

International Journal of Web Engineering and Technology

ISSN online: 1741-9212 - ISSN print: 1476-1289
https://www.inderscience.com/ijwet

Deep learning-based task scheduling in edge computing

Bantupalli Nagalakshmi, Sumathy Subramanian

DOI: 10.1504/IJWET.2024.10061935

Article History:
Received: 03 May 2023
Last revised: 28 November 2023
Accepted: 06 December 2023
Published online: 29 April 2024

Powered by TCPDF (www.tcpdf.org)

Copyright © 2024 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijwet
https://dx.doi.org/10.1504/IJWET.2024.10061935
http://www.tcpdf.org

 20 Int. J. Web Engineering and Technology, Vol. 19, No. 1, 2024

 Copyright © 2024 Inderscience Enterprises Ltd.

Deep learning-based task scheduling in edge
computing

Bantupalli Nagalakshmi
School of Computer Science and Engineering,
Vellore Institute of Technology,
Vellore-632014, Tamil Nadu, India
Email: b.nagalakshmi2016@vitstudent.ac.in

Sumathy Subramanian*
School of Computer Science Engineering and Information Systems,
Vellore Institute of Technology,
Vellore-632014, Tamil Nadu, India
Email: ssumathy@vit.ac.in
*Corresponding author

Abstract: A potential paradigm called edge computing (EC) has recently come
to light that supports internet of things (IoT) applications that are resource
allocation with low latency services at the network edge. For scheduling the
application tasks, the edge server’s constrained processing capabilities present
significant difficulties. The IoT-EC scenario is used in this research to study the
task scheduling problem, and various jobs are scheduled to virtual machines
(VMs) set up the edge server by maximising long-term task satisfaction. The
proposed optimal task scheduling considers parameters like makespan,
execution time, execution cost, and risk probability. Particularly, the risk
probability estimation is done by the deep convolutional neural network
(D-CNN). This estimation is based on task security and VM security. The
scheduling of tasks is carried out via the new hybrid bald eagle Archimedes
optimisation (HBEAO) by considering a multi-objective to minimise the
makespan, execution time, execution cost, and risk probability. The proposed
model is validated with existing models in terms of execution cost, execution
time, fitness, makespan, risk probability, etc. It is observed that the HBEAO
model attains less execution cost ($37.27), execution time (0.99 seconds),
fitness (3.48%), risk probability (0.19%) and computation time (2,325.87 sec)
respectively.

Keywords: task scheduling; deep learning; edge computing; server;
optimisation; internet of things; IoT; deep convolutional neural network;
D-CNN.

Reference to this paper should be made as follows: Nagalakshmi, B. and
Subramanian, S. (2024) ‘Deep learning-based task scheduling in edge
computing’, Int. J. Web Engineering and Technology, Vol. 19, No. 1,
pp.20–43.

Biographical notes: Bantupalli Nagalakshmi is a research scholar in School of
Computer Science and Engineering, Vellore Institute of Technology, Vellore.
She pursed her BTech in Computer Science and Engineering from Sri
Venkateswara University, Tirupati and MTech in Computer Science and

 Deep learning-based task scheduling in edge computing 21

Engineering from JNTU University. Her area of research is algorithms and
networks. She is a life member of the Computer Society of India and the Indian
Society for Technical Education.

Sumathy Subramanian is a Professor at the School of Computer Science
Engineering and Information systems, Vellore Institute of Technology, pursued
her BE in Electronics and Communication Engineering, MTech in Computer
Science and Engineering and PhD in Wireless Networks. She is guiding
research scholars in the area of text mining, cloud computing and machine
learning. She has published more than 50 papers in reputed journals and
conferences at national and international level and has executed a DST-SERB
project and British Council project in collaboration with Nottingham Trent
University, UK. She is a life member of the Computer Society of India and the
Indian Society for Technical Education.

This paper is a revised and expanded version of a paper entitled ‘Self-improved
pelican optimization for task scheduling in edge computing: neural network
based risk probability estimation’, presented at 8th International Symposium on
Intelligent Informatics (ISI’23), Springer, 21 November 2023.

1 Introduction

The edge computing (EC) paradigm moved the processing capacity as close to the user as
feasible by creating a new tier between the cloud and the field tier (Gezer and Wagner,
2021). This led to the emergence of the EC paradigm, in which a large number of
small-scale computing facilities, known as edge servers, were built at the network edge
along the path from the user end to the cloud to receive offloaded tasks from mobile
devices. EC was intended to significantly reduce task reaction time in an energy-efficient
manner while also improving security and privacy (Cai et al., 2021). Computational
resources were moved closer to the sources of information generation in EC, which
reduced the network latency and bandwidth use frequently associated with cloud
computing (CC) (Zhao et al., 2021). The edge server in an EC system serves and
processes task requests and produces data from internet of things (IoT) devices nearby.
The edge server’s proximity to the IoT device reduced the time it took to respond to
requests for work compared to the centralised cloud data centre (Huang et al., 2020).

Scheduling jobs to suitable edge servers for execution in accordance with
performance and resource needs was a workable solution. An effective work scheduling
algorithm could actually greatly increase users’ quality of experience while
simultaneously increasing the efficiency of resources (Cai et al., 2021). However, task
scheduling using FIFO might reduce the throughput of EC nodes due to a mismatch
between the job and the hosting node (Ullah and Youn, 2020). The major emphasis of CC
was how to distribute incoming task requests among numerous resource units of a cloud
cluster because there was no difference in scheduling costs while sending work to
different resource units (Huang et al., 2020). The length of time was taken for running
processes to complete is clearly impacted by an edge server’s excessive resource
contention. To handle scenarios where an edge server is significantly overloaded, an
effective work or task scheduling mechanism must be presented (Liu et al., 2019).

