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Abstract: Loop-based intelligent tutoring systems (ITSs) support the learning 
process using a step-by-step problem-solving approach. A limitation of ITSs is 
that few contents are compatible with this approach. On the other hand, 
recommendation systems can recommend different types of content but ignore 
the fine-grained concepts typical of the step-by-step approach. This work 
contributes to the solution of this state-of-the-art challenge by proposing an 
approach for the recommendation of learning objects from different areas of 
knowledge, considering the refined concepts of ITSs. To deal with this 
challenge, we formulate the learning object recommendation problem as the set 
covering problem that belongs to the NP-hard class problems. An exact 
algorithm and a greedy heuristic were properly adapted, resulting in a 
promising approach to solve these problems, as shown by the results. This 
resulted in more personalised content for students using collaborative filtering 
and an ontology that models their knowledge, learning styles and search 
parameters. 

Keywords: learning objects recommendation; personalised recommendation; 
collaborative filtering; ontology; set covering; learning styles; intelligent 
tutoring systems; ITSs. 
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1 Introduction 

Intelligent tutoring systems (ITSs) are computer systems that use artificial intelligence 
and cognitive psychology techniques to give feedback to students without human 
intervention (Bernacki et al., 2014). A challenge inherent in these systems is the 
personalised learning objects (LOs) recommendation. This problem, hereinafter referred 
to as LO recommendation problem (LORP), is treated in the literature by several 
techniques, the most used being content-based filtering (CBF) (Vanetti et al., 2010), 
collaborative filtering (CF) (De Medio et al., 2020) and the combination of two or more 
techniques (hybrid recommendation) (Burke, 2007; Barragáns-Martínez et al., 2010; Choi 
et al., 2012; Tarus et al., 2017). These techniques suffer from the rating sparsity (Zhao  
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et al., 2015) and cold-start (Adomavicius and Tuzhilin, 2005) problems. In the context of 
e-learning, the rating sparsity problem occurs when few students have evaluated the same 
LO, and there is no overlap in the classification preferences. The cold-start problem 
occurs when it is not possible to make reliable recommendations due to the lack of initial 
assessments for new students or educational resources (Adomavicius and Tuzhilin, 2005). 

ITSs are good at helping the students solve problems step-by-step by giving them 
feedback and hints on each step (VanLehn, 2006), but this approach is not compatible 
with most content (Soofi and Ahmed, 2019). On the other hand, recommendation systems 
(RSs) are able to recommend content from different areas, but they disregard the  
fine-grained concepts that the student needs to learn, which prevents a more personalised 
recommendation to the student’s knowledge. 

In this article, we define the LORP as a problem whose goal is to solve the previous 
drawbacks. We propose a hybrid recommendation approach that uses an ontology 
(Gruber, 1993) to model knowledge about students and educational resources, being able 
to recommend LOs from all areas of knowledge using fine-grained concepts, contributing 
to the state-of-the-art. Ontology is used by some works to model the knowledge about the 
students and learning resources (Bajenaru et al., 2015; Shishehchi et al., 2012; Moreno  
et al., 2013; Ruotsalo et al., 2013), and in our work, it is also used to model fine-grained 
LOs (called hints). In addition, the ontology stores the concepts that each LO covers, 
providing a fine-grained recommendation of LOs that cover the concepts that the student 
has not yet mastered, including subjects about which the student has doubts, for which 
hints will be recommended. 

The main contributions of this work to the e-learning RSs are: 

1 An approach that combines ontology-based recommendation – that reduces the 
rating sparsity and cold-start problems – and CF techniques for the recommendation 
of LOs based on concepts and the reuse of web content. The ontology models LOs 
and the students’ knowledge level and profile, and it implements inference rules to 
aid the recommendation process. 

2 The LORP is formalised as the set covering problem (SCP) (Garey and Johnson, 
1979). We adapt two algorithms to solve this problem. 

The rest of this paper is organised as follows. In Section 2, we present the background of 
this work. In Section 3, we discuss the related work relevant to this study. The proposed 
approach is detailed in Section 4. Section 5 is dedicated to the experiments and the 
results. Finally, the conclusions and future work are outlined in Section 6. 

2 Background 

This section presents the most relevant theories and concepts that ground this work. In 
Section 2.1, we present a summary about the semantic web (SW), a technology that uses 
ontologies to semantically represent the vast content of the traditional web. Ontologies 
structure entities and their relationships allowing the inference of new knowledge. In our 
approach, the ontology stores information about the students and LOs. The educational 
standards used to structure this information are presented in Section 2.2. 

The main filtering and recommendation techniques that support RSs are presented in 
Section 2.3. Our approach uses the ontology-based recommendation technique, in which 
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the domain model and the learner model are structured in an ontology. Our RS uses these 
models to solve the LORP. To understand the LORP as a covering problem, in  
Section 2.4, we describe the SCP and its usefulness in formalising real-world problems. 

2.1 Semantic web 

The SW (Berners-Lee et al., 2001), as the name suggests, extends the traditional web 
with semantic information described in eXtensible Markup Language (XML), resource 
definition framework (RDF) and Web Ontology Language (OWL). OWL is the language 
with the greatest potential for knowledge representation and is commonly used in the 
implementation of ontologies. Ontologies can be thought of as non-relational databases, 
which are consulted through queries in SPARQL, a language equivalent to SQL. A great 
advantage of ontologies is the possibility of discovering new knowledge through 
inference rules described in Semantic Web Rule Language (SWRL) (Horrocks et al., 
2004). 

2.2 Modelling LOs and students 

A popular metadata standard for describing LOs is the IEEE-LOM (LTSC, 2002). For 
that, this standard uses nine categories, of which the general and educational categories 
stand out. Among the fields of the general category, the entry field serves to store the 
LO’s link (for example, from a YouTube video or from a Wikipedia page), and the 
keyword field can store the concepts that the LO covers. The educational category 
describes pedagogical information about LO, such as its type, its degree of difficulty and 
its target audience. Not all fields of the IEEE-LOM standard are widely used. Also, some 
fields have a reduced vocabulary. One way to extend reduced vocabularies is to use some 
extension. The Customised Learning Experience Online (CLEO) (CLEOLab, 2003) 
extends the IEEE-LOM standard by expanding, for example, the vocabulary of learning 
resources type of the educational category. 

In addition to educational content, the student also needs to be modelled by computer 
systems. One of the commonly modelled characteristics is the student’s learning style. 
The most suitable model for use in modelling student’s learning styles is the FSLSM 
proposed by Felder et al. (1988). The popularity of this model is due to the fact that it 
covers more psychological aspects than other models (Deborah et al., 2014). The model 
has four polar dimensions: input (visual and verbal), organisation (sequential and global), 
perception (sensitive and intuitive) and processing (active and reflective). One of the 
instruments used to assess student preferences in these four dimensions is the index of 
learning styles questionnaire (Soloman and Felder, 2005). 

2.3 Filtering and recommendation techniques 

In CBF (Vanetti et al., 2010), objects with content characteristics similar to those objects 
that the target user liked in the past are recommended. The disadvantage of CBF is that 
the students can only receive LOs similar to their past experience, whereas in CF  
(De Medio et al., 2020), the recommendation history of other students is considered in 
the recommendation of new LOs for the target student. CF uses object evaluations (see 
Figure 1) to calculate the similarity of users or objects and make the recommendation. 
Both techniques, unlike knowledge-based (KB) recommendation (Tarus et al., 2017), 
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suffer from rating sparsity and cold-start problems. KB recommendation aggregates 
knowledge about the student and learning materials to apply them in the recommendation 
process. The ontology-based recommendation (Tarus et al., 2017) is a type of KB 
recommendation that uses ontology to represent this knowledge. 

