

International Journal of Intelligent Information and
Database Systems

ISSN online: 1751-5866 - ISSN print: 1751-5858
https://www.inderscience.com/ijiids

Securing big graph databases: an overview of existing access
control techniques

Basmah Alzahrani, Asma Cherif, Suhair Alshehri, Abdessamad Imine

DOI: 10.1504/IJIIDS.2024.10063201

Article History:
Received: 30 May 2023
Last revised: 16 September 2023
Accepted: 18 October 2023
Published online: 02 April 2024

Powered by TCPDF (www.tcpdf.org)

Copyright © 2024 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijiids
https://dx.doi.org/10.1504/IJIIDS.2024.10063201
http://www.tcpdf.org

286 Int. J. Intelligent Information and Database Systems, Vol. 16, No. 3, 2024

Securing big graph databases: an overview of
existing access control techniques

Basmah Alzahrani*
Department of Information Technology,
King Abdulaziz University,
Jeddah, Saudi Arabia
Email: balzahrani0271@stu.kau.edu.sa
*Corresponding author

Asma Cherif
Department of Information Technology,
King Abdulaziz University,
Jeddah, Saudi Arabia
and
Center of Excellent in Smart Environment Research,
King Abdulaziz University,
Jeddah, Saudi Arabia
Email: acherif@kau.edu.sa

Suhair Alshehri
Department of Information Technology,
King Abdulaziz University,
Jeddah, Saudi Arabia
Email: sdalshehri@kau.edu.sa

Abdessamad Imine
Université de Lorraine,
CNRS,
Inria, Vandoeuvre-lès-Nancy,
54506 Nancy, France
Email: abdessamad.imine@loria.fr

Abstract: Recently, the rapid evolution of technology has resulted in a
significant increase in the volume of data generated by both users and
organisations. This, in turn, has given rise to the big data phenomenon.
However, traditional relational databases are ill-equipped to handle such
vast and complex data. To address this challenge, the NoSQL big data
management system has emerged as an efficient alternative. Within this
system, the graph database has garnered significant attention from researchers
due to its ability to handle complex relationships, such as those found in
social networks. However, security remains a critical concern, particularly
for sensitive and private data. Therefore, this survey seeks to explore

 Copyright © 2024 Inderscience Enterprises Ltd.

Securing big graph databases 287

recent solutions for securing graph databases, including techniques such
as access control, view-based, and query rewriting approaches, as well
as pattern matching algorithms for answering queries. As a result, our
survey will contribute to filling the gap in existing research, as none of
the previous surveys have examined these specific topics. Additionally, the
survey provides recommendations for future research in this area.

Keywords: big data; graph database; access control; view; graph pattern
matching; GPM.

Reference to this paper should be made as follows: Alzahrani, B., Cherif, A.,
Alshehri, S. and Imine, A. (2024) ‘Securing big graph databases: an overview
of existing access control techniques’, Int. J. Intelligent Information and
Database Systems, Vol. 16, No. 3, pp.286–315.

Biographical notes: Basmah Alzahrani received her BS and MSc in
Information Technology from the King Abdulaziz University, Jeddah, Saudi
Arabia, in 2016 and 2023, respectively. She is currently a Lecturer in the
Information Technology Department, Faculty of Computing and Information
Technology, King Abdulaziz University. Her current research interests include
big data, graph database and access control.

Asma Cherif received her MSc and PhD in Computer Science from the
Lorraine University, France, in 2008 and 2012, respectively. She conducted
extensive research with the French Research Laboratory, Inria Nancy Grand
Est. Since 2022, she has been leading the IoT Ecosystems Research
Team, Center of Excellence in Smart Environment Research (CESER),
King Abdulaziz University, Saudi Arabia. She is currently an Associate
Professor with the Faculty of Computing and Information Technology, King
Abdulaziz University. Her research interests include distributed systems
and communication networks, collaborative applications, security, cloud/edge
computing, computational intelligence, and the internet of things.

Suhair Alshehri received her PhD in Computing and Information Sciences
from the Golisano College of Computing and Information Sciences, Rochester
Institute of Technology, in 2014. She is currently an Associate Professor
with the Information Technology Department, Faculty of Computing and
Information Technology, King Abdulaziz University. Her main research
interests include security and privacy in computer and information systems
and applied cryptography.