 22 B. Nagalakshmi and S. Subramanian

To optimise the number of successful jobs, a deep quantum network (DQN)-based
task scheduling method was investigated in CC (Sheng et al., 2021). Collaborative task
scheduling beats historical scheduling methods in terms of the deadline fulfilment ratio of
time-critical workloads while maintaining deadlines for local tasks in IoT devices (Liu
et al., 2019). With the help of the Trans EC-DQL algorithm, scheduling decisions were
made after learning the vector representations of the nodes and tasks. In addition, to
improve scalability, the algorithm’s state was changed to a distribution dependent on
resource levels (Tang et al., 2022). Traditionally, the K-means clustering technique is
used to categorise the work in the KTCS scheme, and the node usage is evaluated. After
that, tasks are allocated to the node that matches the requested resource. While real EC
scenarios involve many heterogeneous nodes and tasks, current DL methods presume an
environment with comparatively limited state sets and action sets. Processing a lot of data
is necessary for this (Lv et al., 2021; Mukherjee et al., 2021; Yamuna and Usha Rani,
2022). Additionally, each node or task has its own characteristics, such as resource
capabilities for nodes and resource requests, allocations, etc. for tasks. These make it
harder to store all the data immediately and can also cause dimensional disasters.
Consequently, it is a significant problem to schedule the tasks, conserve computing
resources, and arrive at quick decisions (Zhou et al., 2021; Fang et al., 2019; Liu et al.,
2021). It fully utilises the processing power and computer resources of the peer-to-peer
network, decomposes complicated computational tasks, and distributes them to the
selected node for shared computing, greatly improving the utilisation efficiency of the
available computational resources and workflow execution as a whole. In order to
employ the other EC nodes to process the delay-sensitive tasks, it is critical to plan the
jobs effectively in order to ensure the load balance of the entire EC network and to
complete the task as quickly as practical. The main contributions are:

1 Proposing an optimisation-based task scheduling process in IoT-EC with the
consideration of multi-objectives like makespan, execution time, execution cost, and
risk probability.

2 Applying the deep convolutional neural network (D-CNN) concept is for estimating
the risk probability while scheduling the tasks, which will be based on task security
and virtual machine (VM) security.

3 Proposes a new optimisation technique, hybrid bald eagle Archimedes optimisation
(HBEAO) for scheduling the task with the above-mentioned constraints.

The organisation of the paper is: The review of previous research is shown in Section 2, a
system model is explained in Section 3, the proposed optimisation for scheduling the task
with deep learning-based risk probability prediction is explained in Section 4, HBEAO
based scheduling process is shown in Section 5, result is discussed in Section 6, and
references are shown in Section 7.

2 Literature review

In 2021, Sheng et al. (2021) have developed a policy-based REINFORCE method to
address the problem of work schedule, and a fully connected neural network (FCN) was
utilised to extract the features. The given deep reinforcement learning (DRL)-based task
scheduling method outperforms the currently recommended methods in the literature,

 Deep learning-based task scheduling in edge computing 23

according to simulation results that show average task satisfaction levels and success
rates.

In 2021, Cai et al. (2021) have developed a task scheduling technique for a
failure-resistant directed acyclic graph (DAG) to reduce the reaction time that the tasks
encounter. An approach called context-aware greedy task scheduling (CaGTS) was
presented in order to solve the DAG task allocation problem. A dependency aware task
rescheduling (DaTS) technique was subsequently developed to address the edge server
failure occurrence. Extensive tests had been performed on a Python-developed simulator
to gauge how well the proposed methods performed. According to experimental results
with a variety of parameter settings and DaTR could successfully prevent task scheduling
interruptions brought on by server failure events.

In 2021, Zhao et al. (2021) have created the low-load distributed intrusion detection
system (DIDS) task scheduling method for reinforcement learning, which is based on the
Q-Learning approach. By altering scheduling techniques dynamically in reaction to
network changes in the EC environment, this approach can balance the two diametrically
opposed signs of low load and packet loss rate. The aim was to maintain a minimum
overall DIDS load. Indicators like the rate at which malicious features are detected are
not greatly affected by the proposed strategy, simulation trials demonstrate, and it
performs better under low demand than existing scheduling strategies.

In 2021, Zhang et al. (2021) have proposed a joint task scheduling and containerising
(JTSC) scheme for task scheduling. The resource usage of container operations was
initially measured through experiments. To reflect the properties of task execution in
containers on a network edge with multiple processors, system models for the system
were then developed. Initially, tasks were scheduled without taking containerisation into
account, which led to earlier timetables. Second, a number of containerisation methods
were created to map jobs to containers using the system concepts and principles gleaned
from the first schedules. Third, the task schedules were adjusted to reflect the updated
task execution durations, which included the time needed for inter-container interactions.
Numerous simulations were used to assess the JTSC method. According to the results, it
significantly decreased wasteful container activities and increased application execution
efficiency by 60%.

In 2019, Liu et al. (2019) have developed fuzzy clustering technique is utilised in this
algorithm to narrow the search space range, hence lowering the complexity of the
scheduling process and the number of repetitions. Additionally, the ant colony
algorithm’s powerful global search capability is used to identify the scheduling problem’s
ideal solution.

In 2020, Tang et al. (2022) have deployed DRL-based method was designed to
accommodate dynamic changes in nodes and tasks as well as to address the issues faced
by DRL methods due to the large number dimensions, when the input size is large. To be
more precise,

1 They use representation methods of learning to categorise various EC nodes and
activities. Nodes and jobs are mapped to compatible vector sub-spaces in order to
minimise dimensions and store vector data effectively.

2 Scheduling decisions were made utilising the space remaining after image
compression to learn the associated with the suggested nodes and jobs.

 24 B. Nagalakshmi and S. Subramanian

3 Real-world data was used in the studies, and the findings demonstrate that the
suggested representation technique using a DRL-based procedure outperforms the
baselines by 18.04% and 9.94%, accordingly, in terms of energy usage and service
level agreement violation (SLAV).

In 2021, Abd Elaziz et al. (2021) have developed AEOSSA, a new artificial
ecosystem-based optimisation (AEO)-based alternative task scheduling method for IoT
requests in a cloud-fog context. This patch was built utilising the SSA operators in an
effort to increase the AEO’s ability to exploit data while looking for the best solution to
the issue at hand. The usefulness of the proposed AEOSSA approach to solve the task
scheduling problem is evaluated using a variety of synthetic and real-world datasets of
different sizes.

In 2020, Shi and Shi (2020) have established a multi-node task scheduling with a
multi-objective optimisation that took into account the impact of energy use, load
balancing, and job completion time. To fulfil the needs of delay-sensitive activities, task
scheduling was turned into a bidding system and a real-time dumping ground for
subtasks. Their final argument was that the method for scheduling tasks over several
nodes, which offers fresh suggestions for allocating EC work, was created through
simulation testing. Table 1 shows the benefits and drawbacks of task scheduling
techniques.
Table 1 Features and challenges of previous task scheduling techniques

Author
[citation] Methodology Benefits Drawbacks

Sheng et al.
(2021)

REINFORCE
algorithm

Good convergence
performance

It is necessary to focus more
on communication delay

Cai et al.
(2021)

CaGTS In server failure events,
it effectively performs
the task scheduling

The impact is a
communication link failure

Zhao et al.
(2021)

DIDS task scheduling
Q-learning algorithm

It has better low-load
performance

The q-table is very large and
the update time was increased

Zhang et al.
(2021)

JTSC It improves execution
efficiency and decreases
ineffective container
activities.