Figure 1 Rating matrix of CF and KB recommendation, (a) rating matrix of LOs for CF  
(b) rating matrix of LOs for KB recommendation 

 
(a) (b) 

Notice in Figure 1 that the rating matrix in CF takes into account only the ratings of the 
LOs, while KB recommendation considers the student’s level, which can be beginner, 
intermediate or advanced. The target student is identified by L1. In KB recommendation, 
the prediction of the score that L1 would give the O3 LO will depend on the grade that O3 
received from other students at the same level as L1. This level is an example of 
contextual information or knowledge about the student. It can be said, therefore, that KB 
is a type of CF that aggregates contextual information about the student, helping to 
reduce the rating sparsity and cold-start problems in CF. 

2.4 Set covering problem 

The SCP is a well-known combinatorial optimisation problem that has been applied to a 
wide range of applications (Lan et al., 2007), including crew scheduling in railway and 
airlines (Housos and Elmroth, 1997; Caprara et al., 1999), facility location problem 
(Vasko and Wilson, 1984) and industry production planning (Vasko et al., 1987). 

The mathematical formulation of the SCP is as follows. Given m rows, n columns and 
an (m × n) sparse matrix of zero-one elements aij, where aij = 1 if row i is covered by 
column j, and aij = 0 otherwise. Each column j covers at least one row from m rows and 
has an associated cost cj > 0. The objective is to find a subset from n columns that covers 
all the rows of aij at a minimal cost. We define the LORP as the mathematical 
programming model of the SCP in Section 4.3. 

To exemplify this problem in a real-life scenario, imagine that an automobile 
company needs to install repair shops in a state. More products require, in most cases, 
physical proximity between customers and suppliers, for the provision of technical 
assistance, if required. The problem is building stores across the state to meet all 
customer demand, which means serving every city (or town) in the state while spending 
as little money as possible. A repair shop can be strategically installed in a city to serve 
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neighbouring cities, but depending on the installation location, the construction cost can 
be higher. 

Given that this state has 200 cities and that the car company has 1,000 budgets with 
the cost of installing stores, following the formal definition of the SCP for this real-life 
problem, the objective is to find a subset from n = 1,000 repair shops that covers all the 
demand in the state, that is, it serves m = 200 cities at a minimum installation cost. The 
graphical representation of this instance of the problem is shown in Figure 2. 

Figure 2 Input matrix and cost vector of the repair shop covering problem (see online version  
for colours) 

 

Note that each column S (repair shop) has an associated cost (amount spent to install the 
store). Optimising this cost means reducing it as much as possible, respecting the SCP 
goal of covering all lines (cities). The sets S1, S2, …, S1000 have costs 50, 62, …, 148, 
respectively. Each set S is a repair shop that covers a set of cities. Repair shop S1, for 
example, covers the cities T1 and T2, but does not cover the cities T3 and T200. 

The SCP is NP-hard (Garey and Johnson, 1979) and exact algorithms (Balas and 
Carrera, 1996; Fisher and Kedia, 1990) are used to find its optimal solution, but these 
procedures are able to solve very limited size instances and are very time consuming, so 
exact algorithms are not practical for large-scale instances due to the computational 
complexity of SCP. For this reason, many researchers make a lot of efforts on developing 
metaheuristic algorithms (Bilal et al., 2013) based on constructive metaheuristics as ant 
colony optimisation (ACO) (Ren et al., 2008, 2010), evolutionary algorithms as genetic 
algorithm (GA) (Beasley and Chu, 1996; Solar et al., 2002; Wang and Okazaki, 2007) 
and local search (Musliu, 2006; Yagiura et al., 2006). 

Exact and greedy algorithms can be good alternatives to solve the SCP when the 
instances are smaller, which is common in the educational context. In this work, we 
implement and compare two types of algorithms to solve the SCP (LORP): an exact 
algorithm and a greedy algorithm adapted from Golab et al. (2015). The simplest 
approach to solving the SCP is the greedy algorithm of Chvatal (1979). Greedy 
algorithms are fast, but they have a hard time finding the best solution, while exact 
algorithms are slower but find the best solution. 
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3 Related work 

Much research combines recommendation techniques with ontologies and/or the web, 
including Wikipedia, for the recommendation of educational resources as shown in  
Table 1. For example, Limongelli et al. (2015) created a module in a system for a 
collaborative recommendation of Wiki pages used by teachers when creating their 
courses. The target teacher benefits from the recommendation made in the past to other 
teachers who have a teaching style similar to yours. 
Table 1 Comparison of related literature with the proposal of this work 

Reference 
Web 

content 
reuse 

Ontology or 
semantic 

web 
technologies 

LOs 
recommendation 

technique 

LOs coverage 
using fine-grained 

concepts from 
different areas of 

knowledge 
Limongelli et al. (2015) Yes No CBF and CF No 
Belizário and Dorça 
(2018) 

Yes Yes GA No 

Falci et al. (2019) Yes Yes Greedy alg. No 
Belizário et al. (2020) Yes Yes CF, SWRL and 

PSO 
No 

Christudas et al. (2018) No No CGA No 
Birjali et al. (2018) Yes No ACO and GA No 
Ouf et al. (2017) No Yes SWRL No 
Pereira et al. (2018) Yes Yes SPARQL No 
Our proposal Yes Yes CF, SWRL, exact 

and greedy alg. 
Yes 

Another approach that recommends Wiki content is presented in Belizário and Dorça 
(2018), but the content is recommended directly to the target student without using the 
teacher as an intermediary. This approach selects the best quality Wiki pages using the 
quality classes assigned to them by users. The sections (within these pages) that cover the 
concepts that the target student needs to learn are recommended. The approach uses an 
ontology for modelling students and LOs. The LORP is formalised as a SCP and is 
solved by a GA. 

This same problem is solved by a faster algorithm considering a greedy heuristic, as 
shown in Falci et al. (2019). The intuition underlying heuristics is that LOs that meet the 
student’s learning style, while covering more concepts, tend to deliver better candidates 
for the final solution. The algorithm that implements this heuristic is faster than GA, 
mainly for instances with thousands of LOs, for which GA can become impractical given 
the exponential search space and the high number of calculations of the fitness function. 

This LORP defined as a covering problem is also solved in (Belizário et al., 2020) 
using CF, SWRL and particle swarm optimisation (PSO) (Kennedy and Eberhart, 1995). 
In the previous works (Belizário and Dorça, 2018; Falci et al., 2019), the authors 
considered only the user’s search parameters when recommending LOs. In Belizário et al. 
(2020), in addition, the authors also consider the history of rating given to LOs by 
students with ratings similar to the student to whom the recommendation is directed. 
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GAs can be used to personalise the recommendation of LOs in contexts with many 
learning parameters. In Christudas et al. (2018), the authors proposed a compatible 
genetic algorithm (CGA) to the recommendation of LOs. The CGA forces compatibility 
of: 

a the LO type in relation to the learning style of the student 

b the LO complexity level with respect to the knowledge level of the student 

c the interactivity level of the LO based on the satisfaction level of the student during 
the learning process. 

In Birjali et al. (2018), the authors created an adaptive e-learning model based on big data 
that uses a MapReduce-based GA to determine the suitable educational objectives 
through the adequate student e-assessment method and an ACO algorithm to generate an 
adaptive learning path for each learner. After that, a MapReduce-based social networks 
analysis is performed to determine the learning motivation and social productivity in 
order to assign a specific learning rhythm to each student. 

