N

&NDERSCIENCE PUBLISHERS

Linking academia, business and industry through research

Wab Engineering
and Technology

International Journal of Web Engineering and Technology

ISSN online: 1741-9212 - ISSN print: 1476-1289
https://www.inderscience.com/ijwet

PR-MQTT: a novel approach for traffic reduction and message
prioritisation in loT applications

Jiby J. Puthiyidam, Shelbi Joseph

DOI: 10.1504/I)WET.2024.10061282

Article History:

Received: 13 June 2023
Last revised: 17 October 2023
Accepted: 28 October 2023
Published online: 29 April 2024

Copyright © 2024 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijwet
https://dx.doi.org/10.1504/IJWET.2024.10061282
http://www.tcpdf.org

44 Int. J. Web Engineering and Technology, Vol. 19, No. 1, 2024

PR-MQTT: a novel approach for traffic reduction
and message prioritisation in loT applications

Jiby J. Puthiyidam* and Shelbi Joseph

School of Engineering,

Cochin University of Science and Technology,
Kochi, Kerala, India

Email: jibyjp@cusat.ac.in

Email: shelbi@cusat.ac.in

*Corresponding author

Abstract: IoT applications often involve devices with limited processing
power, memory capacity, and low resource consumption. The vast number
of devices connected to IoT networks generates massive amounts of
data, making effective data management crucial for IoT applications. IoT
applications prefer lightweight messaging protocols over the standard internet
protocol, hyper text transfer protocol (HTTP). Message queue telemetry
transport (MQTT) has emerged as a popular communication protocol for
IoT applications. In some instances, specific messages may hold greater
importance than others. However, most standard IoT protocols lack inherent
mechanisms to prioritise incoming messages. This paper presents a new
approach to reducing network traffic in IoT applications by selectively
transmitting messages while prioritising the processing of urgent messages.
The proposed method is integrated with HBMQTT, an MQTT broker. The
experimental evaluation indicates that with the proposed PR-MQTT broker,
the latency of the priority messages remains nearly constant, irrespective of
the message’s index position. Priority messages are consistently delivered
within 10-15 milliseconds, resulting in a speed improvement of over 90%
compared to regular messages. Additionally, the proposed approach reduces
CPU resource utilisation and network traffic by 25% and the transmission
delay of normal messages by 50%.

Keywords: internet of things; IoT; MQTT protocol; message priority; IoT
networks; network traffic.

Reference to this paper should be made as follows: Puthiyidam, J.J. and
Joseph, S. (2024) ‘PR-MQTT: a novel approach for traffic reduction and
message prioritisation in IoT applications’, Int. J Web Engineering and
Technology, Vol. 19, No. 1, pp.44—66.

Biographical notes: Jiby J. Puthiyidam is a research scholar at the Division
of Information Technology, School of Engineering, Cochin University of
Science and Technology (CUSAT), Kochi, India. He has completed his
Post-Graduation (MTech in Computer and Information Science) from the
Cochin University of Science and Technology (CUSAT). He is an Assistant
Professor at Government Model Engineering College, Ernakulam, India. His
research interests include internet of things, IoT network security, lightweight
cryptography, data mining and machine learning.

Copyright © 2024 Inderscience Enterprises Ltd.

PR-MQTT 45

Shelbi Joseph is a Professor at the Division of Information Technology at
School of Engineering, Cochin University of Science and Technology, Kochi,
India. He has completed his Post-Graduation (MTech in Computer Science
and Engineering) from the National Institute of Technology, Tiruchirappalli,
India and PhD in Software Reliability from the Cochin University of Science
and Technology. His areas of interest are software engineering, software
reliability, open source software, big data, data mining, and IoT. He has
several publications in national and international journals and conference
proceedings to his credit.

This paper is a revised and expanded version of a paper entitled ‘Prioritization
of MQTT messages: a novel approach’ presented at International Conference
on Communication, Networks and Computing, ITM University, Gwalior, 8—10
December 2022.

1 Introduction

Advancements in computing and communication technology have facilitated the
connection of an increasing number of devices to the internet, giving rise to the
revolutionary concept of the internet of things (IoT). In an IoT environment, various
components such as physical devices, software components, and cloud-based services
communicate over a network to provide specific services or functions (Wazid et al.,
2020). An IoT application comprises three main parts:

1 IoT devices
2 an IoT communication protocol

3 systems for storing and processing IoT data (Bayilmus et al., 2022).

The IoT serves as a platform where everyday devices become smarter, processing
becomes intelligent, and communication becomes informative (Houimli et al., 2021;
Ray, 2018). The application domains of IoT are extensive and encompass healthcare,
manufacturing, industrial operations, transportation, smart homes, and agriculture
(Ashima et al., 2022).

The success of IoT technology heavily relies on effective machine-to-machine
(M2M) (Lawton, 2004) communication over the internet. IoT applications involve
devices with limited storage, processing, and networking capabilities, often running
on batteries (Yugha and Chithra, 2020). Limitations inherent in smart devices often
lead to congestion in IoT networks, resulting in reduced performance and data loss.
Therefore, it becomes imperative to implement a congestion control mechanism to
enable efficient data transmission within IoT networks (Jain et al., 2022; Anitha et al.,
2023). The commonly used internet communication protocol, hyper text transfer protocol
(HTTP) (Bressoud et al., 2020), is unsuitable for such resource-constrained devices.
Consequently, specialised communication protocols like constrained application protocol
(CoAP)(Alhaidari and Alqgahtani, 2020), message queue telemetry transport (MQTT)
(OASIS Standard Incorporating Approved Errata, 2015), and advanced message queuing
protocol (AMQP) (Uy and Nam, 2019) are employed in IoT applications to manage
these constraints effectively.

46 J.J. Puthiyidam and S. Joseph

Numerous sensors and devices are involved in various real-life IoT applications.
The substantial volume of data generated and transferred by these devices can impact
the performance of the IoT network, leading to reduced throughput and increased
latency (Singh et al., 2022). Furthermore, not all input data generated by IoT devices
hold equal importance. Certain messages or messages from specific sources may
be more critical and necessitate immediate attention and handling. For instance,
messages from a fire alarm or gas leak sensor carry higher significance than messages
from an atmospheric temperature or pressure sensor. However, the standard MQTT
protocol lacks a built-in mechanism for message prioritisation, which poses a challenge
(Tatyasaheb and Kumar, 2021). The published contents have limited time for residing
on the server before it is discarded or replaced (Ali and Zafar, 2023). To address
this issue, we propose a novel message priority algorithm that introduces minimal
computation overhead while prioritising input messages and reducing network traffic.
The algorithm identifies a normal range for each message topic, allowing differentiation
between priority and non-priority messages. Leveraging the concept of trivial intervals,
the algorithm identifies identical or irrelevant messages and prevents their forwarding
to the subscriber, thereby reducing network traffic. The proposed PR- MQTT broker
identifies priority messages and forwards them ahead of normal messages. The algorithm
is implemented within the HBMQTT broker, which is the only broker written in
Python. This integration eliminates the need for a separate server to handle priority
data. Experimental results demonstrate that by avoiding the transmission of identical
or irrelevant data, the proposed algorithm improves the transmission time of normal
messages as well.