Applications that cannot be
categorised as task workflows

Liu et al.
(2019)

ACO Achieved near-optimal
task throughput

It requires more storage
capacity

Tang et al.
(2022)

DRL Energy consumption,
SLAV, and the cost are
low

It needs a lot of data and a lot
of computation

Abd Elaziz
et al.
(2021)

SSA Improves the task
completion ratio

Must be improved with a
more complex load-balancing
scheme

Shi and Shi
(2020)

Multi-objective
optimisation model

Energy consumption was
low and task completion
time was faster

It is necessary to take into
account the relationships
between the activities and
challenging arrival scenarios.

Despite the fact that numerous algorithms have been developed for task scheduling,
different meta-heuristic algorithms, and deep learning concepts play a significant part in

 Deep learning-based task scheduling in edge computing 25

task scheduling. However, the existing models have a variety of shortcomings in terms of
performance efficiency. A very quick multi-objective optimisation model was used to
address the issue of energy consumption efficiency (Shi and Shi, 2020). But it does not
take into account how the tasks are interdependent, or how difficult arrival scenarios can
be. The MAR model must also take complicated load balancing into account. Some deep
learning models like CNN, LSTM, and Bi-GRU reduce costs, but they still require
improved convergence toward decision-making for the given task. To address the
above-mentioned constraints, the HBEAO optimisation method is used to improve the
scheduling of tasks.

3 System model

The edge server receives jobs produced by IoT apps for scheduling tasks in an EC
systems. Edge server configured with several VMs. To keep things simple, we merely
pay attention to the computational resources for job scheduling. Task sizes, expected
finish durations, processing rates (measured in MIPS), and waiting periods are just a few
of the information the scheduler keeps track of regarding incoming tasks and VMs that
have an impact on scheduled decisions. Based on the data collected, (i.e., which VM is
assigned to each job), the scheduler chooses when to schedule, (i.e., the order of the tasks
in the schedule and their start timings) and where to schedule. Figure 1 shows the
architecture of task scheduling in EC. The backlog of tasks in the queue and the waiting
set inside the circle are the two groupings of work that are available for scheduling.
Unlike the number of jobs in the backlog queue, which can only be viewed by the
scheduler, the number of tasks in each waiting set, which occupy waiting slots that can be
completely noticed, can be seen by the scheduler. At each scheduling time step, the
scheduler chooses a maximum of one work from the waiting slot for scheduling. This
research investigates the work scheduling in EC with a single deployed edge server.

3.1 Task scheduling mechanism

Tasks and VMs are the two primary elements of EC and are also crucial to task
scheduling. IoT applications generate the tasks, which are then forwarded to edge servers
for processing. While EC owns the edge servers, which offer computational resources.
Let S = (S1, S2, …. SN) and VM = (VM1, VM2, …. VMn) denote the sets of tasks and nodes
respectively. Where S1 is a first task and N denotes the total number of tasks, VM1
denoted the first VM; n denotes the total number of VM.

The defined objective is to raise the overall task satisfaction over the long term,
which is represented in equation (1). Here G1, G2, G3, G4 indicates the makespan,
execution time, execution cost, and risk probability respectively, w1, w2, w3, w4 indicates
the weights, that are assigned to each parameter G1, G2, G3, G4.

()1 1 2 2 3 3 4 4min + + +O w G w G w G w G= ∗ ∗ ∗ ∗ (1)

In equation (1), weights w are calculated using Dirichlet distribution. The Dirichlet
distribution is defined as a distribution over vectors w satisfying the

 26 B. Nagalakshmi and S. Subramanian

constraints
1

0 1,
n

i i
i

w w
=

> = where n = 4. The probability density function p of a

Dirichlet-distributed random vector X is proportional to equation (2), where α is a vector
containing the positive concentration parameters.

1

1

() i

k

i
i

p x xα −

=

∝ ∏ (2)

The method uses the following property for computation: let Y be a random vector that

has components that follow a standard gamma distribution, then

1

1
k

ii

X
Y

=

=


 is

Dirichlet distributed.

Figure 1 Task scheduling architecture of EC (see online version for colours)

 IOT

S1 S2 …. SN S1 S2 …. SN S1 S2 …. SN

Interface

Users

S1, S2…SN -TASK

Task dependencies can be found by examining the connections between tasks and
figuring out which ones need to be finished before beginning or ending. That is, you must
take into account both your forebears and your successors. A start-to-finish (SF)

 Deep learning-based task scheduling in edge computing 27

dependency occurs when you can only finish the prior task if the one after it has begun.
One of the rarest kinds of dependencies in real-world settings, this kind of reliance
typically arises from scheduling-related events involving the handoff of one task to
another. Task dependencies show the sequence in which tasks must be finished.
Dependencies allow you to find the optimal task sequencing that will get you through the
research the quickest. While a VM is accessible, it is allocated a task; while it is busy, it
is not assigned any tasks.

4 Proposed optimisation for scheduling the task with deep learning-based
risk probability estimation

As stated above, the proposed task scheduling mechanism in EC considers parameters
like makespan, execution time, execution cost, and risk probability. The risk probability
can be predicted by using D-CNN. The defined parameters are as follows:

4.1 Makespan (G1)

It is defined as the overall completion time needed to execute all tasks. Makespan
(Mapetu et al., 2019) is represented in equation (3)

{ }
1
max i

i k
MP CT

≤ ≤
= (3)

where k indicates the number of VM. CTi is represented in equation (4)

1

.
.Pr .

m
j

i
j jj

S l
CT

VM VM mips=

=
× (4)

where m denotes the number of tasks in VM, S denotes the task, l indicates the size of S,
Pr indicates the number of processing elements in VM, mips represents (million
instruction per second) execution speed per processing element of a VM.

For example, the four jobs to process in parallel on two processors, and the
processing times for each job are as follows: job 1: four units of time, job 2: three units of
time, job 3: two units of time, job 4: five units of time. Using a scheduling algorithm, you
might schedule the jobs as follows: processor 1: job 1 (four units), job 3 (two units),
processor 2: job 2 (three units), job 4 (five units). The makespan in this case would be the
time it takes for the last job to finish on processor 2: makespan = 3 units (job 2) + 5 units
(job 4) = 8 units of time. So, the makespan for these parallel processing jobs on two
processors is 8 units of time.

4.2 Execution time (G2)

The duration of time taken by the VM to execute each task is denoted as execution time

4.3 Execution cost (G3)

Execution costs are fees paid by the user to the provider in exchange for the usage of
resources to carry out the task.