Abdessamad Imine received his MSc and PhD in Computer Science from
the University of Sciences and Technology of Oran (USTO), Algeria, and
University Henri Poincaré of Nancy, France, respectively. He is currently
Associate Professor HdR at Lorraine University and senior researcher at
INRIA-LORIA Center of Nancy. His research interests include security
for collaborative systems and social networks, formal design of optimistic
protocols and formal methods for specifying and verifying distributed
systems.

288 B. Alzahrani et al.

1 Introduction

In recent years, technological advancements have rapidly evolved and manifested in
various forms, such as automated systems, social networking, and the internet of things
(IoT). While these developments make our lives more convenient, they come at a cost
from a technical perspective.

Behind the scenes, an enormous amount of data is generated quickly, giving rise
to the big data (BD) phenomenon. This phenomenon possesses distinct characteristics,
commonly referred to as the ‘5Vs’: volume, variety, velocity, value and veracity
(Colombo and Ferrari, 2018). These 5Vs make managing BD using traditional database
systems intractable, as they are ill-equipped to handle such large and complex sets of
data.

A new type of database management system, called Not Only SQL (NoSQL), has
emerged as a powerful and popular system for handling large amounts of heterogeneous
data. NoSQL databases offer support for four data models including key-value (e.g.,
BerkeleyDB), wide-column (e.g., Cassandra), document-oriented (e.g., MongoDB), and
graph (e.g., Neo4j) (Morgado et al., 2018). In this survey, we specifically focus on the
graph database due to its numerous strengths.

ّIndeed, graph databases (GDBs) are highly effective in managing complex
relationships, especially in social, informational, technological, and biological networks
(Angles and Gutierrez, 2008). This is why they have been widely adopted by social
media giants such as Google, Facebook, and Twitter (Patil et al., 2018), as they
accurately depict real-world entities. The fundamental components of any graph model
are nodes (i.e., entities) and edges (i.e., relationships). Most researchers have focused
on studying a specific type of graph known as the directed graph (DG), which is
characterised by edges with directions. This implies that when considering two nodes A
and B connected by a relationship represented by an arrow from A to B, A → B ̸= B
→ A. Figure 1 provides an illustration of a DG, where two nodes are labelled with the
names of two individuals and a relation labelled with ‘BORROW FROM’. This graph
indicates that John borrowed some money from Bob. The direction of the edge is critical
as it conveys different information based on its orientation.

Figure 1 Example of a directed graph (see online version for colours)

1.1 Problem definition and motivations

Although a big-graph database can effectively support the five Vs of BD, it is critical
to prioritise security measures to safeguard sensitive and private information stored
in GDBs from unauthorised access. By implementing robust security protocols, data
integrity can be maintained, and user satisfaction can be enhanced.

Securing big graph databases 289

Access control (AC) is an essential security service that determines who can perform
specific actions on sensitive information. It involves setting policies (i.e., rules) that
define eligible users (i.e., subjects) and the actions (e.g., read) they can take on particular
data (i.e., objects). For example, a policy may allow certain users to read certain
documents but not edit them.

Recent solutions in this field can be categorised can be categorised based on the AC
enforcement mechanism into four into four distinct groups:

1 Engine-level (runtime): This depends on assigning the access control lists (ACLs)
to nodes.

2 View-based: This is based on a view-per-role foundation, implying that each role
has a view comprising all accessible data.

3 Pre-processing: It evaluates the query against the access control policies (ACPs);
if it is authorised, then the query is executed, otherwise, either

a rewriting the query to guarantee inquiring only approved data (i.e., query
rewriting)

b declining the query (i.e., no rewriting).

4 Post-processing: It is the opposite of pre-processing. It executes the query, then
before reflecting the result to the user, it prunes it by removing inaccessible data
(Thimma et al., 2013).

Most recent solutions in the literature fall into categories 1 and 3. This implies that
they mainly require traversing the entire original graph. Thus, evaluating the query and
retrieving the authorised data will take time. Some solutions combine categories 2 and
3. Although they support the use of views, i.e., there is no need to iterate through the
entire original graph. However, they do not support query rewriting approach, i.e., if
there is not a complete answer, then there is not even an approximate answer.

AC is one of the aspects related to the graph database. The other aspects are graph
database models, graph pattern matching (GPM) algorithms, views, and graph database
tools. Generally speaking, graph database models refer to how data is being represented,
queried, and consistent. GPM refers to the algorithm which is used in answering the
graph query. View refers to a partial part of the original graph. The tools refer to the
technologies used in managing the graph database. Indeed, these are the main topics
that have been studied by researchers. Nevertheless, the existing surveys only addressed
one or two of them. For instance, Angles and Gutierrez (2008) did an excessive survey
about graph database models and graph query languages. Patil et al. (2018) have covered
the tools and other miscellaneous topics in brief. Hence, neither one of them investigate
the researches in AC, GPM, and views though they are crucial and hot topics in recent
days.