Our major contributions include:

e identified the necessity of prioritising incoming messages in IoT protocols
e proposed a novel method to identify priority messages in IoT communications.

e proposed a method based on trivial intervals to reduce the data traffic in IoT
networks.

o the MQTT broker, HBMQTT, is modified to incorporate the new priority
algorithm, PR-MQTT.

The outline of this paper is as follows. Section 2 presents related works on prioritising
MQTT messages. A brief description of the working of the MQTT protocol is given in
Section 3. The proposed system framework is discussed in Section 4. Section 5 discusses
the implementation and evaluation details and the results. Section 6 concludes our work
and discusses future research directions.

2 Related works

The proliferation of IoT devices and applications has resulted in a rapid growth of
data generated and transmitted across IoT networks. This exponential increase in data
traffic can lead to various challenges, such as network congestion, packet loss, increased
latency, and higher bandwidth consumption. To tackle these issues, researchers have
proposed various approaches in the literature to enhance network performance in IoT
environments. These approaches include assigning priorities to incoming messages and

PR-MQTT 47

employing data compression and aggregation methods to reduce network traffic. In this
session, we will delve into a review of the literature covering these topics.

Kim et al. (2018a) proposed an approach that modifies the structure of standard
MQTT message fixed header format for assigning message priority. This method uses
two bits in byte 3 of the MQTT message header to set four priority levels. Each priority
level maintains a separate message queue. The work by Kim and Oh (2017) also uses
two bits in byte 2 of the message header to set the priority flag. The higher the number
of the priority flag, the higher the priority. Both approaches increase the MQTT message
minimum header size from two to three bytes.

Kim et al. (2018b) suggested a method that uses reserved message types (message
type 0 and message type 15) of the MQTT standard packet types to denote the priority
messages. The remaining 14 packet types (1-14) are used for their usual purpose.
Message 0 indicates urgent messages with the highest priority, and message type 15
denotes critical messages with the second-highest priority. This approach maintains
three separate queues for each priority level. The work discussed in Kim et al.
(2018a) uses a message scheduling method based on weighted round robin (WRR) to
prevent excessive processing delay of a queue with low priority. Methods that use a
plurality of queues require more CPU resources than a single queue method. As the
above-mentioned approaches modify the MQTT standard specification, these methods
may be incompatible with other high-level application programmes.

Oh and Kim (2019) proposed a message priority approach that does not modify the
message header. In this method, the first character of the message topic determines the
message priority. For example, if the message topic begins with a predefined rarely
used character such as *#, it is assumed to have higher priority than a message topic
beginning with other characters. Hence the priority of a message is sent with the
‘PUBLISH’ message, and it does not affect the existing MQTT packet structure. The
authors claim that the MQTT protocol can run with relatively low CPU resources. Chen
et al. (2022) proposed a priority scheduling algorithm, which considers the popularity
of message topics, as a solution to the challenge of effectively distributing messages
with diverse topics in microgrids. Priority permissions are determined by the number
of clients subscribing to a particular topic. Topics with more subscribers receive the
highest priority and are transmitted ahead of messages from other topics. A time
period is established to prevent low-priority data from experiencing long delays, and a
low-priority transmission mechanism is implemented to ensure that these messages are
forwarded before they reach their timeout period.

Hwang et al. (2022a) modified the Mosquitto broker to handle urgent messages
efficiently. The improved Mosquitto broker, U-Mosquitto, maintains an urgent message
list in addition to the subscription list of normal messages and processes the urgent
message list before the subscription list.

AlEnany et al. (2021) used the back-off algorithm to calculate the average frequency
rate of messages published by each publisher and assign priority to publishers based
on the average publishing rate. The publisher with the highest average frequent rate
(maximum delay between successive messages) is assigned the highest priority, placing
its messages in the front of the queue. Publishers are sorted based on their average
frequency and placed correctly in the array. This method assumes that a publisher
sending messages less frequently is more important than a publisher publishing messages
frequently.

J.J. Puthiyidam and S. Joseph

48

Table 1 Summary of related works

USAIS J0oU dIe S[reop
onsLIORIRYD dFeSSIN

1s1] a3essowr

[BUONIPPE UIRIUIBW 0] PISU
sonanb Kyuond

deredss urejureW ‘97ZIS
10pedY PaXI) oY) SISBAIOU]
Jjel1 ssof I1oySiy
‘papusuIuoddl jou sadAy
93esSSow PoAIdsAI Jo IS

Ie9]0 jou uonemduwiod
onjeA ploysaIy],

panmbar 1anpayos
Auoud v oad] Kuond
yoed 10y ananb ojeredog
panmbar st 19npayos
Noeqpady v Ayoud

ou sey sordoy Ajurond-morp
wolj sagessowr juadIn
shq € 01 T

WOIJ 9ZIS IOPedY SISBAIU]
1pwered Auoud

pooS e jou dje1 juonbaiy
‘peol NdD Paseardu]

wiypLos[e TOW

uey) doueunojrad 1opeg
sogessowt

JuaSin 10J eI AIOAIRP Iseq

ndySnoayy
pasoxdur ‘Kousje] paonpay

%S¢ Aq pasomor
sogessow juaSin jo Aouoje]
Koudye] parordw] -uonesinn
pmpueq pue uonduwnsuodo
AS1ouo ‘sso] joxyoed poonpay

oFesn sodInosal
NdD Mo| ‘sofessow
Aoud jo Suissaooid jseq

oFesn sodInosal

NdD Mo] ‘safessowr
Aoud jo Suissedord jseq
Kouoye] paAoxduur

‘0 SOO ynm Ae[ap 3semo|

Kouoye] paAoxduur
OljJeI) JI0MIOU SSOT

own Surnpayds oFessoN

o AI9AT[Op 98esSOIN

ndySnouy) oFessowr ‘Kouore]

9je1 sso| ofessow ‘Aouore]
Aejop uoIsSTIUSURI)
‘qIpimpueq ‘orex

sso] joyoed ‘ofesn ASioug

sozZIs dFessowr

JURIOPIP M Aoudje
pourad owm uoONNQLUSIP
‘Keop joyoed ereq
Koudye] ‘Aefop pue-o3-pug

Koudje] ‘NVY Pawnsuod
‘PeOl NdD OLyeN JI0MIdN

Areiqi juaro

oyeq ‘1o3o01q opimbson

d

Auoqdsey ‘roxoiq opmbson

I01q opmbso

oyed
asdipog ‘1oj01q opnmbso

pIleoq
oumpry ‘id Auoqdsey

I oyed ‘1
A1pqdsey ‘103j01q opnibson

19%01q

LIOW ‘®pidwos yadl
Areiqi juoro oyed
asdijog ‘193019 opmbso

19301q onmbso

SONSLIOJORIRYD UO Paseq
PaljIsse[o d1e soFessaI
181 JUdIn

ur paro}s safessowr AjIoLd

JIopeay oFessowr Jo
¢ 014q 1e Seyy Auoud jqg-g

Kuoud 105 01
sodA) oFessowr poAIosal 9s)

sonjea
Q0URIO[O} PUB PIOYSAIY],

o1doy
a8essowr Jo I9)0BIRYD ISII

suonduosqns jo

Joqunu arouw yum sordog,
Iopeay oSessow Jo ¢ 91Aq
je Sepy KAuoud 3g-z7 108

sagessowr Jo ojer juanbaig

(8107) 'Te 10 e

(ezz0?) |e 10 Suemy

(e8107) "Te 1 wry

(48107) 'Te 10 wry

(0T07) Sunt

(6107) wry pue yo

(zT0o) T8 10 wayy

(L107) 4O pue wryy

(1202) "Te 10 Aueugry

suoyvIUIT

nsad uonvnipasy

%&b&@§@&@a\ uonvnpayy

sjooy uonvnpag

poyaur Q314011 J

J£advg

PR-MQTT 49

Jung (2020) proposed a priority assignment scheme to reduce network traffic in a
resource-constrained network. Two threshold values are identified, and if a new message
external to the threshold value arrives, it is assigned the highest priority. Suppose the
difference between the previously and newly measured data is within a pre-specified
tolerance range. In that case, the latter is considered the same as the former and is
assigned the lowest priority. The keep-alive message notification scheme is applied to
transmit the lowest priority packets.