 28 B. Nagalakshmi and S. Subramanian

4.4 D-CNN-based risk probability estimation (G4)

Risk probability (Verma, 2022; Li et al., 2021) can be predicted by using D-CNN, where
the inputs are considered as task security (Hai et al., 2023) (Ss) and VM security (Hai
et al., 2023) (Vs), based on which the model is trained to obtain the risk. A detailed
explanation of the model is given below.

CNN is a deep feed-forward ANN class that is extensively utilised in computer vision
issues like data classification. CNN differs from a ‘simple’ multilayer perception (MLP)
network in that it employs convolutional layers, pooling, and nonlinearities like tanh,
sigmoid, and ReLU (Teow, 2017).

The convolutional layer is made up of a filter that is used to ‘slide’ through the size of
incoming data and generates task scheduling parameters. As a result, a 2-dimensional
activation map made up of the filter’s reactions at certain places will be created. The
pooling layer then decreases the size of the data in accordance with the result of a
convolution filter. This results in down-sampling, or scaling back of the parameterisation
of the model. The proposed deep CNN is presented in Figure 2.

Figure 2 Layer-wise architecture of proposed deep CNN

Input layer

Convolutional layer

Pooling layer

Dropout layer

Convolutional layer

Pooling layer

 S and V

Dropout layer

Output layer

Targeted Risk

 Deep learning-based task scheduling in edge computing 29

4.4.1 Input layer
Task security (Ss) and VM security (Vs) are the inputs for deep CNN. Ss and Vs are
generated randomly between the numbers 1 to 5.

4.4.2 Convolutional layer
When back propagation training is used to train the trainable convolution kernels in this
layer, the kernel weights are automatically adjusted to take into account the features of
the input data. The convolution layer’s input features can be processed for use in other
computational operations by the following algorithmic levels. This unsupervised
convolutional feature learning method is neutrally motivated by the work on the
recognition model and receptive field theory. The output is a convolved feature map (fc) it
was represented in equation (5) where ⊗ indicates a 2D discrete convolutional operator,
convolutional kernel is represented in K spatially slides over the input data I to compute
the element-wise multiplication and sum to produce an output, a convolved feature map
(fc).

()
() ()
,

() , (,) ,
c s s

s s s sm n

f conv T V

I K S V I m n K S m V n

=

= ⊗ = − − 
 (5)

4.4.3 Pooling layer
In order to reduce the spatial dimensionality of the corrected feature map and produce a
more compact feature representation for processing, a pooling layer subsamples the
corrected feature map. (fp) indicates the output of the pooled featured map. It is
represented in equation (6).

() ,
1, s sp s s S Vm

f pool S V x
M

= =  (6)

4.4.4 Dropout layer
CNN has a lot of parameters, particularly in the fully connected layer, and having too
many parameters can cause over fitting. Typically, a model combination made up of
many distinct networks is trained to avoid over fitting. The fundamental principle of
dropout is that at each training stage, a portion of units are randomly dropped with
probability 1-p (or kept with probability p), and p can be established by experimentation.
To put it another way, the networks are different from one another and become thinner
than a typical neural network after dropout is used, which increases the model’s resilience
to over fitting and speeds up training. Each neuron within the combination of these
thinning networks participates in prediction, and the model as a whole. Dropout hence
can prevent overfitting.

4.4.5 Output layer
The output layer presents the risk probability result (Pbj) under varied condition rk. This
approach results in targeted risk, which has a range of 0 to 3. It is represented in

 30 B. Nagalakshmi and S. Subramanian

equation (7). If the output denotes 0, which means there is no risk, low risk if it is 1, high
risk if it is 2, and medium risk if it is 3.

()()
()

2

3
2

0; 0

1 ; 1

1 ; 2
1; 3

s s

s s

k

V S
k

bj V S

k

k

if r

e if r
P

e if r
if r

−

−

<= 
 
 − = =  
 − = 
 = 

 (7)

5 HBEAO-based task scheduling process

5.1 Input solution and objective function

While scheduling the task using HBEAO, consider the inputs of the edge server have a
certain number of VMs, and the number of tasks. Each task will be assigned to a
particular VM for processing. For instance, then number of tasks SN is S1, S2, … SN.
Also, three numbers of VMs are used to assign the tasks. Based on the objective function
in equation (1) (makespan, execution time, execution cost, and risk probability), task S1 is
assigned to the 1st VM, then task 2 is assigned to the 3rd VM, and so on till the10th task.
Figure 3 shows the task scheduling process solution in HBEAO.

Figure 3 Task scheduling structure

 1 3 3 2 1 2 1 1 3 2 VM

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Task

The HBEAO method, or more particularly Archimedes’ law, is based on physics. This
algorithm’s originality lies in the solution, which contains three pieces of auditory data
for the core agents: volume (U), density (B), and acceleration (Gamma). As a result, in
dim dimensions, the initial group of agents is generated at random (Hashim et al., 2021).
As additive data, we provide random U, B, and Gamma values. The procedure of
evaluating each object is then completed to determine which the best Ubest is. To change
the acceleration based on the idea of task collision throughout the HBEAO process,
density and volume are updated. This step is crucial in identifying the innovative position
of the present solution.

5.2 Initialisation

In this phase, we initialise the real population (according to this work, it is a task) of M
objects using equation (8). Additionally, density (Bi), volume (Ui), and acceleration (Γi)
of each object are constructed using the equations (9), (10), and (11). Where Ji indicates
the ith object, andMax Min

i iU U are the search maximal spaces and minimal bounds, r1, r2,
r3 and r4 are random numbers that range from [0, 1]Dim.

 Deep learning-based task scheduling in edge computing 31

()min
1+ ; 1, 2,,Max Min

i i i iJ J r J J i M= × − = (8)

2iB r= (9)

3iU r= (10)

()4Γ Γ + Γ Γ ; 1, 2,,Max Max Min
i i i ir i M= × − = (11)

To determine which object is the best (Jbest) in the population, the best values of each
candidate’s density (Bbest), volume (Ubest), and acceleration (Γbest) will be combined after
a population analysis in which each candidate is given a score is completed.

5.3 Density and volume adjustments

At this stage, the density (Hashim et al., 2021) and volume (Hashim et al., 2021) values
for each object are modified by selecting the optimal density and volume using
equation (12) and equation (13). Initialise the volume and density for each ith object.

()+1
1+St St St

Besti iJ J s J J= × − (12)

()+1
2+It It It

Besti i iU U s U U= × − (13)

where Jbest and Ubest are the volume and density for the optimal object. Here s1 and s2
indicates the random values between [0, 1].