Therefore, this survey aims to bridge the gap by examining recent solutions
that target AC in graph databases. The solutions will be classified based on the
aforementioned categories, and the GPM algorithms used in the database will be also
discussed. Moreover, this survey will play a crucial role in identifying and addressing
gaps in existing research within the field. Table 1 provides a comparison between the
current survey and two previous surveys, namely Angles and Gutierrez (2008) and Patil

290 B. Alzahrani et al.

et al. (2018). The table highlights the different topics that have been addressed in each
survey, and shows that unlike Angles and Gutierrez (2008) and Patil et al. (2018), our
survey investigates GPM algorithms, the recent AC solutions, and the views.

Table 1 Comparison of this survey and other surveys

GDB models GPM algorithms AC Views Tools

Angles and Gutierrez (2008) 3 5 5 5 5

Patil et al. (2018) 5 5 5 5 3

This survey 5 3 3 3 5

1.2 Contributions

This survey serves as a foundation for gaining a comprehensive understanding of
security in graph databases by evaluating the latest solutions in the field. Moreover,
it provides a comparative study of existing GPM algorithms. Additionally, it offers
valuable research directions and insights for developing future solutions.

1.3 Paper outline

The rest of this paper is arranged as follows, see Figure 2. Section 2 presents the graph
matching algorithms. Section 3 introduces the view concept and the main reference that
implemented it in GDB. Section 4 shows the recent solutions that implemented AC in
graph databases. In Section 5, we discuss the research directions in the area. Finally,
Section 6 concludes the paper.

Figure 2 The structure of the paper

Securing big graph databases 291

2 Graph pattern matching

GPM is a critical concept in the graph database since it is the key to retrieving graph
data regardless of the used algorithm. Having this section at the beginning comes
from the need to pave the way for the remaining sections since there are related and
fundamental terms to be defined, such as data graph (see Definition 1) and pattern
queries (see Definition 2) (Halevy, 2001).

Definition 1 (data graph): A data graph is a directed graph G = (V , E, L) where V
and E represent a set of nodes, and edges, respectively. L is a function when applied
to a node v, it returns its labels L(v).

Definition 2 (pattern query): A pattern query is a directed graph Q = (Vp, Ep, fv)
where Vp and Ep represent a set of pattern nodes and edges, respectively. fv is a
function when applied to a pattern node u, it returns its labels fv(u).

There are a variety of algorithms that perform GPM. In this paper, five algorithms
will be described: subgraph isomorphism, graph simulation, dual simulation, strong
simulation, and triple simulation.

2.1 Subgraph isomorphism

Subgraph isomorphism is one of the earliest GPM algorithms. In this algorithm, the
subgraph Gs of G matches Q if a bijective function f from Q to Gs exists and satisfies
the following:

• Each pattern node u ∈ Q has a corresponding node in Gs such that u and f(u)
have an identical label.

• The edge (u, u′) in Q has a match in Gs if and only if (f(u), f(u′)) is an edge
there.

This algorithm succeeded in preserving the child and parent relationships (i.e., duality).
Thus, it preserves the structure of the query pattern. However, sometimes it fails to
capture sensible matches due to its restrictions. The size of the matches retrieved is
considered exponential which is a drawback. Furthermore, it is an NP-complete problem
(Ma et al., 2011).

2.2 Graph simulation

Graph simulation is proposed to overcome the NP-complete problem of subgraph
isomorphism (Milner, 1989). In this algorithm, G matches Q if a binary relation S ⊆
Vp × V exists, where S is a set of matched pairs of nodes, and Vp and V represent a
group of pattern nodes and nodes, respectively. In this binary relation:

• For every node u ∈ Vp there is a corresponding node v ∈ V so that (u, v) ∈ S.

• For every pair (u, v) ∈ S:

292 B. Alzahrani et al.

a matched labels fv(u) = L(v)

b every edge e = (u, u′) in Ep has a corresponding edge (v, v′) in E, so that
(u′, v′) ∈ S.