The SW, in addition to ontologies, also has technologies that have been explored by 
some authors for the recommendation of LOs. Ouf et al. (2017) developed a tool for an 
intelligent learning ecosystem using ontologies and rules in SWRL. Ontologies are used 
to model students and to tailor components of the learning process to students, such as 
LOs, preferred learning activities and relevant teaching-learning methods. 

Pereira et al. (2018) created an infrastructure for the recommendation of educational 
resources based on information such as the user’s profile and the educational context, 
extracted from the social network Facebook. SW technologies and information extraction 
techniques are used to extract, enrich and define the profiles and interests of users. The 
recommendation strategy is based on linked data, LO repositories and videos, benefiting 
from the time the user spends on the web. 

In our previous paper (Belizário et al., 2020), we formulate the LORP as a covering 
problem, and in this work, we take advantage of this idea to define the LORP as the SCP, 
so the LORP becomes able to consider the concepts that the student needs to learn. It is 
noted that the works of the related literature use the web for the reuse of content 
(including LO repositories) and/or use SW technologies, but they do not combine the 
recommendation of fine-grained concepts typical of the step-by-step approach with the 
recommendation of content from different areas of knowledge. 

This work contributes to the solution of this state-of-the-art challenge by proposing an 
approach for the recommendation of LOs from different areas of knowledge, considering 
concepts with fine granularity. This is the main advance of our work in relation to the 
work initially proposed in Belizário et al. (2020). Our proposed approach is detailed in 
the next section. 

4 Proposed approach 

The proposed RS is based on a hybrid recommendation approach that combines CF and 
ontology-based recommendation techniques. The ontology is used to model students and 
store metadata of LOs. Our RS is able to recommend content from different areas of 
knowledge by reusing web content, especially Wikipedia pages. Web content is reused 
when the ontology LOs are not enough to cover all the concepts that the student needs to 
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learn. In addition, we implemented the hint-type LO in the ontology for a more fine-
grained recommendation for students. 

Wikipedia is a great digital encyclopaedia with 6 million and 585 thousand articles  
in English and 1 million and 96 thousand articles in Portuguese, published as of  
22nd January 2023. Wikipedia’s content may be copied, modified and redistributed under 
a Creative Commons BY-SA licence. The Wikipedia community can assess the quality of 
articles with almost a dozen labels that serve to rank articles from the worst to the best. In 
Section 4.4, we show how these classes can be used as a user search parameter to ensure 
accuracy and confidence in creating LOs using Wiki sections. 

Figure 3 Overall of the proposed RS (see online version for colours) 

 

Users’ search parameters, such as the concepts they need to learn, their preferences and 
their questions, are captured by the RS interface, which can be, for example, a chatbot. 
The advantage of the chatbot is its ability to understand human language, which can be 
exploited to extract concepts that the student has to learn or has doubts about. The 
ontology class in which these search parameters are stored is called ideal LO, as these are 
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the ideal characteristics expected to be found in the recommended LOs. Once the ideal 
LO is filled in, the system is ready to work, regardless of the interface used to capture 
user input. 

Based on the recommendation model in Figure 3, the ontology uses inference rules to 
suggest LOs. If the suggested LOs do not cover all concepts, then web content including 
Wikipedia pages dealing with the uncovered concepts are transformed into temporary 
LOs in the ontology, which are joined with the suggested LOs to form the set of collected 
LOs. The collected LOs are supposed to cover all concepts. These LOs and concepts are 
the input to the algorithms that solve the LORP, which is a cover problem that aims to 
recommend LOs that cover the concepts that the student needs to learn. An exact and a 
greedy algorithm are used to solve this problem. After solving it, the LOs of the best 
solution found are recommended to the student. The temporary LOs of this 
recommendation become permanent LOs in the ontology. 

In the following sections, we present the ontology in Section 4.1 and the 
improvements made to it in Section 4.2. Section 4.3 shows how the SCP can be used to 
formally define the LORP, and Section 4.4 describes how the cost of LOs is calculated. 

4.1 Ontology 

The ontology used in this work was initially proposed in Belizário and Dorça (2018). It 
stores knowledge about students and specifies the LOs according to the IEEE-LOM 
standard and its CLEO extension. In addition, ontology implements SWRL rules with 
two different purposes. First, some rules are used to infer the types of LOs appropriate to 
the student’s learning style based on the theory described by Graf et al. (2010), who 
address which types of LOs should be recommended for each type of student profile 
associated with the FSLSM. Second, other rules are used to perform the selection of LOs 
that are similar to the user’s search parameters. 

4.1.1 Domain model 
The ontology does not contain the LOs, but their metadata. Each LO has the  
nine categories of the IEEE-LOM standard, which are represented in the ontology by  
the classes General_1, LifeCycle_2, MetaMetaData_3, Technical_4, Educational_5, 
Rights_6, Relation_7, Annotation_8 and Classification_9 (see Figure 4). 

Properties whose range is a set of fixed values, such as the hasDifficulty property that 
has the range VeryEasy, Easy, Medium, Difficult and VeryDifficult, were implemented 
using the value partition pattern (Rector, 2005). The name of all classes that follow this 
pattern ends with ValuePartition, and their subclasses correspond to fixed values. 

There are four types (subclasses) of LOs in the ontology (see Figure 4). They are: 

1 Ideal LO: It contains the user’s search parameters, including the concepts that the 
student is expected to learn. The recommended LOs are expected to equal the ideal 
LO. 

2 Permanent LO: Represent LOs already stored in the ontology, either because they 
have been created by the tutor or previously recommended. 

3 Suggested LO: Contains inferred instances of permanent LOs that have some 
similarity to the ideal LO. These instances are LOs suggested by inference rules. 
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4 Temporary LO: Contains instances of LOs found on the web and temporarily stored 
in the ontology. 

Figure 4 Domain model in the ontology (see online version for colours) 

 

In Figure 4, the educational category is expanded to show the key educational or 
pedagogic characteristics in describing the content of LOs. These attributes have a set of 
fixed values. In addition, the educational category has four attributes characterised by 
primitive data types: typical age range, typical learning time, description and language. 

4.1.2 Learner model 
The ontology is open for the addition of new implementations – including student 
characteristics, such as name and knowledge level – according to the educational context 
in which it will be used. In this work, we consider the psychological aspects of the 
students that are structured in the ontology through the FSLSM as shown in Figure 5. 

This model helps to recommend the most appropriate types of LOs for each type of 
student profile. 

The student’s learning style is given by the profile class, which has the four polar 
dimensions of the FSLSM. For example, in the input dimension, the student will be either 
visual or verbal. These dimensions are properly structured into classes and their  
fixed-value subclasses using the value partition pattern. 

4.2 Ontology improvements 

We incremented the ontology proposed in Belizário and Dorça (2018) to improve the LO 
recommendation process. In the teaching-learning process, the student naturally has 
doubts when studying content or solving exercises. These doubts may be related to 
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concepts and LOs. In the work (Belizário and Dorça, 2018), the authors made the 
recommendation considering only the concepts that the student needs to learn. In this 
work, beyond concepts, we consider the student doubts associated with LOs. Thus, it is 
possible to recommend to the students hints related to the LO that they have doubts 
about. 

Figure 5 Learner model in the ontology (see online version for colours) 

 

4.2.1 Hint-type LOs 
To improve the LO recommendation process, we implement in the ontology the hint type 
and use the relation class to link the hint-type LOs to the LOs of other types (such as 
exercise and Wiki content). 

In Figure 6, the LO_1 is a Wiki content that has two hints (LO_2 and LO_3), and the 
three LOs are instances of the PermanentLOs class. Note that LO_1 relates to hints via 
the Relation category. 