5.4 Transfer coefficient and density scalar

Until the equilibrium state is established, this process involves object collisions.
According to equation (14), the transition from the exploration phase to the exploitation
phase is predominantly controlled by the transfer function (Fc). Over time, the (Fc) grows
exponentially until it reaches 1. St indicates the current iteration; Stmax indicates the
maximum number of iterations. On the other hand, the global search employing
equation (15) is expected to be converted to a local search by gradually decreasing the
density factor bs.

exp Max
c

Max

St StF
St
− =  

 
 (14)

+1 exp MaxSt
s

Max Max

St St Stb
St St
−   = −   

   
 (15)

5.5 Proposed exploration phase

An assortment of materials chosen at random causes the agents to collide in this step.
Consequently, the BES algorithm is used to update the acceleration objects when the
transfer coefficient value is less than or equal to 0.5 (Alsattar et al., 2020). The BES
algorithm, which replicates bald eagle hunting behaviour, justifies the results of each
hunting step. The three parts of this method are picking the search space, looking inside
the chosen search space, and swooping. It is shown by equation (16). Where q(i) is

 32 B. Nagalakshmi and S. Subramanian

expressed in equation (17), v(i) is expressed in equation (18). Where qr(i) expressed in
equation (19), vr(i) expressed in equation (20), θ(i) expressed in equation (21) and r(i)
expressed in equation (22).

() ()+1+ () + ()new i i i i meanZ Z v i Z Z q i Z Z= ∗ − ∗ − (16)

()
()()

max | |
qr iq i

qr
= (17)

()
()()

max | |
vr iv i

vr
= (18)

() () sin(())qr i r i θ i= ∗ (19)

() () cos(())vr i r i θ i= ∗ (20)

()θ i a π rand= ∗ ∗ (21)

() () +r i θ i R rand= ∗ (22)

5.6 Proposed exploitation phase

As per the proposed logic, the trigonometric operator of the SCA algorithm is used for a
position update. Here, the sine and cosine functions, as stated in equations (23) or (24),
can be used to significantly improve the exploitation step of AOA by this operator.
Where Zbest is the best object at St iteration. Zi is the current solution, β1, β2, β3 and β4 are
represented in equations (24) to (27). Where s is a constant value 2. Here rand1, rand2,
rand3 and rand4 is calculated using the Chebyshev map,

()
()

1 2 3 4

1 2 3 4

+ sin . 0.5
+ cos . 0.5

new i best i

new i best i

Z Z Z Z if
Z Z Z Z if

β β β β
β β β β

= ∗ ∗ − <

= ∗ ∗ − ≥
 (23)

1
max

ss t
T

β = − ∗ (24)

2 22 iZ randβ = ∗ ∗ (25)

3 32 randβ = ∗ (26)

4 4randβ = (27)

()1cos 0.5 cos krand C−= ∗ (28)

5.7 The update process

For the exploration phase (Tc ≤ 0.5), equation (29) modifies the position of the ith object
in iteration St + 1. Where F indicates the transfer operator which is updated by the BES
swooping stage. It is represented in equation (30).

 Deep learning-based task scheduling in edge computing 33

()++1
2+ t

new best besti norm iX X G C rand acc d F x x−= ∗ ∗ ∗ ∗ ∗ ∗ − (29)

() + sinh[()]F θ i R rand θ i= ∗ ∗ (30)

()++1
1+t t

new randi i norm iX x G C rand acc d x x−= ∗ ∗ ∗ ∗ ∗ − (31)

The pseudo-code of HBEAO is as follows:

Pseudo code of HBEAO
Step 1: Initialisation
 Initialise the total number of populations, lower bound, upper bound, maximum iteration,

chromosome length
Step 2: Initial solution
 Generate population positions in a random manner
 Compute densities and volume via equations (4), (5), and (6)
Step 3: Fitness function
 Compute the fitness of each solution and choose the best fitness value
Step 4: Current iteration = 1
Step 5: While the current iteration is less than or equal to the maximum iteration
 For each object
 Update the density and volume of each object via equation (12) and equation (13)
 Evaluate the transfer operator and density decreasing factor via equation (14) and

equation (15)
 If transfer function ≤ 0.5
 Update the acceleration via the BES concept as per equation (16)
 Update the positions of each object via the proposed equation (29)
 Else
 Update the acceleration via the BES concept as per equation (23)
 Update the position of each object via equation (31)
 End if
 End for
Step 6: Compute the fitness of each updated object and select the best fitness
Step 7: Set iteration = iteration + 1
Step 8: End while
Step 9: Return the optimal best solution
Step 10: Stop

6 Results

6.1 Simulation procedure

Python was used to execute the suggested task scheduling in IoT EC. The HBEAO was
compared with the various algorithms, namely, deep neural network (DNN) (Chen et al.,

 34 B. Nagalakshmi and S. Subramanian

2020), CHIMP, slime mould algorithm (SMA), Aquila optimisation (AO), tunicate
swarm algorithm (TSA), Archimedes optimisation algorithm (AROA), K-means
clustering-based task classification and scheduling (KTCS) (Ullah and Youn, 2020), and
bald eagle search (BES), respectively. We can gather, visualise, and analyse real-time
data streams in the cloud using a service provided by the IoT analytics platform called
Thing Speak. Thing Speak instantaneously visualises the data we send from our devices
to it. The network of interconnected devices and the technology that allows for
communication both between the devices and the cloud as well as among them are
collectively referred to as the ‘internet of things’, or IoT. Internet or networks are both
referred to as ‘clouds’. This technology replaces local drives with distant servers on the
internet for online data storage, management, and access. There are many other types of
data that can be used, including files, photos, documents, audio, and video.

6.2 Analysis of HBEAO for execution cost ($)

The computation of the execution cost of the HBEAO is analysed with conventional
techniques, is represented in Figure 4 and Table 2. The HBEAO achieved the lowest
execution cost of 37.27 whilst the DNN is 109.25, KTCS is 99.19, CHIMP is 76.61,
SMA is 84.93, AO is 97.33, TSA is 50.24, AROA is 50.06, ACO is 88.06, AEOSSA is
63.89 and BES is 70.81, respectively. Furthermore, at the 20th VM, the HBEAO
generated an execution cost of 37.39, even though the execution cost of 109.52, 98.81,
76.86, 85.45, 97.13, 50.32, 57.28, 87.83, 63.59 and 71.19, respectively. Generally, it is
corroborated that the HBEAO works more flawlessly in the task of scheduling.