Park et al. (2018) suggested an algorithm that classifies messages based on their
characteristics into three groups, namely, unconditional messages (UNC), real-time
(R.T.) messages and delay-tolerant (D.T.) messages. Each message class has its message
queue. UNC messages should be forwarded immediately. Whenever an R.T. message is
sent, the R.T. message queue priority is decreased, and the priority of the D.T. message
queue is increased. Similarly, whenever a D.T. message is sent, the priority of the D.T.
message queue is decreased, and the priority of the R.T. message queue is increased.
This algorithm ensures that the transmission of D.T. messages is allowed for a while.

Park et al. (2017) proposed a multiclass Q-learning algorithm (MQL) for remote
monitoring of patients at home. When a new message with higher priority arrives,
older messages in the queue are pushed one position backwards. An ageing technique
prevents the indefinite postponement of a lower-priority message. In this work, the
message priority is set at the sensor level. Oyewobi et al. (2021) have discussed a
priority queuing technique to control congestion in IoT networks. This approach follows
a preemptive/non-preemptive discipline where node packets are grouped and transmitted
based on the real-time requirements of their IoT applications.

Donta et al. (2022) comprehensively reviewed how traditional IoT application
layer protocols have been enhanced and refined. They also examined real-time
applications and the corresponding adapted application layer protocols aimed at
enhancing performance. The research delved into the importance of request-response
and Pub-Sub protocols within various use cases. Furthermore, this paper proposes the
integration of machine learning to permeate these protocols with intelligence, enabling
them to adapt dynamically to varying application conditions without human intervention.
An intelligent congestion control algorithm called iCoCoA, based on the CoAP protocol
is introduced by Donta et al. (2023). This work employs a deep reinforcement learning
approach. This algorithm is designed to effectively predict and manage congestion
in dynamic environments, particularly on constrained devices. iCoCoA leverages
insights from various network characteristics to make informed decisions regarding the
optimal Retransmission Timeout, thereby alleviating congestion in dynamic scenarios.
Furthermore, it enhances throughput, conserves energy, and reduces the occurrence
of needless retransmissions when compared to existing congestion control models.
Congestion-aware data acquisition (CADA), a resource control-based mechanism for
wireless sensor networks, is proposed in Donta et al. (2020). CADA effectively detects
congested nodes within the network and employs alternative routing paths to the base
station for efficient data acquisition.

The analysis of related works in the literature reveals that prioritisation of incoming
messages is an unexplored field in [oT communication protocols, with only a limited
number of related works available. Most of the existing literature comprises only
proposals and lacks implementation details. Most attempts in literature either assign
the responsibility of identifying priority messages to the constrained client nodes or

50 J.J. Puthiyidam and S. Joseph

needs the modification of standard MQTT packet structure or message header size. Such
approaches are not desirable in IoT networks.

3 MQTT protocol

The IoT community widely adopts the MQTT protocol due to its lightweight nature,
small message header size, and low bandwidth consumption (Yudidharma et al.,
2023). It utilises a publish/subscribe pattern for data transportation. Built on top of
the TCP/IP protocol, MQTT is well-suited for unreliable communication networks
(Akshatha et al., 2022). IoT applications seeking a secure communication environment
and can broadcast messages to multiple subscribers concurrently might favour the
MQTT protocol (Bayilmis et al., 2022). Major public cloud platforms like Amazon
Web Services, Microsoft Azure, and Google Cloud Platform leverage the capabilities
of MQTT (Naik, 2017). Therefore, in this work, the MQTT protocol is chosen to
implement and analyse message priority in [oT networks. The MQTT architecture
consists of several key components, including a central broker server and clients
acting as publishers and subscribers. The MQTT protocol facilitates the decoupling of
publisher and subscriber clients (Lazidis et al., 2022). Clients communicate with the
MQTT broker using message topics (Hwang et al., 2022b). Initially, clients establish
a connection with the broker. Subscribing clients indicate their topics of interest to
the broker when requesting a connection. Publishing clients send messages to the
broker, specifying a topic. The broker filters messages based on the topic name and
forwards them to the subscribed clients. Figure 1 illustrates the basic architecture of
the MQTT protocol. Prominent MQTT brokers include Mosquitto broker (Mosquitto
MQTT Broker, 2023), RabbitMQ (Johansson and Dossot, 2020), Hive MQ (Koziolek
et al., 2020), VerneMQ (Gruener et al., 2021) and HBMQTT (Broker API Reference —
HBMQTT 0.6 Documentation, 2023), among others.

Figure 1 MQTT protocol architecture (see online version for colours)

Publishers .
Subscribers

|

Publish

Client 1
Client 1 m—
Publish =
BROKER Publish
Client 2 Client 2
Publish Subscribe
‘ \ — ﬁ |
| = =
! I |
, oom . '
1 Subscribe H
! i

Publish
Client m
Client N

PR-MQTT 51

MQTT has a two-byte fixed message header, the smallest among the [oT communication
protocols. The message header provides information such as the message type, various
associated flags, and details of the optional fields. The structure of the MQTT message
header is given in Figure 2.

Figure 2 MQTT message header format

Field Length : Bits ~ —> 0 | 1 | 2 | 3 4 5 6 7
Byte 1 Message Type DUP | QoS Level [|ReTAIN MQTT
Fixed
Byte 2 Remaining Lemgth (1-4 bytes) Header
Byte 3
Optional: Variable Length Header
Byte n
Byte n+1
Optional: Variable Length Message Payload
Byte m

Message Type: CONNECT, PUBLISH,SUBSCRIBE,PUBACK etc.
QoS: 0/1/2

DUP: DUPLICATE FLAG

RETAIN: Set to ON to store last known value

Source: Abdul Ameer and Hasan (2020)

MQTT clients can use different quality of service (QoS) levels when sending or
subscribing to messages. The QoS level determines the reliability and guarantee of
message delivery that the client requires (Liu and A-Masri, 2021). The MQTT protocol
offers three and levels QoS for message delivery.

1 QoS 0: at most once delivery
2 QoS 1: at least once delivery
3 QoS 2: exactly once delivery.

QoS 0 is the fastest and least reliable level, as it provides no guarantees of message
delivery, and the sender does not receive an acknowledgement from the receiver. This
level is suitable for scenarios where message loss is acceptable, and the communication
network is reliable. QoS 1 provides guaranteed message delivery but may result in
duplicate messages. The receiver acknowledges each message, and the sender will
retry sending it until it receives the acknowledgement. This level is appropriate for
applications that can handle duplicate messages and require guaranteed delivery. QoS 2
provides the most robust level of service, ensuring that each message is delivered
only once, without loss or duplication. This level incurs higher processing and network
resource costs. It is typically used in mission-critical scenarios where message loss or
duplication is unacceptable.