Although this algorithm succeeded in solving the problem of subgraph isomorphism by
reducing the complexity to a quadratic time, it generates results with too large size, and
with a structure that may differ from the pattern query. Furthermore, it is incapable of
preserving the parent relationship (Ma et al., 2011).

2.3 Dual simulation

As the name suggests, this algorithm extends the graph simulation by adding a condition
that maintains both the child and parent relationships (i.e., duality). In this algorithm, G
matches Q if a binary relation SD ⊆ Vp × V exists, where S is a set of matched pairs
of nodes. In this binary relation:

• For every node u ∈ Vp there is a corresponding node v ∈ V so that (u, v) ∈ SD.

• For every pair (u, v) ∈ SD:

a matched labels fv(u) = L(v)

b every edge e = (u, u′) in Ep has a corresponding edge (v, v′) in E, so that
(u′, v′) ∈ SD

c every edge e = (u′′, u) in Ep has a corresponding edge (v′′, v) in E, so that
(u′′, v′′) ∈ SD.

All the points listed above are similar to graph simulation except the last one which
preserves the parent relationship.

2.4 Strong simulation

Ma et al. (2011) proposed the strong simulation algorithm to overcome the limitations
of graph simulation and its extensions that fail to preserve the structure of the pattern
query. Furthermore, it aims to bound the number of the retrieved matches and the size
of each matched subgraph by proposing the locality notion. Indeed, the definition of
locality relies on two terms: distance and diameter.

• Distance: is the shortest length of the undirected path from nodes n to n′ in G,
denoted dis(n, n′).

• Diameter: is the longest shortest path of all pairs of nodes in G, denoted
dG = max(dis(n, n′)).

In this algorithm, G matches Q, if there is a subgraph Gs of G with a node n at the
centre such that:

• For every node n′ in Gs, dis(n, n′) ≤ dQ.

• Q matches Gs via dual simulation with the maximum match relation S.

Securing big graph databases 293

Strong simulation has the same complexity time as graph simulation extensions which
is cubic-time.

2.5 Triple simulation

Strong simulation succeeded in preserving duality and in enforcing the locality notion.
However, if we have two pattern graphs Q1 = A→ B and Q2 = B ← A→ B, where
A and B are labelled nodes. Intuitively, the data node that meets A in Q1 must have
a minimum of one child labelled B, whereas in Q2 it must have a minimum of two
child nodes labelled with B. But applying strong simulation returns only A→ B as a
match for both, thus it failed to make the distinction between Q1 and Q2. Hence, it
does not preserve the topological constraint named the label-repetition (LR) constraint
in which two or more nodes are having the same label. Indeed, subgraph isomorphism
can preserve this constraint, but as mentioned earlier it is an NP-complete problem.

To overcome this problem, Mahfoud (2018) proposed a graph simulation extension
called triple simulation that is executed in quartic time. It supports the duality and
locality notions, and it preserves the LR constraint. When the LR constraint is defined
over a node n in the pattern graph Q with label l. This means that

1 there are at least two children (resp. parents) labelled with l

2 any match v of u in the data graph G must have at least two children (resp.
parents) that match the children (resp. parents) of n.

In this algorithm, G matches Q, if there is a binary relation ST ⊆ Vp × V , so that:

• Every node u ∈ Vp has a corresponding node v ∈ V such that (u, v) ∈ ST .

• For every (u, v) ∈ ST , fv(u) = L(v).

• For every (u, v) ∈ ST and for all edges (u, u1), ..., (u, un) ∈ Ep, there exists a
minimum of n distinct children of v, (v, v1), ..., (v, vn) ∈ E, such that:
(u1, v1), ..., (un, vn) ∈ ST .

• For every (u, v) ∈ ST and for all edges (u1, u), ..., (un, u) ∈ Ep, there exists a
minimum of n distinct parents of v, (v1, v), ..., (vn, v) ∈ E, such that:
(u1, v1), ..., (un, vn) ∈ ST .

To satisfy the LR constraints, there is an essential condition based on the use of the
bipartite graph. In this graph, there are two sets of nodes S1 that contains the children
(resp. parents) of n in Q that are concerned by the LR constraint, and S2 that contains
the children (resp. parents) of v in G that potentially matches n. The LR constraint is
satisfied if and only if there is a complete match over the bipartite graph, i.e., each node
in S1 has a match in S2. Note that to check the LR constraints of children and parents
of n, there will be two bipartite graphs.

Example 1 illustrates how to enforce the LR constraint using the bipartite graph.