Figure 4 Estimation of execution cost of HBEAO and standard approaches (see online version
for colours)

 Deep learning-based task scheduling in edge computing 35

Table 2 Execution cost

Metrics DNN KTCS CHIMP SMA AO TSA AROA BES AEOSSA ACO HBEAO
10 109.73 99.00 77.12 85.26 96.77 50.67 56.80 71.31 88.06 63.89 38.31
20 109.52 98.81 76.87 85.46 97.14 50.32 57.29 71.20 87.83 63.59 37.39
30 109.33 99.51 77.60 85.97 97.22 50.78 57.58 70.88 88.55 64.18 36.91
40 109.31 98.81 76.83 85.17 97.25 50.07 56.99 70.69 87.82 63.45 37.53
50 109.26 99.19 76.61 84.93 97.33 50.24 57.06 70.81 87.90 63.42 37.27

6.3 Analysis of execution time during task scheduling process of HBEAO and
other methods

An execution time analysis is reviewed and computed over the standard approaches to
demonstrate the viability of the HBEAO. Also, Figure 5 and Table 3 present the pertinent
results. The minimal execution time obtained in the HBEAO is 0.99 towards the 50th
VM, in contrast, the DNN = 2.91, KTCS = 2.64, CHIMP = 2.04, SMA = 2.26,
AO = 2.59, TSA = 1.34, AROA = 1.5, AEOSSA = 2.34, ACO = 1.70 and BES = 1.89,
respectively. Likewise, the HBEAO maintained 1.02, 0.1, 0.9, and 1.0 execution times
while scheduling the tasks in 10, 20, 30, and 40 VMs. Therefore, the HBEAO provides
progressive performances for task scheduling with minimal execution time.

Figure 5 Estimation of execution time of HBEAO and standard approaches during the scheduling
process (see online version for colours)

6.4 Analysis of HBEAO-based task scheduling with respect to an objective

The HBEAO is conflicted with previous methodologies for numerous VMs to fitness.
The findings for the fitness measure are portrayed in Figure 6 and Table 4. For the 30th

 36 B. Nagalakshmi and S. Subramanian

VM, the HBEAO scored a fitness of 6.01, although the current methods have obtained a
fitness of 49.53, 75.38, 20.90, 50.06, 85.34, 22.75, 59.04, 45.05, 31.58 and 20.65,
respectively. This proves that the proposed method obtains minimal fitness that ensures
better convergence in scheduling the tasks. The HBEAO achieved diminished fitness to
39.48, meanwhile, the DNN is 88.97, KTCS is 42.55, CHIMP is 34.14, SMA is 45.74,
AO is 10.48, TSA is 28.67, AROA is 53.39, AEOSSA is 51.29, ACO is 46.34 and BES is
32.13, respectively when it experiments with 50 VM.
Table 3 Execution time (seconds)

Metrics DNN KTCS CHIMP SMA AO TSA AROA BES AEOSSA ACO HBEAO
10 2.92 2.64 2.06 2.27 2.58 1.35 1.51 1.9 2.34 1.70 1.02
20 2.92 2.63 2.05 2.28 2.59 1.34 1.53 1.90 2.34 1.69 0.12
30 2.92 2.65 2.07 2.29 2.59 1.35 1.54 1.89 2.36 1.71 0.987
40 2.91 2.63 2.05 2.27 2.59 1.34 1.52 1.89 2.34 1.69 1.00
50 2.91 2.65 2.04 2.26 2.60 1.33 1.52 1.89 2.34 1.69 0.99

Figure 6 Estimation of fitness of HBEAO and standard approaches (see online version
for colours)

Table 4 Fitness

Metrics DNN KTCS CHIMP SMA AO TSA AROA BES AEOSSA ACO HBEAO
10 107.77 49.21 40.90 59.85 44.86 22.28 33.15 26.78 45.05 31.58 11.65
20 72.13 87.54 64.99 42.77 53.22 26.35 27.90 65.40 76.26 45.67 12.99
30 49.54 75.39 20.90 50.06 85.34 22.75 59.04 20.65 48.14 21.82 6.016
40 39.14 78.16 24.44 27.56 84.34 68.25 38.59 33.61 51.29 46.34 20.42
50 88.97 42.55 34.14 45.74 10.47 28.67 53.39 32.13 38.34 31.40 3.48

 Deep learning-based task scheduling in edge computing 37

6.5 Analysis of HBEAO-based task scheduling with respect to makespan

The resemblance of the HBEAO makespan to those of the established methods for the
distinctive VM is shown in Figure 7 and Table 5. The maximal makespan attained by the
KTCS in the 10th VM is 144.05, accompanied by a DNN is 127.6921
and AO is 110.9954, however, the HBEAO acquired the makespan of 37.57.
Furthermore, the HBEAO gained the makespan of 36.16, which is superior to
DNN = 127.58, KTCS = 144.02, CHIMP = 90.39, SMA = 106.19, AO = 111.40,
TSA = 62.05, AROA = 70.18, AEOSSA = 117.29, ACO = 76.29, and BES = 90.83,
respectively. Consequently, the findings imply that the HBEAO has outperformed other
alternative plans by a significant margin with less makespan for task scheduling in IoT
EC.

Figure 7 Estimation of makespan of HBEAO and standard approaches (see online version
for colours)

Table 5 Makespan

Metrics DNN KTCS CHIMP SMA AO TSA AROA BES AEOSSA ACO HBEAO
10 127.69 144.05 90.09 106.25 110.99 62.09 69.57 91.39 117.20 76.21 37.57
20 127.58 144.02 90.39 106.19 111.40 62.05 70.18 90.83 117.29 76.29 36.15
30 127.50 144.43 90.16 106.75 111.49 62.43 70.59 91.10 117.20 76.21 35.15
40 127.44 144.24 89.70 105.97 111.70 61.90 69.91 90.75 116.96 75.80 36.96
50 127.45 143.92 89.81 105.51 111.63 61.93 69.85 90.63 116.86 75.869 38.97

 38 B. Nagalakshmi and S. Subramanian

6.6 Analysis of HBEAO-based task scheduling with respect to risk probability

To substantiate the feasibility of the HBEAO for task scheduling in IoT EC persistence
over the traditional methods are described in Figure 8 and Table 6. The risk probability of
the HBEAO for the 40th VM is 0.17, even though the DNN is 0.29, KTCS is 0.34,
CHIMP is 0.32, SMA is 0.32, AO is 0.35, TSA is 0.33, AROA is 0.33, AEOSSA is
51.29, ACO is 46.34 and BES is 0.32, respectively. The HBEAO provides impressive
results with lower risks because its performance is more consistent than that of other
traditional algorithms. By considering the optimal parameters of optimisation-based task
scheduling, the HBEAO optimisation technique is used to improve the scheduling of
tasks. The task scheduling of EC performs with lesser time, less makespan, and minimum
amount of execution cost by considering the proposed optimisation method. The
validation of present field of research has focused on using cutting-edge optimisation and
deep learning approaches to help with task scheduling. The proposed method produces
better results in task scheduling in terms of optimal parameters.