The IEEE-LOM standard defines some values, such as haspart, hasversion and 
requires, for the type relation. The most appropriate value to relate a LO to its hints is 
haspart, because many hint-type LOs can be part of a LO. In Figure 6, for example, the 
LO_1 is a Wiki-type LO (wikiContent) and has two parts (hasPart) that correspond to the 
objects LO_2 and LO_3, which are of the hint type. Note that these relationships are done 
through the uniform resource identifier (URI) used to identify the location of LO_2 and 
LO_3. As many relationships (hasRelation) as necessary can be created for each LO, but 
the LOM standard sets a maximum of 100. 
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Figure 6 Relationship (hasPart) between wikiContent and hint LOs (see online version  
for colours) 

 

4.2.2 Ideal LO 
The user’s search parameters are stored in the IdealLO class of the ontology. Considering 
that through the RS interface, for example, in a dialogue between the student and a 
chatbot, the LO in which the student has doubts has been identified, then the URI of this 
LO is stored in the ideal LO. For this, we use the relation metadata to store the URI. An 
example of this relationship is shown in Figure 7, in which LO_ideal_00001 has the 
identification of the LO (Wiki content) that generates the student’s doubt. 

The ideal LO (LO_ideal_00001) relates to a resource (res_ideal_00001) identified by 
the URI https://en.wikipedia.org/wiki/Mitosis. This relation (rel_ideal_00001) is of the 
haspart type, so this resource (Wiki content) is part of the ideal LO, i.e., it is part of the 
user’s search parameters. This is how the URI of the LO about which the student has 
doubts is stored in the ideal LO. 

Figure 7 shows that the ideal LO is recommended for the student_00001, who has a 
profile characterised by verbal, global, intuitive and active. From this semantic 
representation, we create inference rules to allow convenient hints for students to be 
chosen along with collected LOs. Table 2 shows an example of a SWRL rule and its 
meaning. 

Using the URI of idealLO, the LO generating the student’s doubt is identified, and all 
the hints associated with this LO are suggested, according to the inference rule in  
Table 2. 
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Figure 7 Ideal LO (see online version for colours) 

 

Table 2 SWRL rule 

SWRL rule Meaning 

IdealLOs(?idealLO) ∧ Relation_7(?rel) ∧ 
hasRelation(?idealLO, ?rel) ∧ Resource(?res) ∧ 
hasResource(?rel, ?res) ∧ Identifier(?ideideal) ∧ 
hasIdentifier(?res, ?ideideal) ∧ hasEntry_(?ideideal, ?uri) 

IF there exists ?idealLO such 
that ?idealLO is an ideal LO, 

and ?idealLO has relation 
with (searches for) a URI ?uri 

∧ AND 

PermanentLOs(?lo) ∧ General_1(?gen) ∧ hasGeneralData(?lo, 
?gen) ∧ Identifier(?ide) ∧ hasIdentifier(?gen, ?ide) ∧ 
hasEntry_(?ide, ?uri) 

There exists ?lo such that ?lo 
is a permanent LO, and ?lo is 

addressed by ?uri 

∧ AND 

Relation_7(?relat) ∧ hasRelation(?lo, ?relat) ∧ 
Resource(?resou) ∧ hasResource(?relat, ?resou) ∧ 
Identifier(?iderel) ∧ hasIdentifier(?resou, ?iderel) ∧ 
hasEntry_(?iderel, ?urihint) 

?lo has relation with a URI 
?urihint 

∧ AND 

PermanentLOs(?lohint) ∧ General_1(?genhint) ∧ 
hasGeneralData(?lohint, ?genhint) ∧ Identifier(?idehint) ∧ 
hasIdentifier(?genhint, ?idehint) ∧ hasEntry_(?idehint, 
?urihint) ∧ Educational_5(?edu) ∧ 
hasEducationalData(?lohint, ?edu) ∧ Hint_extended(?hinttype) 
∧ hasLearningResourceType(?edu, ?hinttype) 

There exists ?lohint such that 
?lohint is a permanent LO, 

and ?lohint is of the hint type, 
and ?lohint is addressed by 

?urihint 

→ THEN 
SuggestedLOs(?lohint) ?lohint is a suggested LO 

4.3 LORP defined as the SCP 

In the context of teaching and learning, imagine a situation in which a student needs to 
learn four concepts belonging to the finite set X = {C1, C2, C3, C4}. Consider a collection 
of subsets of X given by F = {O1, O2, O3, O4}, where O1 = {C1, C3}, O2 = {C3, C4},  
O3 = {C1}, and O4 = {C2, C3}. The sets O1, O2, O3 and O4 have costs 5, 3, 2 and 2, 
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respectively. Each element of F is a LO that covers a set of concepts. LO O1, for 
example, covers the concepts C1 and C3. In this scenario, the objective is: 

• Find a set of LOs that together cover all concepts (elements of X) at minimal cost. 

This objective is equivalent to the SCP, and so the solution for the previous example is 
{O2, O3, O4} with cost 7. In the context of this work, the cost of Oj is inversely 
proportional to the importance that Oj has for the student. The lower the cost of the LO, 
the more it meets the student’s knowledge and learning preferences, hence the 
importance of optimising the cost, that is, finding a set of LOs that has the lowest 
possible cost while covering all the concepts that the student needs to learn. 

The formal definition of the SCP is as follows. Let aij be a zero-one matrix with m 
rows and n columns, the goal is to cover all rows using a subset of columns at minimal 
cost. Let xj = 1 if the column j (with cost cj > 0) is part of the solution, and xj = 0 
otherwise, then the SCP is formulated as: 

1

1

Minimise 

subject to 1 , 1, ,

{0, 1}, 1, ,

n

j j
j

n

ij ij
j

j

c x

a x i m

x j n

=

=

≤ =

∈ =



 



 (1) 

The LORP, whose objective is to find a coverage of LOs that covers all concepts at 
minimum cost, corresponds to the SCP formalised by equation (1). The value cj is 
calculated in Section 4.4. 

The input matrix aij is filled with the user input concepts and with the LOs collected 
by the RS (i.e., the collected LOs shown in Figure 3). Each row i corresponds to an input 
concept Ci, and each column j is associated with an LO Oj resulting from the set of 
collected LOs. aij = 1, if Oj covers Ci, and aij = 0 otherwise. 

Figure 8 shows the input matrix, the cost vector and the graphic representation of the 
previous example. The LOs O1, O2, O3 and O4 have costs 5, 3, 2 and 2, respectively, as 
shown in Figure 8. The solution for this example is {O2, O3, O4} with cost 7, as stated 
earlier. 

Figure 8 Input matrix and cost vector of the LO covering problem 
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4.4 Improvements in cost calculation 

The cost of the column j (cj) corresponds to the jth value in the cost vector. The cost cj is 
calculated by the dissimilarity between the user’s search parameters (Oideal) and Oj. The 
characteristics of each LO, such as the type (exercise, lecture notes, etc.) and the 
keywords, are compared with the equivalent search parameters configured in the Oideal 
metadata of the ontology. The calculation of this cost was initially proposed in Belizário 
and Dorça (2018), where it was formally defined as: 

( ),j ideal jc diss O O=  (2) 

The diss(Oideal, Oj) value is inversely proportional to the degree of similarity between 
Oideal and Oj. The result of diss(Oideal, Oj) depends on the proximity between Oideal and Oj. 
The parameters of Oj, such as degree of difficulty, semantic density and learning resource 
type, are compared with the corresponding parameters of Oideal given by the user. 