Example 1: Consider the pattern query Q = (Vq , Eq) and the data graph G = (V , E)
depicted in Figures 3(a) and 3(b). The LR constraint is defined over the node q1 which
means that the potential match of q1 must have at least two children with label B.

294 B. Alzahrani et al.

Hence d1 is the potential match. To inspect the LR constraint, the bipartite graph is
depicted in Figure 3(c). The set S1 contains the children of q1 that are concerned by
the LR constraint, while S2 contains the children of d1 that are the potential matches.
Figure 3(c) illustrates that there is a complete match over the bipartite graph, thus the
data graph G satisfies the LR constraint of Q.

However, the triple simulation might be infeasible when applied to massive graphs such
as Facebook, where active users exceed one billion each month (Pang and Zhang, 2015).
Thus, as future work, the author intends to extend it with some optimisation techniques.

Figure 3 Example of the constraint inspection using a bipartite graph, (a) pattern query Q
(b) data graph G (c) bipartite graph BG

2.6 Summary of GPM algorithms

Table 2 summarises the previously mentioned algorithms based on the following criteria:

• Denotation: The algorithm symbol.

• Complexity: The time required for an algorithm to perform its task from the first
step to the last one.

• Number of matches: From G to Qs in terms of nodes and edges.

• Result structure: The style of the result and how much it is similar to the pattern
query.

• Duality: To maintain the child and parent relationships.

• Locality: The matches are within a subgraph with a specific radius (Ma et al.,
2011).

• Label repetition (LR) constraint: A topological constraint where two or more
nodes have the same label (Mahfoud, 2018).

Summarising the graph pattern matching algorithms in Table 2, we can see that subgraph
isomorphism (Ma et al., 2011) has the highest complexity and the largest retrieved
number of matching subgraphs. However, it supports all duality, locality, and LR
constraints similar to triple simulation (Mahfoud, 2018). These constraints are not

Securing big graph databases 295

supported by the graph simulation (Ma et al., 2011) which reduces the number of
matches and the time complexity of NP-complete in subgraph isomorphism to quadratic
time. The dual simulation (Ma et al., 2011) has a higher complexity than graph
simulation while retaining duality. Among all the algorithms, strong simulation (Ma
et al., 2011) and triple simulation are the only ones that successfully recover the result
with the exact structure of the query pattern.

Table 2 Comparison of GPM algorithms

Subgraph
isomorphism
(Ma et al.,

2011)

Graph
simulation
(Ma et al.,

2011)

Dual
simulation
(Ma et al.,

2011)

Strong
simulation
(Ma et al.,

2011)

Triple
simulation
(Mahfoud,
2018)

Denotation Gs ≺iso Q Q ≺ G Q ≺D G Q ≺L
D G Q ≺T G

Complexity NP-complete
problem

Quadratic time Cubic-time Cubic-time Quartic

Number of
matches

Exponential
matched
subgraphs

Single match
relation but too

large

Single match
relation but
too large

Linear the
number of V
bounds the
number of
matched

subgraphs, and
each subgraph
is bounded by
a diameter

-

Result
structure

Preserves the
structure of the
query pattern, but
sometimes fails to
capture sensible
matches due to its

restrictions

May differs
from the query

pattern

May differs
from the

query pattern

Preserves the
structure of the
query pattern

Preserves the
structure of
the query
pattern

Duality 3 5 3 3 3

Locality 3 5 5 3 3

LR
constraint

3 5 5 5 3

3 Views and pattern queries

In this section, we introduce the view notion and its types. Furthermore, we explain one
of the key references in this area that used views for answering pattern queries.

3.1 View definition and types

The notion of views has shown its strengths and value in relational databases (Halevy,
2001). Views act like a window that shows part of the scene. So, if we have a massive
database, and there are multiple queries issued frequently over this database, then this

296 B. Alzahrani et al.

is considered time-consuming because at each time the queries are computed over the
original big database. Instead of this, we can accelerate the computation process by
creating views that represent the frequently queried data (da Trindade et al., 2020).
Creating a view is done by running the desired query over the underlying database, then
retrieving the result. We distinguish between two types of views: virtual and physical
views, based on the way of dealing with the result.

A virtual view (or just view) means the result is not stored in the database. This
requires re-computing the query over the underlying database each time the view is
referenced (Gupta and Mumick, 1999). Though this affects the performance, in this type
of view, there is no need to worry about view maintenance; because the data is always
up-to-date.