52 J.J. Puthiyidam and S. Joseph

4 Proposed system framework

This section presents an innovative and efficient approach for identifying and rapidly
processing high-priority messages of elementary data types in IoT applications. This
algorithm not only improves message processing speed but also reduces network traffic.
The proposed method addresses the limitations of most existing works in this field.
The MQTT protocol, which is widely utilised in the IoT environment, is chosen for
implementation.

Initially, input client nodes, acting as publishers and subscribers, establish a
connection with the broker server. The publisher clients gather data from the
surrounding environment and publish the collected information to the broker at regular
intervals. It is assumed that a publisher node can send two types of messages:
normal messages, which provide regular updates on the sensing environment, and
alert messages (priority messages), which indicate a need for immediate attention. The
publisher generates and publishes messages to the broker using the standard MQTT
message PUBLISH command. Upon receiving a message from the publisher, the broker
determines whether the incoming message is a normal or a priority message based on its
value. If the message is identified as a priority message, the PR-MQTT broker places it
at the front of the message queue and promptly forwards it to the subscriber, prioritising
it ahead of other normal messages. On the other hand, if the incoming message is
classified as normal, the broker assigns it to the next available position in the message
queue.

The proposed PR-MQTT approach plays a vital role in mitigating congestion in
IoT networks by reducing message transfers. If the values of two consecutive messages
from a publisher are nearly identical, the PR-MQTT broker identifies them as duplicates
and refrains from forwarding the latter message. Disregarding the processing of such
duplicate or identical data may not significantly impact the overall application outcome
but significantly improves the system’s performance. This reduction in message transfer
between the broker and subscriber clients substantially improves network efficiency. The
framework of the proposed system is illustrated in Figure 3.

Figure 3 Proposed system framework

—_—— — — o — o — o — — — — —

> ~..
s N, MQTT Broker (with priority support)
K Computation)

|

|

\ — |
. Tivial range g

NEEDY !

S—=

° Message® |

|

|

|

|

Normal Range &

First N Messages Trivial Range

Message Queue
1 aeom e — o —eee () 0]

Publishers
Subscriber

Message Classifier

Priority Messages

Normal messages
Priority messages

PR-MQTT 53

The suggested framework is more suitable for applications where multiple publishers
publish data simultaneously and a single subscriber receives the data. This environment
is ideal for many real-life IoT applications, such as remote patient monitoring (Bashir
and Mir, 2021) and industrial environment, where thousands of sensors collect data
about their sensing environment regularly and forward them to a central server for
analysis and monitoring (Mahmood et al., 2021). This work is divided into three
modules:

1 Normal range computation: Determine each publisher’s normal message range
(min-max range).

2 Trivial range calculation: Identify each publisher’s trivial range to find identical
messages and reduce traffic and congestion in the network.

3 Message classification: ldentify priority messages and forward them ahead of
normal messages. Prevent the forwarding of identical messages.

4.1 Normal range computation

This module identifies each publisher’s min-max range (normal range) to distinguish
high-priority messages from normal ones. Any message value outside this range is
considered a priority message. The proposed algorithm monitors each publisher’s first
n messages and identifies the minimum and maximum values. This period can be
considered a training period. The size n (training data) may vary from a few hundred
messages to data of one or more days, depending on the application. When each
publisher p; publishes a message to the broker during this period, the broker updates
the current minimum and maximum values of p; using equations (1) and (2).

min(p;) = min[p;m*, Curr — min(p;)] (1)
max(p;) = max[p;m’, Curr — max(p;)])
where
min(p;) new minimum value of publisher p;
max(p;) new maximum value of publisher p;

Curr —min(p;) present minimum value of publisher p;

Curr —max(p;) present maximum value of publisher p;

pjm! i™ message of publisher p;.

The minimum and maximum values identified for each publisher from its first n initial
message are stored in corresponding positions in the arrays min[] and max[].
4.2 Trivial range calculation

Most messages transmitted by publishing clients contain information related to
environmental factors like temperature or humidity, which typically change gradually.

54 J.J. Puthiyidam and S. Joseph

Disregarding non-critical data from such sensors may not have severe consequences
but significantly enhances network performance. To selectively ignore non-critical data
and reduce network traffic, as well as minimise message queuing delays, our algorithm
employs a trivial interval concept within the min-max region. This trivial interval,
denoted as ¢, is calculated using equation (3).

. i (mi —mi_1) 3)

i=1

If the value of a normal message falls within the trivial interval ¢ with its preceding
message, both messages are considered identical, and the latter message does not need to
be forwarded to the broker. However, this approach may lead to skipping large number
of messages from certain sensors, such as temperature or atmospheric pressure. The
values of these sensors normally change very slowly. This can result in an indefinite
delay for a new message from such publishers to reach the broker. Furthermore, if no
message is received from a publisher for an extended period, it may cause confusion
for the MQTT broker regarding the client’s existence. A skip limit is set to prevent
such situations, determining the maximum number of messages that can be skipped in a
sequence. Only the specified number of messages will be skipped, as defined by the skip
limit. The subsequent message will be forwarded to the subscriber, even if it falls within
the trivial range of the previous message. The computation procedure for determining
the normal range of each publisher and its associated trivial interval is provided in
Algorithm 1.

Algorithm 1 min-max and trivial range computation

Input : publishers p1, p2, p3, -, Pk
n, number of initial messages
message queue mq[]
Output: trivial interval t and arrays min[] and max[]
1 for publishers p1, p2, p3, -+, pr do

2 for messages m*=' to m*=" do

3 Compute p;(min) = minimum(p,;m’,p;(min));

4 Compute p;(max) = maximum(pjmi,pj (max));

5 Insert p;m’ to message queue mq[]; > *note:pjm’ — i™ message of
publisher p;;

6 end for

7 Store p;(min) in array min[];

8 Store pj(max) in array max[];

9 Compute trivial interval ¢t = > 7" | %,

10 end for

4.3 Message classification

Message values within the min-max range are considered normal and treated using the
standard MQTT message forwarding procedure. A message value outside this range is
abnormal or critical, and should be treated urgently. Such a message is considered a
high-priority (hpr) message.

PR-MOQTT 55
hpr(p;) = pjmi < min(p;) or pjmi > max(p;) 4)

A high-priority message is placed at the first position in the message queue, bypassing
all normal messages; mq[0] = hpr(p;).

Algorithm 2 Identifying and processing priority messages

Input : publishers p1, p2, p3, -, Dk.
trivial interval, t.
arrays min[] and max[].
skip limit, skip.
Output: message queue mq[] with priority messages at the front
1 for P1, P2, P3, -, Pk do
for messages m'=" to m'=" do
if m® < p;(min) or m' > p;(max) then
Set m® a high priority message;
place m at first position of mq[] > * at mq[0]
else if p;(min) < m' < pj(max) then
if (m' —m'™!) <t then
if not skip limit then
Skip m’
else
Set m* as a normal priority message;
place m* at the last position of mqf[] > x at mq[n+1]
end if
end if
else

e ® 9 S ! oA W N

— e e e
S N AR W R o= o

Set m* as a normal priority message;
Place m' at the last position of mq[] > x at mq[n+1]
end if
end if
end if
else

—
®

NN N
No= S
°

m® is undecided;
skip m?;

end if

end if

end for

NN
NN

N
o

N
=

end for

~
2

If the value of the new message is within the (min-max) range of the publisher, it is
treated as a normal message (npr).

npr(p;) = min(p;) < pym* < max(p;))
Such normal messages are placed at the back end of the queue in the next available

position; mg[N + 1] = npr(p;), where N denote the number of elements present in the
message queue currently. Algorithm 2 discusses the procedure to identify and process

56 J.J. Puthiyidam and S. Joseph

high-priority and normal messages of a publisher. This algorithm also explains how the
proposed method reduces network congestion by ignoring unwanted messages.