Formally, let αi be the value of the ith parameter. The calculation of the dissimilarity 
between Oj and the user’s search parameters is given by equation (3): 

( ) ( )( ) ( )
1

,
p

ideal j i ideal i j
i

diss O O
=

= − α α  (3) 

where p is the number of parameters, αi(ideal) is the value of the ith parameter of Oideal, and 
αi(j) is the value of the ith parameter of Oj. In this work, we consider six parameters: 

• Title: The titles are compared by the cosine similarity. 

• Interactivity type: Each vocabulary term is mapped to a value (active = 0,  
mixed = 0.5, expositive = 1) that corresponds to the αi(j) of equation (3). 

• Learning resource type: Equation (3) results in 0 if the Oideal and the Oj are the same 
resource type, and it results in 1 otherwise. 

• Interactivity level and semantic density: Each vocabulary term is mapped to a value 
(verylow = 0, low = 0.25, medium = 0.5, high = 0.75, veryhigh = 1) that corresponds 
to the αi(j) of equation (3). 

• Difficulty: Each vocabulary term is mapped to a value (veryeasy = 0, easy = 0.25, 
medium = 0.5, difficult = 0.75, verydifficult = 1) that corresponds to the αi(j) of 
equation (3). 

In addition to these parameters, other parameters can be considered depending on the 
needs of each educational context. One could use, for example, a parameter for 
recommending higher-quality Wiki-type LOs. The amount of Wikipedia articles has 
grown exponentially, and associated with this, articles are edited all the time, which can 
change the quality of the article. To deal with this problem, several types of research have 
been developed for the automatic evaluation of Wiki articles. 

Warncke-Wang et al. (2013) used a classifier based on a decision tree to identify the 
quality of Wikipedia articles. The authors showed that by extracting only five features 
from Wiki pages, it is possible to obtain significant results. This classifier can classify 
Wiki articles into seven different classes: FA, GA, A, B, C, Start and Stub, all defined by 



   

 

   

   
 

   

   

 

   

    Advances in personalised recommendation of learning objects 41    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Wikipedia itself. The authors divided the articles into two large classes: GoodEnough 
articles (containing FA, A and GA) and NeedsWork (containing B, C, Start and Stub). 

The quality of Wiki articles corresponds to one of the p parameters defined by 
equation (3). Let aq be a quality parameter, and to use it in equation (3), the idealqa  and 

jqa  of the jth LO compared to the ideal LO are defined below: 

• 1idealqa =  (the ideal LO certainly has the highest level of quality, belonging to the FA 
class) 

• jqa  is the value corresponding to the quality rating received by the jth LO according 
to the following mapping: FA → 1.0, A → 0.85, GA → 0.70, B → 0.50, C → 0.30, 
Start → 0.15 and Stub → 0. 

Later, the cost cj was reformulated in Belizário et al. (2020) as: 

( ) ( ), 1 L
j ideal j jc diss O O P= + −  (4) 

In this case, it considers the prediction L
jP  in addition to the degree of dissimilarity 

between Oideal and Oj to calculate the cost cj. This prediction L
jP  represents the relevance 

that Oj has for the target student L. This relevance is calculated using CF. 
In this paper, we improve this cost calculation to make fine-grained LO 

recommendations using hint-type LOs for this. The new cost is formally defined as: 

( ) ( ) ( )
{1, , }

, 1 1 max ,L
j ideal j j ideal jj

j n
c diss O O P H diss O O

∈
= + − + − ∗


 (5) 

where the max operator is a weight given to L
jP  and Hj to assign them the same 

importance as diss. 
The recommendation process depends on the student’s learning needs. The RS 

interface (the chatbot, for example) can identify three different student intentions, who 
can choose: 

a hint-type LOs 

b non-hint type LOs 

c LOs of any type. 

In this last case, Hj = 1, regardless of the type of Oj, which makes the term (1 – Hj) 
neutral in the calculation of cj. 

The focus of this work is on the first two situations, in which the number of hints in 
the LORP solution is relevant for the student. In this case, the value of Hj depends on the 
recommendation mode used: 

• Recommendation mode 1 (the less hints the better): Hj = 0 if the LO Oj is of the hint 
type, and Hj = 1 otherwise. 

• Recommendation mode 2 (the more hints the better): Hj = 1 if the LO Oj is of the hint 
type, and Hj = 0 otherwise. 
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The RS has two recommendation modes. If the student has doubts when studying some 
content or solving an exercise, then the more hints the better to provide a more  
fine-grained recommendation. On the other hand, if the student has no doubts and needs 
to learn new concepts, then the less hints the better to recommend. In this case, the RS 
should recommend other types of LOs, such as lectures and exercises. Our two research 
questions derived from equation (5) that guide the validation of our approach are: 

• Research question 1: Does the use of CF (variable Pj) contribute to the 
recommendation of the LOs with the best rating for the student? 

• Research question 2: Does the use of H (hint: fine-grained LOs) in the calculation of 
cj in the objective function (OF) improve the quality of LOs recommendation in 
relation to the number of hints expected by students? 

In this work, the value L
jP  in equation (5) is the prediction of the rating the target student 

would give to the new Oj. This value represents the importance that the LO has for the 
student and is given in a real interval [0, 1], in which the higher its value, the greater the 
importance that the LO has for the student. This prediction is calculated using the  
k-nearest neighbours (kNN) (Adomavicius and Tuzhilin, 2005) approach proposed in 
Tarus et al. (2018); kNN is a simple algorithm, whose training phase corresponds to the 
simple storage of instances. It is the most used algorithm in CF (Adomavicius and 
Tuzhilin, 2005). It finds the k students, among those who evaluated the resource Oj, more 
similar to the target student. The goal is to predict the rating the target student would give 
Oj using the ratings that Oj received from other similar students (nearest neighbours). 

KB recommendation aggregates knowledge about the student and learning materials 
to use them in the recommendation process. In this case, to predict ,L

jP  the similarity 
calculation considers only students contextually similar to the target student L. For 
example, the similarity calculation takes into account only students who have a similar 
knowledge level or learning style as the target student. 

It is not possible to make a reliable calculation of similarity when few students have 
evaluated the same LO (rating sparsity problem) or a new student has not rated any LOs 
(cold-start problem). In this case, information about students, such as their knowledge 
level and learning style, can be used in the similarity calculation to predict .L

jP  Thus, the 
KB recommendation contributes to reducing the rating sparsity and cold-start problems. 
It was possible to simplify the experimental tests without compromising them, using only 
the CF proposed in Tarus et al. (2018), disregarding the use of KB recommendation, 
which can be properly used in a real learning context. 

5 Experimental analysis 

The algorithms were implemented in Python, and the experiments were run on a 
notebook with AMD Quad-Core A10-9600P 2.40 GHz/8G and Windows 10 OS. 

We have employed statistical tests designed to detect significant differences and to 
estimate their magnitude from the tests performed. The experiments were designed as a 
randomised complete block design (RCBD). By treating the problems as blocks, it was 
possible to model and remove the effects of different instances on the performance of the 
algorithm and obtain an overall performance difference across all test instances used 
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(Montgomery, 2012). The null hypotheses of absence of differences among the methods 
evaluated over all problems were considered against two-sided alternatives. To avoid the 
assumptions of normality, Wilcoxon test (non-parametric) was employed. 

After testing for significance, least squares estimators of the block (instance) effects 
were obtained and subtracted from the samples, thus allowing a problem-independent 
estimation of the effect size for each algorithm (Montgomery, 2012). The estimations of 
effect size were calculated by Tukey’s (1949) test for post-hoc analysis. 

