 
value of AUC is accessed. It is evident that between the upper-left corner and the curve 
diagonal, the test data cover a bigger area than the training dataset. 
Table 7 Statistical analysis of cost function 

Metrics Mean Median Standard deviation Min Max 
CHIMP 10.41 11.21 1.58 8.58 12.50 
SMA 9.88 9.48 1.47 8.51 12.15 
AO 9.69 8.45 1.53 8.45 12.38 
TSA 8.87 8.57 0.89 8.48 11.29 
AROA 9.30 8.31 1.76 8.31 16.11 
BES 9.50 8.69 1.06 8.37 12.51 
ACO 10.54 10.39 1.62 9.03 13.15 
AEOSSA 11.22 11.95 1.78 8.69 12.94 
ACO 10.54 8.45 9.48 8.31 11.39 
HBEAO 8.49 8.33 0.81 8.18 11.20 

Figure 10 FROC and AUC curve analysis (see online version for colours) 

 

6.10 Time complexity analysis 

Table 8 displays the time complexity of the proposed HBEAO method over existing 
models. The existing Chimp optimisation (CHIMP), SMA, AO, TSA, AROA, BES 
methods are inferior by 34%, 72%, 24%, 24%, 19%, 22%, 12% and 6% respectively 
compared to the proposed HBEAO model’s computational time. 
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Table 8 Computational time analysis 

Methods Computation time (seconds) 
CHIMP 3,137.204 
SMA 4,016.772 
AO 2,899.112 
TSA 2,891.345 
AROA 2,777.992 
BES 2,483.078 
AEOSSA 2,798.081 
ACO 2,435.123 
HBEAO 2,325.872 

6.11 Discussion 

The IoT-EC concept is used in this research to analyse the task scheduling problem. By 
optimising long-term work satisfaction, a variety of jobs are scheduled to VMs deployed 
at the edge server. Considerations for the suggested ideal job scheduling include 
makespan, execution time, execution cost, and risk likelihood. In particular, the D-CNN 
performs the risk probability estimation. Based on task security and VM security, the 
novel HBEAO is used to schedule activities. The HBEAO achieved the lowest execution 
time of 0.99 for the 50th VM of all achieved execution times of 2.91, 2.59, 1.34, 1.5, 
2.30, 2.10, 2.12, 2.17 and 1.89, respectively. Finally, the effectiveness of the projected 
job is compared to the existing methods to task scheduling. The efficacy of the proposed 
work is then contrasted with that of the conventional task scheduling methods. 

7 Conclusions 

As the IoT gains traction, data collection is rapidly expanding. Jobs should be transferred 
to edge servers in order to offer quick response and balanced loads because end devices 
are computationally limited. The uneven distribution of devices in the actual environment 
would cause hot spots to form. There may be too many devices connected to some 
servers, which could cause jobs to run over their scheduled completion times. The 
proposed approach for task scheduling using deep learning-based risk probability 
prediction is offered as a solution to this issue. EC’s ideal job scheduling takes into 
account variables like risk likelihood, execution cost, execution time, and makespan. Risk 
probability was assessed using DCNN. The assignment was finally scheduled using the 
HBEAO. The created model has a fitness score of 3.484123, which is 96.08% better than 
DNN, 91.811% better than KTCS, 89.79% better than Chimp, 92.38% better than SMA, 
66.73% better than AO, 87.84% better than TSA, 93.47% better than AROA, AEOSSA is 
51.29, ACO is 46.34 and 89.15% better than BES. The end result demonstrates that the 
suggested method performs better than alternative benchmark methods. The focus of 
recent research has been on using cutting-edge optimisation and deep learning 
approaches to help with task scheduling. Future research will concentrate on workload 
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prediction, such as overload, underload, or balanced load, with enhanced algorithms to 
improve job scheduling. 
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