Figure 8 Estimation of risk probability of HBEAO and standard approaches (see online version
for colours)

Table 6 Risk probability (%)

Metrics DNN KTCS CHIMP SMA AO TSA AROA BES AEOSSA ACO HBEAO
10 0.35 0.34 0.35 0.36 0.34 0.36 0.36 0.44 0.34 0.34 0.25
20 0.24 0.35 0.34 0.35 0.36 0.36 0.35 0.32 0.31 0.32 0.21
30 0.35 0.31 0.32 0.32 0.33 0.33 0.30 0.33 0.33 0.32 0.21
40 0.29 0.34 0.32 0.32 0.35 0.33 0.33 0.32 0.31 0.31 0.17
50 0.39 0.32 0.31 0.33 0.31 0.32 0.32 0.27 0.34 0.35 0.19

 Deep learning-based task scheduling in edge computing 39

6.7 Convergence analysis on HBEAO-based task scheduling

The convergence assessment was carried out to determine the performance of the
HBEAO in comparison to other methods in terms of minimising multi-objective function.
The outcomes are depicted in Figure 9. During the initial iteration, the HBEAO acquired
the convergence rate of 11.2, whereas the TSA is 11.3, SMA is 12.4, CHIMP is 12.6,
BES is 12.5, AEOSS is 12.7, ACO is 12.4 and AROA is 16.2, respectively. However, the
HBEAO still has the lowest convergence value of 16.2 at the final iteration. As a
consequence, it can be interpreted that the enhancement in the HBEAO approach
minimises the makespan, execution cost, execution time, and risk probability and it
applicable for task scheduling in IoT EC.

Figure 9 Convergence study on HBEAO and conventional methodologies (see online version
for colours)

6.8 Statistical analysis

Despite its random nature, the method of optimisation is exposed to several runs in order
to ascertain the final results in terms of statistical metrics. The proposed statistical
analysis for the HBEAO system is compared with more conventional approaches in
Table 7. Five different case studies were used to evaluate the minimum, the maximum,
the mean, the median, and the standard deviation. The proposed model has a mean of
84.9%, which is better than the average for standard methods which are 10.41%, 9.88%,
9.69%, 8.87%, 9.30%, and 9.50%, respectively. The HBEAO approach yields the least
mean value. The CHIMP approach yields the cost function of 8.58 %, followed by the
BES method at 8.37% and the AROA method at 8.31%, while the proposed HBEAO
model achieved the minimum cost function of 8.18%. Similarly, the proposed HBEAO
model’s median is 8.33%. The maximum values of the existing methods and proposed
technique are 11.6%, 8.48%, 10.55%, 0.80%, 43.83%, and 11.6%. Consequently, the
statistical analysis demonstrates the suggested algorithm’s hopeful performance in
choosing the best attributes for accurate task scheduling.

 40 B. Nagalakshmi and S. Subramanian

6.9 ROC-AUC analysis

Figure 10 displays the analysis of the ROC and AUC curves. The AUC-ROC curve is an
efficacy measure for problems with classification at various threshold values. The y-axis
analysis shows the genuine positive rate, and the X-axis analysis shows the false positive
level. The AUC obtained, 0.86, is almost 1. In comparison to some of the past efforts, the
value of AUC is accessed. It is evident that between the upper-left corner and the curve
diagonal, the test data cover a bigger area than the training dataset.
Table 7 Statistical analysis of cost function

Metrics Mean Median Standard deviation Min Max
CHIMP 10.41 11.21 1.58 8.58 12.50
SMA 9.88 9.48 1.47 8.51 12.15
AO 9.69 8.45 1.53 8.45 12.38
TSA 8.87 8.57 0.89 8.48 11.29
AROA 9.30 8.31 1.76 8.31 16.11
BES 9.50 8.69 1.06 8.37 12.51
ACO 10.54 10.39 1.62 9.03 13.15
AEOSSA 11.22 11.95 1.78 8.69 12.94
ACO 10.54 8.45 9.48 8.31 11.39
HBEAO 8.49 8.33 0.81 8.18 11.20

Figure 10 FROC and AUC curve analysis (see online version for colours)

6.10 Time complexity analysis

Table 8 displays the time complexity of the proposed HBEAO method over existing
models. The existing Chimp optimisation (CHIMP), SMA, AO, TSA, AROA, BES
methods are inferior by 34%, 72%, 24%, 24%, 19%, 22%, 12% and 6% respectively
compared to the proposed HBEAO model’s computational time.

 Deep learning-based task scheduling in edge computing 41

Table 8 Computational time analysis

Methods Computation time (seconds)
CHIMP 3,137.204
SMA 4,016.772
AO 2,899.112
TSA 2,891.345
AROA 2,777.992
BES 2,483.078
AEOSSA 2,798.081
ACO 2,435.123
HBEAO 2,325.872

6.11 Discussion

The IoT-EC concept is used in this research to analyse the task scheduling problem. By
optimising long-term work satisfaction, a variety of jobs are scheduled to VMs deployed
at the edge server. Considerations for the suggested ideal job scheduling include
makespan, execution time, execution cost, and risk likelihood. In particular, the D-CNN
performs the risk probability estimation. Based on task security and VM security, the
novel HBEAO is used to schedule activities. The HBEAO achieved the lowest execution
time of 0.99 for the 50th VM of all achieved execution times of 2.91, 2.59, 1.34, 1.5,
2.30, 2.10, 2.12, 2.17 and 1.89, respectively. Finally, the effectiveness of the projected
job is compared to the existing methods to task scheduling. The efficacy of the proposed
work is then contrasted with that of the conventional task scheduling methods.

7 Conclusions

As the IoT gains traction, data collection is rapidly expanding. Jobs should be transferred
to edge servers in order to offer quick response and balanced loads because end devices
are computationally limited. The uneven distribution of devices in the actual environment
would cause hot spots to form. There may be too many devices connected to some
servers, which could cause jobs to run over their scheduled completion times. The
proposed approach for task scheduling using deep learning-based risk probability
prediction is offered as a solution to this issue. EC’s ideal job scheduling takes into
account variables like risk likelihood, execution cost, execution time, and makespan. Risk
probability was assessed using DCNN. The assignment was finally scheduled using the
HBEAO. The created model has a fitness score of 3.484123, which is 96.08% better than
DNN, 91.811% better than KTCS, 89.79% better than Chimp, 92.38% better than SMA,
66.73% better than AO, 87.84% better than TSA, 93.47% better than AROA, AEOSSA is
51.29, ACO is 46.34 and 89.15% better than BES. The end result demonstrates that the
suggested method performs better than alternative benchmark methods. The focus of
recent research has been on using cutting-edge optimisation and deep learning
approaches to help with task scheduling. Future research will concentrate on workload

 42 B. Nagalakshmi and S. Subramanian

prediction, such as overload, underload, or balanced load, with enhanced algorithms to
improve job scheduling.