5.1 Benchmark instances and dataset 

The dataset has 24 instances with symbolic data, as shown in Table 3. Note that there  
are six different values (2, 6, 10, 25, 40, 55) for the number of rows (concepts) and  
four values (100, 500, 2,000, 10,000) for the number of columns (LOs). 
Table 3 The main features of the used benchmark instances 

Inst. m n Density (%) Inst. m n Density (%) 
1 2 100 50 13 25 100 10 
2 2 500 50 14 25 500 10 
3 2 2,000 50 15 25 2,000 10 
4 2 10,000 50 16 25 10,000 10 
5 6 100 50 17 40 100 10 
6 6 500 50 18 40 500 10 
7 6 2,000 50 19 40 2,000 10 
8 6 10,000 50 20 40 10,000 10 
9 10 100 20 21 55 100 10 
10 10 500 20 22 55 500 10 
11 10 2,000 20 23 55 2,000 10 
12 10 10,000 20 24 55 10,000 10 

The implemented algorithms are deterministic, even so, each instance was solved  
ten times to find the average runtime, resulting in the average prediction and the average 
number of hints. The tests were executed in recommendation mode 1 (the less hints the 
better) and recommendation mode 2 (the more hints the better), which were explained in 
Section 4.4. 

Table 3 shows features of a small dataset that we created to test the LORP. The 
benchmark instances simulate the educational context. The main characteristics of the 
instances are the name of instances (Inst), the number of rows (m), the number of 
columns (n) and the density. Instances were created to have densities equal to either 10%, 
20% or 50%. 

Each instance is composed of the input matrix and a cost vector (see Figure 8), but in 
our dataset, this vector is interpreted as a dissimilarity vector that is used to calculate the 
cost vector. The number of columns covering each row of the input matrix is defined by 
the density of the instance. For example, if the density is 10%, then for each row of the 
input matrix, 10% of the total number of columns is randomly chosen to cover it. 

 



   

 

   

   
 

   

   

 

   

   44 C.F. Belizário Jr. et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Table 4 Rating matrix used in testing 
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Table 4 Rating matrix used in testing (continued) 
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The input matrix and the dissimilarity vector of the instances were created to simulate a 
real-world scenario. Dissimilarity [diss in equation (5)] is an integer value ranging from  
1 to 10% of the number of columns in the instance. For example, in 500-column 
instances, the columns from 1 to 10 have diss = 1, columns from 11 to 20 have diss = 2, 
and so on. Note that the last ten columns have diss = 50 (10% of 500 columns). 

In addition to diss, it is necessary to determine L
jP  and Hj to calculate the cost using 

equation (5). For that, we create a rating matrix to simulate a real-life scenario with the 
ratings the students gave for LOs they evaluated (see Table 4). It has 30 students (each 
one in a row) and 50 LOs, each in a column; they correspond to the first 50 LOs of the 
instances. The value of row i and column j corresponds to the grade, in an integer interval 
[1, 5], that student i gave to LO j. If this grade is 0, then the student i has not rated LO j. 
The first row of the rating matrix is used to identify the type of each LO. The value of the 
first row and column j is 1 if the LO j is of the hint type. Otherwise, the value is 0. Half 
of the LOs (25) were randomly chosen to be of the hint type. The other LOs of each 
instance (O51, O52, …, On) have Hj = 0.5 in both recommendation modes (the less/more 
hints the better). 

For the first 50 LOs of each instance, it is possible to predict .L
jP  The other LOs of 

each instance (O51, O52, …, On) were not rated by any student (cold-start problem), so the 
prediction value assigned to them is given by the arithmetic mean of the ratings of the 
LOs evaluated by the target student L. 

For the execution of the tests, the target student L11 was chosen in Table 4. The kNN 
algorithm used to calculate the prediction is set to k = 3. It finds the three students, among 
those who evaluated the resource Oj, more similar to the learner L11. 

5.2 Selected algorithms and parameters 

In this work, an exact algorithm and a greedy heuristic named concise weighted set cover 
(CWSC) were considered for the LORP solution. The exact algorithm belongs to the Pulp 
Library (Mitchell et al., 2011), which is an open-source package written in Python to 
express linear programming models in a way similar to the conventional mathematical 
notations. 

The CWSC algorithm results from the authors’ motivation in Golab et al. (2015) to 
find a generalisation for the weighted set cover (Garey and Johnson, 1979) and maximum 
coverage (McGregor and Vu, 2019) problems. The CWSC input is a set of n elements, a 
collection of weights for those elements, an integer size constraint value k and a 
minimum coverage fraction s. The output is a subset of up to k sets whose union contains 
at least sn elements and whose sum of weights is minimal. 

The CWSC algorithm was adapted for the solution of the LORP. The goal is to cover 
all the concepts (s = 1) using a number of columns at most equal to the number of lines  
(k = m) of the input matrix. 

5.3 Comparison of the versions of each algorithm with and without prediction 

To evaluate the CF (prediction) implemented in the proposed approach, we use the 
adapted CWSC and the exact algorithm to solve the LORP. Two versions of each 
algorithm were implemented. The difference between them relates to how the cj cost is 
calculated. In the first, the cost is calculated by equation (6), which does not use the 
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variable P (prediction), while in the second, the cost is calculated by equation (5), which 
uses the prediction. 

( ) ( ) ( )
{1, , }

, 1 max ,j ideal j j ideal j
j n

c diss O O H diss O O
∈

= + − ∗


 (6) 

The two versions of each algorithm are compared in Table 5. In the no columns, cj is 
calculated by equation (6), and in the yes columns, cj is calculated by equation (5). Each 
LO in the solution has a rating that is either given in Table 4 or predicted by calculating 
Pj. The results obtained for the experimental comparison are summarised in Table 5, 
which reports the mean values of the ten runs (replications). These values represent the 
importance that the LO has for the student. The closer to 1, the greater the importance 
that the LO has for the student. 
Table 5 Comparison of the average ratings in the solutions with (yes) and without (no) the P 

variable in solving the LORP 

Instance 
Recommendation mode 1  Recommendation mode 2 

Exact  CWSC  Exact  CWSC 
No Yes  No Yes  No Yes  No Yes 

1 0.697 0.730  0.730 0.730  0.697 1.000  0.697 1.000 
2 0.697 0.809  0.730 0.809  0.697 0.995  0.697 0.995 
3 0.596 0.809  0.596 0.809  0.697 0.995  0.697 0.995 
4 0.697 0.809  0.697 0.809  0.697 0.929  0.697 0.929 
5 0.734 0.753  0.734 0.703  0.697 0.929  0.697 0.929 
6 0.697 0.753  0.697 0.753  0.601 0.929  0.697 0.929 
7 0.663 0.753  0.663 0.714  0.697 1.000  0.697 1.000 
8 0.697 0.787  0.674 0.787  0.843 0.856  0.794 0.900 
9 0.734 0.734  0.716 0.734  0.625 0.723  0.661 0.810 
10 0.717 0.753  0.718 0.756  0.697 0.810  0.697 0.813 
11 0.746 0.746  0.683 0.746  0.810 0.813  0.742 0.813 
12 0.697 0.701  0.683 0.697  0.697 0.798  0.697 0.848 
13 0.709 0.735  0.701 0.731  0.729 0.731  0.737 0.755 
14 0.698 0.698  0.699 0.698  0.725 0.734  0.729 0.748 
15 0.722 0.715  0.706 0.709  0.781 0.783  0.760 0.772 
16 0.706 0.713  0.651 0.713  0.728 0.765  0.720 0.783 
17 0.692 0.709  0.710 0.701  0.721 0.721  0.733 0.733 
18 0.703 0.726  0.704 0.719  0.720 0.764  0.734 0.754 
19 0.639 0.709  0.661 0.708  0.749 0.734  0.731 0.770 
20 0.695 0.719  0.711 0.728  0.731 0.774  0.729 0.774 
21 0.713 0.714  0.711 0.712  0.744 0.744  0.724 0.732 
22 0.658 0.706  0.658 0.715  0.711 0.735  0.710 0.727 
23 0.658 0.715  0.670 0.724  0.734 0.734  0.710 0.753 
24 0.719 0.711  0.700 0.708  0.665 0.763  0.681 0.756 
Median 0.697 0.728  0.700 0.722  0.715 0.778  0.710 0.796 
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From Table 5, it can be seen that the yes variables have a higher median value than no 
variables in the two recommendation modes (the less/more hints the better). This means 
that the use of CF (variable Pj) contributes to the recommendation of the LOs with the 
best rating for the student. 