On the other hand, in the physical view (i.e., materialised view), the data is
physically stored in the database. So, once a query is issued over this view the result
is retrieved directly from the materialised view (MV) without accessing the underlying
database. Thus, this type of view improves the performance and speeds up the result
retrieving process (Gutiérrez et al., 1994). However, it affects the storage space and
requires periodic maintenance since whenever a change happens to the underlying
database, it will not be automatically reflected on the MV. Indeed, the view here is a
separate copy of the base data. Table 3 represents a comparison between both types of
views based on the following criteria:

• Naming: A synonym name.

• The result: Whether it is stored in the database or not.

• Performance: The speed at which the data is retrieved.

• Up-to-date: Does the view always have updated data?

• Storage: For storing the view.

Table 3 Comparison of virtual and physical views

Virtual view Physical view

Naming View Materialised view (MV)
The result Not stored in the database Stored physically in the database

(not pre-computed) (pre-computed)
Performance Slow High
Up-to-date Always Requires a periodic maintenance
Storage No need Affects the storage space

The following section demonstrates how views are used in GDB for answering pattern
queries.

3.2 Answering pattern queries using views

In light of the above benefits of views, GDBs have also adopted the view notion.
However, it is still in its early stages (Fan et al., 2016). In this section, we introduce
Fan et al. (2016) which has a significant contribution to this area. In a nutshell, this

Securing big graph databases 297

paper addresses the problem of using views in answering graph pattern queries. The
authors show that a pattern query Qs can be answered using a set of views V = {V1,
..., Vn} via graph simulation (see Section 2), if and only if Qs is contained in V as
illustrated in Example 2. This led them to extend the conventional notion of query
containment used in relational DB, to be pattern containment.

Example 2: Figures 4(a) and 4(c) represents an example of a graph G and a pattern
query Qs (see Definitions 1–2, Section 2). Here we need to define what is the view
definition and its extension. View (V) is defined as a pattern query, and the group of
match sets (Sei) for all edges (ei) in this view is named as a view extension V (G), see
Figure 4(b).

Figure 4 Using views in answering pattern queries, (a) data graph G (b) view definition V
and view extension V (G) (c) pattern query Qs

Now, to check the containment, one of the three algorithms can be used: contain,
minimal containment, and minimum containment. Moreover, the last two algorithms
help in selecting views for answering Qs. All of them will be described in what follows.

• Contain algorithm: Given a pattern query Qs with an edge set Ep and a set of
view definitions V , the algorithm computes for each view definition V a view
match MQs

V from V to Qs where the view match MQs

V is the union of SeV for all
eV in V . If we find that the union of all MQs

V = Ep, then the boolean output will
be true for Qs ⊆ V . Otherwise, it is false.

Example 3: Consider the pattern query Qs and view definitions V1 − V6

illustrated in Figures 5(a) and 5(b), respectively. Then the view match MQs

V

values from V to Qs are shown in Table 4. Such values indicate that Qs is
contained in V , thus the output of the algorithm is true.

Table 4 View match values MQs
V from the set of view definitions V to the pattern query Qs

Vi MQs
Vi

V1 {(A, B)}
V2 {(B, C)}
V3 {(A, C)}
V4 {(A, C), (C, D)}
V5 {(A, C), (A, B), (B, C)}
V6 {(C, D)}

298 B. Alzahrani et al.

The reversion of the MQs

V relation is called a mapping λ. It works from Qs to V .
So that, for each edge ep ∈ Ep, λ(ep) is the set of edges e′ in V . This mapping λ
will be used as an input for the algorithm MatchJoin that will be explained in the
coming few lines.

Figure 5 Containment verification of pattern query Qs in the set of view definitions V ,
(a) pattern query Qs (b) view definitions V

• Minimal containment algorithm: This algorithm aims to find the minimal subset
V ′ of V that contains Qs such that:

a Qs ⊆ V ′

b for any subset V ′′ of V ′, Qs * V ′′.

Example 4: Consider again Qs and V shown in Figure 5. The output of applying
the minimal algorithm is a subset V ′ = {V1, V2, V4}, as shown in Figure 6.

Figure 6 The result of applying the minimal algorithm on pattern query Qs and the set of
view definitions V

• Minimum containment algorithm: This algorithm aims to find the minimum subset
V ′ of V that contains Qs such that:

a Qs ⊆ V ′

b for any subset V ′′ of V ′, if Qs ⊆ V ′′, then card(V ′) ≤ card(V ′′).