An illustrative example is provided to explain the proposed algorithm for identifying
and processing priority messages and reducing network traffic within the MQTT
communication protocol. In this example, a skip limit is set as 3. This means two
consecutive messages occurring within a trivial interval will be skipped, and only the
third message will be forwarded to the broker. To illustrate this concept, let us consider
a scenario where a temperature sensor initially publishes ten messages, which serve as
its initial set of messages for determining the minimum-maximum temperature range.

Temperature (°C)

29.8 29.5 29.6 29.8 29.6 29.9 29.5 29.8 29.6 29.9
(first n values)

Minimum temperature 29.5°C

Maximum temperature 29.9°C

min-max range 29.5°C —29.9°C
Trivial interval (f) (0.340.1+0.2+0.2+0.3+0.4+0.3+0.2+0.3)/9]
= 0.255

Based on these min, max and trivial values, the behaviour of our new message priority
algorithm with various message sequences is illustrated in Figure 4.

Figure 4 Message passing performance of PR-MQTT algorithm

Message Queue
Input messages

M5 M4 M3 M2 M1 [H-1] emeemsemsemsemmssmsnnns 31 21 [1] [0l
cer [2]]] (2] [8 2
M5 M4 M3 M2 M1 (TS T T T r— [3] 2] [l [o]
skip skip
M5 M4 M3 M2 M1 [H-1] eeeemeemsnmnenennnmnnnns [31 2] [11 o]
Case 3 I—l | | | | 2 | =7 | 0 |
skip HFR skip
M5 Ma M3 M2 M (TS T T T r— [3] 2] [l [o]
skip skip skip

Trivial interval t=0.255

In Figure 4, case 1 illustrates a scenario in which all messages are categorised as normal
messages, and there are no instances of two consecutive messages falling within the
trivial range. In case 2, certain messages are omitted when they occur within the trivial
interval of the preceding message. Case 3 demonstrates how the proposed algorithm
handles high-priority messages and messages within the trivial interval. Similarly, in
case 4, it showcases how the algorithm effectively reduces network traffic by omitting
redundant messages.

PR-MQTT 57
5 Results and discussion

In this section, the simulation details of the proposed system are presented. The primary
purpose of the experiment is to prove that the modified broker with priority support,
PR-MQTT, treats urgent messages ahead of normal messages. The experiments also
show how the PR-MQTT algorithm improves IoT network performance compared with
standard MQTT broker. A discussion of the proposed PR-MQTT protocol and the
experiment results follows.

5.1 Experimental setup

The HBMQTT broker, the only MQTT broker written in Python, is selected to
implement the work. The proposed algorithm is incorporated into the HBMQTT broker
code. The modified broker runs on a Raspberry Pi 3 processor with 1.4 GHz clock
speed and 1 GB RAM. We use ESP32 3.3V MCU as publisher clients and BME280
sensor nodes to read pressure, temperature and humidity data from the atmosphere. The
BME 280 sensor nodes are connected to the ESP 32 MCUs. A laptop equipped with
a core i7 CPU runs the subscriber clients. We assume multiple publishers publish data
simultaneously and are received by a single subscriber.

Table 2 Experimental setup

Experimental setup

Processor (broker) Raspberry Pi 3 1.4 GHz 1 GB RAM
Broker HBMQTT Boker

Publisher nodes ESP 32 3.3 V MCU

Sensors used BME 280

Data measured Temperature, pressure and humidity
Subscriber node Laptop with i5 processor, § GB RAM

Table 3 Testing scenarios

Values

Parameters

Scenario 1 Scenario 2
No. of publishers 10 publishers 40 publishers
No. of subscribers 1 subscriber 1 subscriber
Publishing rate 50 messages/sec. (approx.) 50 messages/sec. (approx.)
QoS of published messages QoS 0 QoS 0
Normal messages (for each publisher) 250 messages 250 messages
Priority messages (for each publisher) 25 messages (approx.) 25 messages (approx.)
Trivial range (for each publisher) 10 points 10 points
Skip limit (for each publisher) 5 messages 5 messages

A testing scenario with two publisher client sizes was used for evaluation purposes.
Most of the IoT devices that frequently sense and publish data use the reliability level
QoS 0 and such data form a major part of IoT network traffic. Hence the QoS of
the published messages are selected as QoS 0 for the experimental evaluation. Ten

58 J.J. Puthiyidam and S. Joseph

clients generate and publish data in the first scenario, and in the second scenario,
40 clients publish data. From the testing point of view, we assume all publishing
clients work simultaneously. Each client generates and publishes approximately 250
normal and 25 priority messages during the evaluation period at an average of 50
messages per second. For each publisher, the trivial interval is set as 10 points and
the skip limit is five messages. The performance of the normal HBMQTT broker and
the proposed PR-MQTT broker is compared with different evaluation metrics. The
testing environment can be restructured to increase the number of clients and to change
the messages per second if required. The experimental setup and testing scenarios are
summarised in Tables 2 and 3, respectively.

5.2 Performance analysis

The evaluation of the proposed work involves several performance metrics, including
message latency, CPU and RAM resource utilisation, network traffic, and transmission
delays. These metrics are essential for assessing the effectiveness of the PR-MQTT
method in comparison to the standard MQTT protocol, which does not incorporate
priority data handling. Initially, the latency experienced in delivering both normal
and priority messages in the PR-MQTT method is evaluated. This analysis provides
insights into the efficiency of message prioritisation and its impact on message delivery
times. Subsequently, the resource utilisation, specifically CPU and RAM, as well as
transmission delays, are compared between the standard MQTT and prioritised MQTT
approaches. This comparison allows for an assessment of the resource efficiency and
performance gains achieved by incorporating message prioritisation. Furthermore, the
evaluation takes into account the network traffic under different datasets. This analysis
provides an understanding of the impact of prioritisation on overall network utilisation
and congestion. The evaluation results of the proposed work, considering these various
performance metrics, are presented to demonstrate the effectiveness and benefits of the
proposed PR-MQTT approach.

Figure 5 Message latency of PR-MQTT (see online version for colours)

Latency
250 #3:‘*:‘ . o
. AV 25 A Ap dugd. FEEE
Gpads A VW ol HF0 At S8E ¢ .
fos ot b g [y i $ a0 I LE. .
200 O AR, W i
4 ’ *
£ 150 ”f
Tg - ® Non Priority Data
F 100) ;
; @® Priority Data
50 /
]
i :
0 v <. . - - e o o e v va amees o e
(g 500 T000 2000 2500

150
Data items

5.2.1 Message latency

In the proposed PR-MQTT protocol, any input publisher node has the capability to
generate priority data. The determination of whether the generated data is normal or

PR-MQTT 59

priority data is done by the broker based on the value of the sensed data. Figure 5
presents a scatter plot that illustrates the latency of both normal and priority messages
in scenario one, as per the proposed algorithm. The horizontal axis of the plot represents
the message index, while the vertical axis represents the time in milliseconds. The
plot differentiates between normal and priority data using colours, with blue dots
representing normal data and red dots representing priority data. The results obtained
from the plot clearly demonstrate that priority data is received by the subscriber much
faster compared to normal data. As the message size and index position increase, the
latency of normal data also increases. However, the latency of priority data remains
relatively constant, regardless of the message index.