For each algorithm analysed, the differences between the yes and no variables (using 
or not using the predictive variable in the cost function) are statistically significant  
(p-value < 0.05). Table 6 summarises the results of the statistical analysis (p-value) and 
the magnitude of the statistically significant differences (magnitude diff). 
Table 6 Estimated difference in average performance between the prediction variables 

(no/yes) 

 Recommendation mode 1  Recommendation mode 2 
Exact CWSC  Exact CWSC 

p-value (Wilcoxon) < 0.001 < 0.001  < 0.001 < 0.001 
Magnitude diff (Tukey) 0.0428 0.0420  0.1069 0.1189 

Note: If p-value < 0.05, then there is a statistically significant difference between the 
variables. 

The gain in using the CF is greater with recommendation mode 2 (the more hints the 
better), with the magnitudes of the differences reaching the maximum value of 0.1, 
approximately. This difference demonstrates that the use of P (CF) in the calculation of 
the OF (cj) increases on average 0.1 the average rate of the LORP solution, improving the 
quality of the LOs recommended to the learners. In recommendation mode 1 (the less 
hints the better), the increase was on average 0.04 and 0.05 in the average rate of the 
LORP solutions, relatively more modest gains. 

Figure 9 Boxplot to compare the versions of each algorithm with (yes) and without (no) 
prediction (see online version for colours) 

 

Figure 9 shows a boxplot of the average ratings of the solutions of the LORP. The red 
boxes represent the average rating without using the P (prediction) variable, i.e., the cost 
cj is calculated by equation (6). On the other hand, green boxes represent the average 
rating using the P variable. In this case, the cost is calculated by equation (5). The graphs 
corroborate the data presented in Table 6, demonstrating more significant gains in 
recommendation mode 2. However, improvements can be seen in both recommendation 
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modes and in the two algorithms evaluated with the use of CF. We can see that the 
algorithms implemented to solve the LORP using the prediction find solutions composed 
of LOs with better ratings, while not using the prediction decreases the quality of the 
solutions in relation to the rating. 

5.4 Comparison of the versions of each algorithm with and without hint 
variable 

To evaluate the H (hint) variable implemented in the proposed approach, we use the same 
strategy presented in Section 5.3. Two versions of each algorithm were implemented, and 
the difference between them relates to how the cj cost is calculated. In the first, the cost is 
calculated by equation (7), which does not use the H variable, while in the second, the 
cost is calculated by equation (5), which uses the hint variable. 

( ) ( ) ( )
{1, , }

, 1 max ,L
j ideal j ideal jj

j n
c diss O O P diss O O

∈
= + − ∗


 (7) 

The two versions of each algorithm are compared in Table 7. In the no columns, cj is 
calculated by equation (7), and in the yes columns, cj is calculated by equation (5). In 
Table 7, each value corresponds to an average number of hints of the ten runs 
(replications). 

From Table 7, it can be seen that the yes variables have a lower median value than no 
variables in all algorithms when the less hints the better. On the other hand, yes variables 
have a higher median value than no variables in all algorithms when the more hints the 
better. These differences are statistically significant, as shown in Table 8. Table 8 shows 
the p-value and magnitude of the differences between the analysed samples. 

In the recommendation model 1 (less hints the better), the magnitudes are negative, 
demonstrating that the number of hints returned when H is applied to the OF is smaller 
(which is expected in this modality). In the two algorithms, on average, approximately 
three less hints are presented to the learner when H is applied in the OF. 

In the recommendation model 2 (more hints the better), the magnitudes are positive, 
demonstrating that the number of hints returned when H is applied to the OF is higher, as 
expected in this modality. In the two algorithms, on average, approximately three more 
hints are presented to the learner when H is applied in the OF. 

The use of H (hint: fine-grained LOs) in the calculation of cj in the OF improves the 
quality of LOs recommendation in relation to the expected number of hints. Thus, the 
results demonstrate that the RS will adapt better to the learners’ needs, given the modality 
to be used at that moment, by returning more or less hints. 

Figure 10 shows a boxplot of the average number of hints in the solution of the 
LORP. The red boxes represent the average number of hints without using the H (hint) 
variable, i.e., the cost cj is calculated by equation (7). On the other hand, green boxes 
represent the average number of hints using the H variable. In this case, the cost is 
calculated by equation (5). 

From boxplot in Figure 10, we can see that in the less hints the better mode, the 
algorithms tend to present no hints. The algorithms implemented to solve the LORP using 
the H variable find solutions with more hint-type LOs when the more hints the better, and 
they find solutions with less hints when the less hints the better, while not using the H 
variable decreases the quality of the solutions in relation to the expected number of hints. 
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Therefore, the variables P and H used in equation (5) contribute to the recommendation 
of solutions with the best rated LOs and with an appropriate number of hints (according 
to the selected recommendation mode), respectively. 
Table 7 Comparison of the average number of hints in the solutions with (yes) and without 

(no) the H variable in solving the LORP 

Instance 
Recommendation mode 1  Recommendation mode 2 

Exact  CWSC  Exact  CWSC 
No Yes  No Yes  No Yes  No Yes 

1 1 0  1 0  1 1  1 1 
2 2 0  2 0  2 2  2 2 
3 2 0  2 0  2 2  2 2 
4 2 0  2 0  2 2  2 2 
5 2 0  2 0  2 2  2 2 
6 2 0  2 0  2 2  2 2 
7 1 0  1 0  1 1  1 1 
8 2 0  2 0  2 2  2 3 
9 3 0  3 0  3 3  3 4 
10 2 0  3 0  2 4  3 4 
11 1 0  1 0  1 4  1 4 
12 3 0  2 0  3 3  2 5 
13 2 1  4 1  2 8  4 8 
14 2 0  3 0  2 6  3 7 
15 5 0  5 0  5 8  5 9 
16 2 0  2 0  2 8  2 7 
17 6 0  6 2  6 10  6 11 
18 7 0  5 0  7 10  5 12 
19 3 0  3 0  3 5  3 7 
20 3 0  4 0  3 9  4 9 
21 5 2  6 1  5 9  6 13 
22 3 1  4 0  3 9  4 12 
23 4 0  4 0  4 11  4 12 
24 3 0  3 0  3 5  3 9 
Median 2.0 0.0  3.0 0.0  2.0 4.5  3.0 6.0 

Table 8 Estimated difference in average performance between the hint variables (no/yes) 

 Recommendation mode 1  Recommendation mode 2 
Exact CWSC  Exact CWSC 

p-value (Wilcoxon) < 0.001 < 0.001  0.001 < 0.001 
Magnitude diff (Tukey) –2.6667 –2.8333  2.4167 3.1667 

Note: If p-value < 0.05, then there is a statistically significant difference between the 
variables. 
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Figure 10 Boxplot to compare the versions of each algorithm with (yes) and without (no) the H 
(hint) variable (see online version for colours) 

 

5.5 Comparison between algorithms 

The algorithms are compared based on the OF in equation (1), and the cj is calculated in 
terms of the variables H and P, according to equation (5). 