Example 5: Applying the minimum algorithm on Qs and V depicted in Figure 5
results in two views only V5 and V6 as shown in Figure 7.

Securing big graph databases 299

Figure 7 The result of applying the minimum algorithm on pattern query Qs and the set of
view definitions V

• Maximal algorithm: In all of the above-mentioned algorithms, Qs is contained in
V , thus Qs can be answered using the views. However, if Qs is not contained in
V , then no answer is retrieved. To overcome this problem, when Qs is not
contained in V , the maximal algorithm will look for the largest part Q′

s of Qs that
is contained in V . As a result, a rewritten query Q′

s is produced which can have
an approximate answer using V .

Example 6: Given Qs in Figure 5(a) and V in Figure 8(b) defined, the
containment algorithm will return false. Therefore, the maximal algorithm will
rewrite Qs to be Q′

s, as shown in Figure 8(a). Thus, Q′
s is now contained in V

and can have an approximate answer.

Figure 8 Pattern query rewriting for containment enforcement in the set of view definitions
V , (a) a rewritten Q′

s (b) view definitions V

• MatchJoin algorithm: It is the algorithm responsible for computing Qs(G) by
joining the views Vi(G) resulting from the mapping λ.

Example 7: Consider the data graph G, set of view definitions V = {V1, V2} with
their extensions V(G) = {V1(G), V2(G)}, and pattern query Qs depicted in
Figure 9. First, a mapping λ from Qs to V will verify that Qs ⊆ V by mapping
(A, B), (P , A) to e1, e2 in V1, respectively; and (D, A), (A, S), (S, D) to e3, e4,
e5 in V2, respectively. Then, MatchJoin merges view matches guided by , and

300 B. Alzahrani et al.

removes invalid matches for edges in Qs such as (A1, S1) from Se4 . This will
lead to the removal of (S1, D2) from Se5 , and (D2, A2) from Se3 . Finally,
MatchJoin returns the matches shown in Table 5 as the final result Qs(G).

Figure 9 Answering pattern queries using views, (a) data graph G (b) view definition V and
view extension V (G) (c) pattern query Qs

Table 5 The result of using the MatchJoin algorithm to evaluate the pattern query Qs using
views

Edge Matches

(P , A) {(P1, A2)}
(D, A) {(D1, A2)}
(S, D) {(S2, D1)}
(A, B) {(A2, B1)}
(A, S) {(A2, S2)}

• Matching algorithms summary: Table 6 provides a brief description along with
the algorithm complexity for all of the aforementioned algorithms.

After describing the algorithms used to answer Qs using a set of views V , it is
worth mentioning that the complexity of computing Qs over the big graph G (i.e.,
no views) is O(|Qs|2 + |Qs||G|+ |G|2) time, in the size of |G| which is very
large. Table 7 illustrates the differences between answering Qs using G and V(G)
based on the following criteria:

a Complexity: The time required to answer Qs.

b Size: The number of nodes and edges.

c Accessing G: The need to access the underlying graph.

d Cost (in terms of time): More time means more cost.

e Speed: Traversal speed.

Securing big graph databases 301

Table 6 Summary of matching algorithms

Algorithm Description Complexity

Mapping λ For every edge ep of Qs, λ(ep) is a
set of edges e′ from the view
definitions in V .

Computed within the complexity of the
containment algorithms.

Contain Checks the containment of Qs in V .
Qs ⊆ V .

O(card(V)|Qs|2 + |V|2 + |Qs||V|)
time. Contain + computing mapping λ
from Qs to V .

Minimal
containment

Finds the minimal subset V ′ of V that
contains Qs:
1 Qs ⊆ V ′

2 for any subset V ′′ of V ′,Qs * V ′′.

O(card(V)|Qs|2 + |V|2 + |Qs||V|)
time. Minimal + computing mapping λ
from Qs to V ′.

Minimum
containment

Finds a subset V ′ of V such that:
1 Qs ⊆ V ′

2 for any subset V ′′ of V ′, if
Qs ⊆ V ′′, then
card(V ′) ≤ card(V ′′).

NP-complete and APX- hard but it is
approximable within O(log |Ep|) in
O(card(V)|Qs|2 + |V|2 + |Qs||V|+
(|Qs| · card(V))3/2) time.

Maximal Identifies a maximal part Q′
s of Qs

that can be approximately answered by
using V .

O(card(V)|Qs|2 + |V|2 + |Qs||V|)
time.