References
Abd Elaziz, M., Abualigah, L. and Attiya, I. (2021) ‘Advanced optimization technique for

scheduling IoT tasks in cloud-fog computing environments’, Future Generation Computer
Systems, Vol. 124, pp.142–154.

Alsattar, H.A., Zaidan, A.A. and Zaidan, B.B. (2020) ‘Novel meta-heuristic bald eagle search
optimisation algorithm’, Artif. Intell. Rev., Vol. 53, pp.2237–2264, https://doi.org/10.1007/
s10462-019-09732-5.

Cai, L., Wei, X., Xing, C., Zou, X., Zhang, G. and Wang, X. (2021) ‘Failure-resilient DAG task
scheduling in edge computing’, Computer Networks, Vol. 198.

Chen, Z., Hu, J., Chen, X., Hu, J., Zheng, X. and Min, G. (2020) ‘Computation offloading and task
scheduling for DNN-based applications in cloud-edge computing’, in IEEE Access, Vol. 8,
pp.115537–115547, DOI: 10.1109/ACCESS.2020.3004509.

Fang, J., Li, K. and Ma, A. (2019) ‘Latency aware online tasks scheduling policy for edge
computing system’, Journal of Physics: Conference Series, Vol. 1325, No. 1, IOP Publishing.

Gezer, V. and Wagner, A. (2021) ‘Real-time edge framework (RTEF): task scheduling and
realisation’, J. Intell. Manuf., Vol. 32, pp.2301–2317, https://doi.org/10.1007/s10845-021-
01760-9.

Hai, T. et al. (2023) ‘Task scheduling in cloud environment: optimization, security prioritization
and processor selection schemes’, Journal of Cloud Computing, Vol. 12, No. 1, p.15.

Hashim, F.A., Hussain, K., Houssein, E.H. et al. (2021) ‘Archimedes optimization algorithm: a new
metaheuristic algorithm for solving optimization problems’. Appl. Intell., Vol. 51,
pp.1531–1551, https://doi.org/10.1007/s10489-020-01893-z

Huang, J., Li, S. and Chen, Y. (2020) ‘Revenue-optimal task scheduling and resource management
for IoT batch jobs in mobile edge computing’, Peer-to-Peer Netw. Appl., Vol. 13,
pp.1776–1787, https://doi.org/10.1007/s12083-020-00880-y.

Li, Z., Xu, W., Shi, H., Zhang, Y. and Yan, Y. (2021) ‘Security and privacy risk assessment of
energy big data in cloud environment’, Computational Intelligence and Neuroscience,
Vol. 2021, p.11.

Liu, J. et al. (2019) ‘An ant colony optimization fuzzy clustering task scheduling algorithm in
mobile edge computing’, Security and Privacy in New Computing Environments: Second EAI
International Conference, SPNCE 2019, Tianjin, China, 13–14 April, Proceedings 2, Springer
International Publishing.

Liu, P., Lyu, S., Ma, S. and Wang, W. (2021) ‘Optimization algorithm of wireless surveillance data
transmission task based on edge computing’, Computer Communications, Vol. 178, pp.14–25.

Lv, Z., Chen, D., Lou, R. and Wang, Q. (2021) ‘Intelligent edge computing based on machine
learning for smart city’, Future Generation Computer Systems, Vol. 115, pp.90–99.

Mapetu, J.P.B., Chen, Z. and Kong, L. (2019) ‘Low-time complexity and low-cost binary particle
swarm optimization algorithm for task scheduling and load balancing in cloud computing’,
Applied Intelligence, Vol. 49, pp.3308–3330.

Mukherjee, D., Nandy, S., Mohan, S., Al-Otaibi, Y.D. and Alnumay, W.S. (2021) ‘Sustainable task
scheduling strategy in cloudlets’, Sustainable Computing: Informatics and Systems, Vol. 30,
pp.1–10.

Sheng, S., Chen, P., Chen, Z., Wu, L. and Yao, Y. (2021) ‘Deep reinforcement learning-based task
scheduling in IoT edge computing’, Sensors, Vol. 21, No. 5, pp.1–19.

Shi, Z. and Shi, Z. (2020) ‘Multi-node task scheduling algorithm for edge computing based on
multi-objective optimization’, Journal of Physics: Conference Series, Vol. 1607, No. 1, IOP
Publishing.

 Deep learning-based task scheduling in edge computing 43

Tang, Z., Jia, W., Zhou, X., Yang, W. and You, Y. (2022) ‘Representation and reinforcement
learning for task scheduling in edge computing’, in IEEE Transactions on Big Data, 1 June,
Vol. 8, No. 3, pp.795–808, DOI: 10.1109/TBDATA.2020.2990558.

Teow, M.Y. (2017) ‘Understanding convolutional neural networks using a minimal model for
handwritten digit recognition’, in 2017 IEEE 2nd International Conference on Automatic
Control and Intelligent Systems (I2CACIS), IEEE, pp.167–172.

Ullah, I. and Youn, H.Y. (2020) ‘Task classification and scheduling based on K-means clustering
for edge computing’, Wireless Pers Commun., Vol. 113, pp.2611–2624, https://doi.org/
10.1007/s11277-020-07343-w.

Verma, G. (2022) ‘Secure VM migration in cloud: multi-criteria perspective with improved
optimization model’, Wireless Personal Communications, May, Vol. 124, No. 5, pp.1–28.

Yamuna, R. and Usha Rani, M. (2022) ‘Priority based task scheduling and delay optimization in
mobile edge computing’, International Journal of Computer Engineering in Research Trends,
Vol. 9, No. 1, pp.1–6.

Zhang, J., Zhou, X., Ge, T., Wang, X. and Hwang, T. (2021) ‘Joint task scheduling and
containerizing for efficient edge computing’, in IEEE Transactions on Parallel and
Distributed Systems, 1 August, Vol. 32, No. 8, pp.2086–2100, DOI: 10.1109/
TPDS.2021.3059447.

Zhao, X., Huang, G., Gao, L., Li, M. and Gao, Q. (2021) ‘Low load DIDS task scheduling based on
Q-learning in edge computing environment’, Journal of Network and Computer Applications,
Vol. 188.

Zhou, J., Fan, J. and Wang, J. (2021) ‘Task scheduling for mobile edge computing enabled crowd
sensing applications’, International Journal of Sensor Networks, Vol. 35, No. 2, pp.88–98.