5.2.2 Resource utilisation

The CPU and memory requirements were selected as metrics to evaluate the resource
utilisation of the protocols under consideration. The analysis aimed to compare the
resource utilisation of the standard MQTT protocol and the proposed PR-MQTT
protocol using the same dataset. Figure 6 illustrates the CPU and RAM utilisation
of the standard MQTT protocol, while Figure 7 represents the performance of the
PR-MQTT protocol. In both figures, the red colour indicates the CPU utilisation
during the execution period, while the blue colour represents the RAM utilisation
in megabytes. Initially, the proposed PR-MQTT protocol was expected to consume
more resources due to the additional computation required for filtering out priority
data and skipping identical data. However, the analysis graph shows that the proposed
algorithm utilises fewer CPU resources and almost the same amount of RAM as the
standard MQTT protocol. This advantage is attributed to the trivial interval concept
utilised in the PR-MQTT protocol, which allows for skipping unwanted data. The extra
computation required by the new algorithm is offset by the reduced number of messages
forwarded to the subscriber. Consequently, the proposed method is proven suitable for
resource-constrained devices, as it achieves resource efficiency without significantly
increasing CPU and RAM utilisation.

Figure 6 Standard MQTT resource usage (see online version for colours)

400 - | | L 60

350 1

T
w
(=}

300 4

T
B
(=]

Real Memory (MB)

250+

CPU (%)

200+

T
w
(=]

150

T
~
o

100

F 10
50

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time (s)

60 J.J. Puthiyidam and S. Joseph

Figure 7 Priority MQTT resource usage (see online version for colours)

400

60
350

300 A 1 | F50

2501 L 40

200 4
r 30

CPU (%)
Real Memory (MB)

150
r20
100 A

10
50

0- T T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time (s)

5.2.3 Network traffic

The proposed PR-MQTT algorithm offers a significant advantage regarding reduced
network traffic. Utilising the trivial interval concept, the algorithm prevents the
unnecessary transmission of similar and duplicate data, effectively decreasing the
number of messages passed through the network. A significant proportion of data
congestion within IoT networks can be attributed to messages employing QoS level 0
reliability. Most IoT devices, which frequently sense and publish data like temperature
and pressure sensors, opt for QoS 0 reliability. In environments where sensor data
changes infrequently, the loss or omission of a few data elements does not substantially
affect the outcome of the application. Therefore, one practical approach to mitigate IoT
network congestion is reducing or controlling the transmission of QoS 0 data. Figure 8
shows the number of messages forwarded to subscriber clients for different datasets
under two scenarios: using the proposed PR-MQTT broker and the standard MQTT
broker. The plot demonstrates that when the proposed algorithm is applied, there is a
nearly 25% reduction in network traffic observed across all datasets. This reduction in
network traffic is highly beneficial as it allows IoT networks to accommodate many
devices and effectively handle the vast amount of data generated and transmitted by
these devices. The proposed algorithm contributes to improved network efficiency and
scalability in IoT applications by minimising unnecessary message transmission.

5.2.4 Normal message transmission delay

The transmission delay experienced by normal messages in both the standard MQTT
(represented by blue dots) and the proposed PR-MQTT method (represented by red
dots) for the same dataset is illustrated in Figure 9. The plot demonstrates that when
the filtering algorithm is employed, even for normal data, the transmission delay is
significantly reduced. This achievement can be attributed to the concept of skipping off
unnecessary data, which is a core aspect of the proposed algorithm. By eliminating the
transmission of redundant or identical data, the algorithm effectively reduces the overall
transmission delay experienced by normal messages.

PR-MQTT 61

Figure 8 Network traffic comparison (see online version for colours)

Network Traffic

12500

11000

10000
8800 8548
7500 6732
5500
5000
2500
0

1100 messages 3300 messages 5500 messages 8800 messages 11000 messages

Messages Delivered

I with priority algorithm Il Without priority algorithm

Figure 9 Transmission delay of normal messages (see online version for colours)

Transmission delay
//’M W.ﬂ",', w/ﬂ’ / , "t/

/a,@,M; o M L\.‘waf&w#mfd P, FO0E ‘./'s.“,,ﬁ‘,w“"\

500

N
o
S

Time(ms)
w
o
o

N
=3
S

® Normal Data (Standard MQTT)

=
o
S

l/’ ® Normal Data (Priority MQTT)

0 500 1000 2000 2500

1500
Data(Index)

The evaluation results clearly demonstrate that the MQTT broker integrated with the
proposed algorithm outperforms the standard MQTT broker in all the evaluation metrics
that were considered. The proposed algorithm effectively prioritises urgent messages
of utmost importance, ensuring their prompt delivery to the receiver. By identifying
and skipping the forwarding of redundant or similar data, the PR-MQTT algorithm
successfully reduces the overall message transfer through IoT networks.

5.3 Discussion

A study on attempts in the literature to prioritise loT messages and reduce network
traffic reveals that it is a research field that still requires exploration. Many attempts in
the literature assign the responsibility of identifying priority messages to the constrained
client nodes or require modifications to the standard MQTT packet structure or message

62 J.J. Puthiyidam and S. Joseph

header size. However, such approaches are not always desirable or encouraged in IoT
networks.

The priority is managed from the broker side in the proposed PR-MQTT protocol.
No modification of the standard MQTT packet structure or fixed header is required.
Publisher clients collect data from surroundings and transmit data packets to the
broker using the standard MQTT packet forwarding procedure. A broker identifies
the high-priority messages using the PR-MQTT algorithm explained. No additional
overhead or computation is required at the constrained client nodes. The computational
complexity of the broker server is also unaffected, as the new algorithm uses simple
mathematical computations.

For evaluation purposes, a testing scenario is created with two publisher client sizes:
ten and forty clients, each sending fifty messages per second. The performance of the
MQTT protocol is compared with and without the proposed algorithm applied. With the
standard MQTT protocol, the latency of the messages increases as the number of clients
and messages increases. When the priority algorithm is applied to the same dataset, the
latency of the normal messages increases, but at a different pace than in standard MQTT.
The priority messages are delivered much faster than normal messages. The latency of
the priority messages remains almost constant, regardless of the index position of the
message. The priority messages are delivered within 10—15 milliseconds, even for larger
data sizes. The latency for normal messages increases as the index position increases.
The CPU and RAM resource utilisation of the proposed algorithm is better than that
of the standard MQTT algorithm. The new approach employs the concept of a trivial
interval to eliminate the transmission of identical or irrelevant data to the client node,
which helps reduce resource consumption.