Data under analysis from Table 9 do not have a normal distribution, so we used a 
median value to compare the exact and CWSC algorithms. The bottom of Table 9 shows 
that the OF values of the exact and CWSC algorithms are almost equal and equal in 
recommendation modes 1 and 2, respectively. However, the difference between the 
algorithms is statistically significant. Table 10 summarises the results of the statistical 
analysis (p-value) and the magnitude of the statistically significant differences 
(magnitude diff). The performance of the CWSC algorithm is 26.97% better in 
recommendation mode 1 (magnitude diff = 55.5991) compared to mode 2 (magnitude  
diff = 76.1392). 

Based on the data, the exact algorithm is better than the CWSC, but the CWSC is 
much faster than the exact algorithm, so the choice of one or the other will depend on the 
needs of the educational context in which they will be used. 

Figure 11 Comparison of algorithm runtimes (see online version for colours) 

 

Figure 11 shows that CWSC has better average runtime than the exact algorithm in all 
instances. The downside of the exact algorithm is that it is very time consuming for larger 
instances. Therefore, the exact algorithm would be the best option for solving small 
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instances of LORP, but if the shortest time is the priority, then CWSC is the best 
algorithm. 
Table 9 Comparison between the OFs of the exact and CWSC algorithms 

Instance 
Recommendation mode 1  Recommendation mode 2 

Objective function  Objective function 
Exact CWSC  Exact CWSC 

1 3.70 3.70  3.00 3.00 
2 11.54 11.54  5.54 5.54 
3 40.14 40.14  7.16 7.16 
4 192.72 192.72  146.96 146.96 
5 8.94 9.94  6.42 6.42 
6 27.70 27.70  12.10 12.10 
7 104.78 119.54  3.00 3.00 
8 430.62 430.62  293.79 306.59 
9 16.97 16.97  14.32 15.59 
10 59.39 59.76  45.96 46.42 
11 158.69 158.69  158.67 158.67 
12 905.04 917.58  613.39 768.15 
13 48.22 53.25  55.21 64.50 
14 192.55 222.87  191.46 215.22 
15 625.47 717.39  515.31 585.02 
16 2,660.89 2,660.89  2,698.76 3,146.53 
17 82.16 98.88  64.65 68.07 
18 226.99 252.46  186.03 217.58 
19 916.26 1,176.03  835.85 923.48 
20 3,590.66 4,134.67  2,895.72 2,895.72 
21 96.07 101.14  90.74 112.86 
22 263.29 300.30  298.24 335.71 
23 926.44 1,021.48  775.24 825.40 
24 4145.79 4,341.13  4,349.17 5,224.31 
Median 175.62 175.70  152.81 152.81 

Table 10 Estimated difference in the values of the OF of the exact and CWSC algorithms 

 Recommendation mode 1 Recommendation mode 2 
Objective function Objective function 

p-value (Wilcoxon) < 0.001 < 0.001 
Magnitude diff. (Tukey) 55.5991 76.1392 

Note: If p-value < 0.05, then there is a statistically significant difference between the 
variables. 
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5.6 Discussion 

The results presented in Section 5.3 show that the hypothesis derived from research 
question 1 is true, i.e., the use of CF (variable Pj) contributes to the recommendation of 
the LOs with the best rating for students confirming that the use of a track record of 
ratings as in Belizário et al. (2020) implies a recommendation of LOs that meet students’ 
learning needs. 

In addition, the findings presented in Section 5.4 confirm the hypothesis derived from 
research question 2, i.e., the use of H (hint: fine-grained LOs) in the calculation of cj in 
the OF improves the quality of LOs recommendation in relation to the number of hints 
expected by students. These results demonstrate that our approach outperforms 
recommendation strategies that consider only the user’s search parameters when 
recommending LOs (Belizário and Dorça, 2018; Falci et al., 2019) and those that 
combine the user’s search parameters with CF (Belizário et al., 2020). 

The results presented in Section 5.5 suggest that the use of exact and greedy 
algorithms to solve the LORP can be a good alternative in relation to the evolutionary 
algorithms implemented in previous works (Belizário and Dorça, 2018; Christudas et al., 
2018; Birjali et al., 2018), corroborating the results presented by Falci et al. (2019), who 
created a greedy heuristic that is faster than GA, mainly for instances with thousands of 
LOs. 

The algorithms implemented in our approach are used for the recommendation of 
online learning resources and LOs created by the teacher. E-learning resources that can 
be recommended include, among others, hints, lecture notes, exercises and tutorial 
videos. Even in the case of students having many generic resources available, in addition 
to the specific and fine-grained ones such as hints, the proposed recommendation 
algorithms recommend the LOs correctly by using two recommendation modes. 

6 Conclusions and future work 

In this paper, we propose a RS for recommending e-learning resources and fine-grained 
LOs (called hints) based on the student’s learning style, knowledge and search 
parameters, which are modelled by an ontology. The challenge is the recommendation of 
LOs from different areas of knowledge, considering the refined concepts of ITSs. We 
faced this challenge by formulating the LORP as the SCP that belongs to the NP-hard 
class problems. Thus, the recommendation of LOs takes into account the concepts that 
the student needs to learn. In addition, we implement the hint type in an ontology for a 
more fine-grained recommendation of LOs, which is combined with the reuse of web 
content to overcome the low content diversity of ITSs and the lack of refined concepts in 
RSs. 

Experiments were executed on a set of 24 benchmark instances created to simulate a 
real scenario. Experimental results showed that when the RS considers the variables P 
(CF) and H (fine-grained LOs) in calculating the cost of the solutions, the quality of the 
solutions improves in terms of the average rating and the number of expected hints. The 
exact and CWSC algorithms are good strategies to find these solutions for instances that 
simulate the educational context. If the best runtime is the priority, then the best 
algorithm is CWSC, but it finds the best solution in only 37.5% of instances. 
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This work has three limitations that we present below as challenges for future work. 
First, validation of the proposed approach in a real educational scenario. Experiments 
conducted with students are complex because they involve several variables, which, if 
properly controlled, can help to validate the proposed approach in the classroom context. 
Second, the proposed recommendation approach does not employ some recommendation 
strategies from related works that seem promising, such as sequential pattern mining for 
purposes of prediction. This can be a good strategy to further refine the objects delivered 
to students based on patterns found in the history of past educational resource 
recommendations. Third, the LORP is an NP-hard covering problem, so in addition to the 
greedy and exact algorithms presented in this paper, other algorithms based on 
constructive metaheuristics such as ACO, evolutionary algorithms as GA and local search 
should be explored by works to implement algorithms that are faster than exact and with 
better solutions than CWSC. 

It is plausible to think that future work can overcome these limitations and challenges, 
given that the experimental results confirm the feasibility of our approach to be 
implemented in a real scenario. Our future research will focus on integrating the proposed 
RS into a learning environment such as Moodle for a more refined recommendation of 
LOs similar to what occurs in ITSs, considering content from different areas of 
knowledge. A practical application of the proposed RS is as a tool to solve frequent 
doubts of students from basic education to higher education in the different domains of 
knowledge, while teachers will be able to focus their time on solving the unusual 
questions that can only be answered by human creativity. 
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