One significant setback experienced by IoT networks is the heavy traffic and
congestion problem. As the number of connected clients increases, the load on the
broker become heavier and network traffic increases. The proposed algorithm reduces
the network traffic by avoiding the transmission of identical unnecessary data, thanks
to the help of the trivial interval concept incorporated. Therefore, this approach can
support more input clients than normal IoT networks. With the proposed PR-MQTT
broker, even the transmission delay of normal messages is reduced considerably. As
transmission of identical and insignificant messages is restricted with the trivial interval
concept, the overall amount of data transferred between broker and subscriber nodes are
also reduced. This improves the transmission time of the normal messages.

The proposed method handles urgent messages efficiently and reduces network
traffic. The proposed PR-MQTT protocol improves the performance of the MQTT
broker The improved performance of the proposed algorithm is reflected in various
aspects, including reduced latency for priority messages, efficient utilisation of CPU
and RAM resources, decreased network traffic, and minimised transmission delays for
normal messages. These results highlight the effectiveness of the PR-MQTT algorithm
in optimising the performance and efficiency of IoT applications. Overall, the proposed
algorithm offers significant advantages over the standard MQTT broker, enhancing the
delivery of critical messages while minimising unnecessary data transfer. It provides
a valuable solution for improving the performance of IoT networks and ensuring the
timely and efficient communication of important information.

Various industries, such as automotive, entertainment, gaming, finance and
healthcare, are experiencing significant transformations due to the integration of machine

PR-MQTT 63

learning techniques. The primary goal of incorporating learning models into these
domains is to minimise error rates and enhance real-time results while minimising costs
and time investments. When we look at the future scope of learning models, several
areas stand out, including robotics, computer vision, quantum computing, the automotive
industry, and cybersecurity. These fields are expected to see substantial advancements
and applications of machine learning technologies. A significant upcoming trend is
optimising machine learning speed by utilising quantum computing. Quantum computing
enables the execution of multiple complex operations simultaneously, offering the
potential for substantial reductions in execution times, mainly when processing
high-dimensional vectors. Another anticipated development is creating a versatile,
all-purpose model called a ‘big model’. This model is designed to handle various tasks
simultaneously, allowing it to be trained in multiple domains according to specific
needs. Furthermore, the years ahead are likely to witness advancements in distributed
machine learning portability, enabling the running of machine learning tools directly on
various platforms and computing engines. This advancement will eliminate the need for
transitioning to new toolkits when working with machine learning tasks.

6 Conclusions and future research directions

IoT applications generate and transfer a significant portion of internet data. Many loT
networks experience network traffic and congestion issues due to the large number of
connected input devices. Timely processing of critical messages is crucial in various
IoT applications, including patient healthcare and industrial data monitoring. Most IoT
communication protocols do not prioritise incoming messages. Existing approaches to
prioritise IoT data often overload the constrained input clients or require modifications
to the standard IoT protocol, which is undesirable. This paper presents a novel approach
to reduce network traffic and handle priority input data in IoT networks, regardless of
the number of client nodes and the volume of data they produce. The MQTT protocol,
a widely used communication protocol in IoT systems, is selected for experimental
purposes. The proposed PR-MQTT broker is integrated into the open-source MQTT
broker HBMQTT. It prioritises urgent messages and reduces data traffic in IoT
networks. A test system is constructed, and experiments are conducted using various
metrics to compare PR-MQTT and standard MQTT. The results demonstrate that
the proposed approach efficiently processes urgent messages and reduces network
congestion. The latency of the priority messages remains nearly constant, irrespective
of the message’s index position. Priority messages are consistently delivered within
10—15 milliseconds, resulting in a speed improvement of over 90% compared to regular
messages. Additionally, the proposed approach reduces CPU resource utilisation and
network traffic by 25% and the transmission delay of normal messages by 50%. The
client nodes are not overloaded, and this approach does not affect standard MQTT
protocol specifications. The responsibility of determining the priority of data is to the
powerful MQTT broker. This technique reduces network traffic by avoiding transmitting
identical messages and enables IoT networks to accommodate more devices. Hence, the
proposed algorithm helps improve network performance and message transmission in
IoT applications.

64 J.J. Puthiyidam and S. Joseph

Implementing the proposed algorithm in the Mosquitto broker, the most popular
broker in the MQTT circle, is a planned future expansion. Assigning priority concepts
in other popular IoT protocols, such as CoAP and AMQP, is also planned as future
work.

References

Abdul Ameer, H.R. and Hasan, H.M. (2020) ‘Enhanced MQTT protocol by smart gateway’, Iraqi
Journal of Computers, Communications, Control and Systems Engineering, Vol. 20, No. 1,
pp.53-67.

Akshatha, P.S., Kumar, S.D. and Venugopal, K.V. (2022) ‘MQTT implementations, open issues,
and challenges: a detailed comparison and survey’, International Journal of Sensors Wireless
Communications and Control, Vol. 12, No. 8, pp.553-576.

AlEnany, M.O., Harb, H.M. and Attiya, G. (2021) ‘A new back-off algorithm with priority scheduling
for MQTT protocol and IoT protocols’, International Journal of Advanced Computer Science
and Applications, Vol. 12, No. 11, pp.349-357.

Alhaidari, F.A. and Algahtani, E.J. (2020) ‘Securing communication between fog computing and IoT
using constrained application protocol (COAP): a survey’, J. Commun., Vol. 15, No. 1, pp.14-30.

Ali, J. and Zafar, M.H. (2023) ‘Improved end-to-end service assurance and mathematical modeling of
message queuing telemetry transport protocol based massively deployed fully functional devices
in smart cities’, Alexandria Engineering Journal, Vol. 72, No. 1, pp.657-672.

Anitha, P, Vimala, H. and Shreyas, J. (2023) ‘Comprehensive review on congestion detection,
alleviation, and control for IoT networks’, Journal of Network and Computer Applications,
Vol. 221, No. 1, p.103749.

Ashima, R., Haleem, A., Javaid, M. and Rab, S. (2022) ‘Understanding the role and capabilities
of internet of things-enabled additive manufacturing through its application areas’, Advanced
Industrial and Engineering Polymer Research, Vol. 5, No. 3, pp.137-142.

Bashir, A. and Mir, A.H. (2021) ‘Lightweight secure MQTT for mobility enabled e-health internet of
things’, Int. Arab J. Inf. Technol., Vol. 18, No. 6, pp.773-781.

Bayilmig, C., Ebleme, M.A., Cavusoglu, U., Kigtk, K. and Sevin, A. (2022) ‘A survey
on communication protocols and performance evaluations for internet of things’, Digital
Communications and Networks, Vol. 8, No. 6, pp.1094—1104.

Bressoud, T., White, D., Bressoud, T. and White, D. (2020) ‘The hypertext transfer protocol’,
Introduction to Data Systems: Building from Python, pp.609—648, Springer, Cham.

Broker API Reference — HBMQTT 0.6 Documentation (2023) [online] https://hbmgqtt.readthedocs.io/
en/latest/references/broker.html (accessed 5 April 2023).

Chen, D., Li, D. and Guo, R. (2022) ‘Design of topic priority based on industrial publish-subscribe
system’, Frontiers in Energy Research, Vol. 10, No. 1, p.979174.

Donta, PK., Amgoth, T. and Annavarapu, C.S.R. (2020) ‘Congestion-aware data acquisition
with qg-learning for wireless sensor networks’, 2020 [EEE International IoT, Electronics and
Mechatronics Conference (IEMTRONICS), pp.1-6, IEEE.

Donta, PK., Srirama, S.N., Amgoth, T. and Annavarapu, C.S.R. (2022) ‘Survey on recent advances
in IoT application layer protocols and machine learning scope for research directions’, Digital
Communications and Networks, Vol. 8, No. 5, pp.727-744.

Donta, PK., Srirama, S.N., Amgoth, T. and Annavarapu, C.S.R. (2023) ‘iCoCoa: intelligent congestion
control algorithm for coap using deep reinforcement learning’, Journal of Ambient Intelligence
and Humanized Computing, Vol. 14, No. 3, pp.2951-2966.

OASIS Standard Incorporating Approved Errata (2015) MQTT Version 3.1.1 Plus Errata 01.

PR-MQTT 65

Gruener, S., Koziolek, H. and Riickert, J. (2021) ‘Towards resilient IoT messaging: an experience
report analyzing MQTT brokers’, 2021 IEEE 18th International Conference on Software
Architecture (ICSA), 1EEE, pp.69-79.

Houimli, M., Kahloul, L. and Benaoun, S. (2017) ‘Formal specification, verification and evaluation of
the MQTT protocol in the internet of things’, in 2017 International Conference on Mathematics
and Information Technology (ICMIT), IEEE, December, pp.214-221.

Hwang, K., Jung, I.H. and Lee, J.M. (2022a) ‘U-Mosquitto: extension of Mosquitto broker for delivery
of urgent MQTT message’, International Journal of Computational Vision and Robotics, Vol. 12,
No. 1, pp.39-52.

Hwang, K., Lee, J.M. and Jung, [.LH. (2022b) ‘Performance monitoring of MQTT-based messaging
server and system’, Journal of Logistics, Informatics and Service Science, Vol. 9, No. 1,
pp-85-96.

Jain, VK., Mazumdar, A.P., Faruki, P. and Govil, M.C. (2022) ‘Congestion control in internet of
things: classification, challenges, and future directions’, Sustainable Computing: Informatics and
Systems, Vol. 35, No. 1, p.100678.

Johansson, L. and Dossot, D. (2020) RabbitM(Q Essentials: Build Distributed and Scalable
Applications with Message Queuing Using RabbitM(Q, Packt Publishing Ltd., Mumbai,
ISBN: 978-1-78913-166-6.

Jung, C. (2020) ‘Prioritized data transmission mechanism for 10T’, KSII Transactions on Internet and
Information Systems (TIIS), Vol. 14, No. 6, pp.2333-2353.

Kim, G., Park, J. and Chung, K. (2018a) ‘Priority-based multi-level MQTT system to provide
differentiated IoT services’, Journal of KIISE, Vol. 45, No. 9, pp.969-974.

Kim, S-j. and Oh, C-h. (2017) ‘Method for message processing according to priority in MQTT
broker’, Journal of the Korea Institute of Information and Communication Engineering, Vol. 21,
No. 7, pp.1320-1326.

Kim, Y-S., Lee, H-H., Kwon, J-H., Kim, Y.S. and Kim, E-J. (2018b) ‘Message queue telemetry
transport broker with priority support for emergency events in internet of things’, Sensors and
Materials, Vol. 30, No. 8, pp.1715-1721.

Koziolek, H., Griiner, S. and Riickert, J. (2020) ‘A comparison of MQTT brokers for distributed IoT
edge computing’, Sofiware Architecture: 14th European Conference, ECSA 2020, Proceedings,
14-18 September, Springer, L’Aquila, Italy, pp.352-368.

Lawton, G. (2004) ‘Machine-to-machine technology gears up for growth’, Computer, Vol. 37, No. 9,
pp.12-15.

Lazidis, A., Tsakos, K. and Petrakis, E.G. (2022) ‘Publish-subscribe approaches for the IoT and
the cloud: functional and performance evaluation of open-source systems’, Internet of Things,
Vol. 19, No. 1, p.100538.

Liu, Y. and A-Masri, E. (2021) ‘Evaluating the reliability of MQTT with comparative analysis’,
2021 IEEFE 4th International Conference on Knowledge Innovation and Invention (ICKII), 1EEE,
pp-24-29.

Mahmood, A., Beltramelli, L., Abedin, S.F., Zeb, S., Mowla, N.I., Hassan, S.A., Sisinni, E. and
Gidlund, M. (2021) ‘Industrial IoT in 5G-and-beyond networks: vision, architecture, and design
trends’, IEEE Transactions on Industrial Informatics, Vol. 18, No. 6, pp.4122-4137.

Mosquitto MQTT Broker (2023) [online] http://www.steves-internet-guide.com/mosquitto-broker/
(accessed 5 April 2023).

Naik, N. (2017) ‘Choice of effective messaging protocols for IoT systems: MQTT, COAP, AMQP
and HTTP’, 2017 IEEE International Systems Engineering Symposium (ISSE), IEEE, pp.1-7.

Oh, S-C. and Kim, Y-G. (2019) ‘A study on MQTT based on priority topic for lloT’, The journal
of the institute of internet, broadcasting and communication, Vol. 19, No. 5, pp.63-71.

66 J.J. Puthiyidam and S. Joseph

Oyewobi, S.S., Djouani, K. and Kurien, A.M. (2021) ‘Using priority queuing for congestion control in
IoT-based technologies for IoT applications’, International Journal of Communication Systems,
Vol. 34, No. 4, p.e4709.

Park, K., Kim, I. and Park, J. (2018) ‘An efficient multi-class message scheduling scheme for
healthcare IoT systems’, International Journal of Grid and Distributed Computing, Vol. 11,
No. 5, pp.67-77.

Park, K., Park, J. and Lee, J. (2017) ‘An IoT system for remote monitoring of patients at home’,
Applied Sciences, Vol. 7, No. 3, p.260.

Ray, P.P. (2018) ‘A survey on internet of things architectures’, Journal of King Saud
University-Computer and Information Sciences, Vol. 30, No. 3, pp.291-319.

Singh, S., Rathore, S., Alfarraj, O., Tolba, A. and Yoon, B. (2022) ‘A framework for
privacy-preservation of IoT healthcare data using federated learning and blockchain technology’,
Future Generation Computer Systems, Vol. 129, No. 1, pp.380-388.

Tatyasaheb, D.N. and Kumar, B. (2021) ‘Implementation and comparison of MQTT protocol to
check the drawbacks for future enhancement’, 2021 International Conference on Computing,
Communication and Green Engineering (CCGE), 1EEE, pp.1-6.

Uy, N.Q. and Nam, V.H. (2019) ‘A comparison of AMQP and MQTT protocols for internet of
things’, 2019 6th NAFOSTED Conference on Information and Computer Science (NICS), 1EEE,
pp-292-297.

Wazid, M., Das, A.K., Bhat, V. and Vasilakos, A.V. (2020) ‘LAM-CloT: lightweight authentication
mechanism in cloud-based IoT environment’, Journal of Network and Computer Applications,
Vol. 150, No. 1, p.102496.

Yudidharma, A., Nathaniel, N., Gimli, T.N., Achmad, S. and Kurniawan, A. (2023) ‘A systematic
literature review: messaging protocols and electronic platforms used in the internet of things for
the purpose of building smart homes’, Procedia Computer Science, Vol. 216, No. 1, pp.194-203.

Yugha, R. and Chithra, S. (2020) ‘A survey on technologies and security protocols: reference
for future generation 10T’, Journal of Network and Computer Applications, Vol. 169, No. 1,
p.102763.