MatchJoin Computes Qs(G) by joining views
Vi(G) as guided by λ.

O(|Qs||V(G)|+ |V(G)|2) time.

Notes: |Qs|: The number of all nodes.
|V|: The total |V | in V .
card(V): The number of view definitions V in the set of view definitions V .
|Ep|: The number of edges in Qs.

Table 7 Comparison of answering pattern query Qs using graph G and the set of view
extensions V(G)

Criteria Using the original graph G Using views V(G)(i.e., no views)
Complexity O(|Qs|2 + |Qs||G|+ |G|2) O(|Qs||V(G)|+ |V(G)|2)

time time (quadratic time)
Size |G| is large |V(G)| is much smaller
Accessing G Mandatory No need
Cost (in terms of time) Costly Cost-effective
Speed Slow Faster

By referring to Table 7, we can observe that using views in answering pattern queries
yields prompt answers, and offers superior memory management compared to relying
solely on the original graph.

4 Access control enforcement mechanisms

In this section, we present the recent solutions for enforcing AC over the data graph.
These solutions vary between research projects, commercial solutions, and patents.
Moreover, they differ in terms of the AC model used.

302 B. Alzahrani et al.

The three traditional AC models adopted by some solutions are the identity-based
model (IBAC), the role-based model (RBAC), and the attribute-based model (ABAC).
In IBAC, each object has an ACL that specifies the identity of the authorised subjects.
So, accessing a secured object depends on having a match between the subject identity
and the identity placed in the ACL. Thus, the permissions here need to be managed on
an individual basis (Hu et al., 2014).

In RBAC, the admin assigns a set of privileges to a subject based on his/her role.
These privileges specify the allowed actions to be performed on specific objects. It is a
predetermined process (Hu et al., 2014). For instance, a user with an advisor role can
add and drop courses for a student under his/her supervision.

Figure 10 The state-of-the-art solutions taxonomy (see online version for colours)

In ABAC, access is permitted or denied based on the assigned attributes of the subject,
object, and context. Besides the policies that the admin set are based on these attributes
(Hu et al., 2014).

In the following, we classify the state-of-the-art solutions based on the AC
enforcement mechanism into engine-level (runtime), pre-processing, and hybrid (i.e.,
based on views and pre-processing) models, see Figure 10.

4.1 Engine-level (runtime) access control

Bastani (n.d.) proposed the use of fine-grained relationships (FGR) to represent
the access control rule (ACR), such as ALLOWED DO NOT INHERIT, DENIED,
ALLOWED INHERIT. They found that this type of relationship is almost twice
faster than their counterparts in coarse relationships. The equivalent representation
in the coarse relationship will be a property named permission followed by two
boolean attributes allowed and inherit. Figure 11 illustrates how the model works,
so if a security administrator group (gi) is connected to a company (Ci) with an
ALLOWED INHERIT relationship, ALLOWED means that the admin (SAi) is allowed
to manage that company. INHERIT means all children of the same company (ci) inherit
this permission. In this model, creating a node that takes as input all the subjects sharing
the same security permissions reduces the graph complexity. However, we think having

Securing big graph databases 303

a relationship with DENIED permission is equivalent to dropping its edge. So, it is
unnecessary.

Figure 11 Engine-level access control model with fine-grained relationships

Similar to Bastani (n.d.), the model in Bramley (2015) supports the FGR. However, the
core idea is about having classification levels as nodes such as protect (P), restricted
(R), confidential (C), secret (S), and top-secret (T) nodes. Both nodes the subject (B)
who has access permission and the object (D) that need to be secured must have a
relationship with the security nodes. The classification levels are linked in a hierarchical
manner using a relationship called IS LOWER THAN. This arrangement allows the user
to access the objects having the same security level or lower. For instance, in Figure 12,
the subject (B2) can access object (D). While the subject (B1) cannot access the same
object (D) due to its security level.

Regarding the performance, the suggested hierarchical classification has a negative
impact because it adds the number of hops to check the access authority.

Figure 12 AC model with classification levels as nodes

Ahmadi and Small (2019) proposed a graph model that shows how ABAC policies can
be expressed and evaluated using graphs. The main components of any AC policy are
subject (S), object (O), and action (A). The subject is the user who asks to perform a
specific action (i.e., operation) over the object (i.e., sensitive data). Here, they are named
primitives. Each primitive can be described and connected to one or more attribute
nodes (T) through a relationship named HAS ATTR. Now, to build up the policies
within the graph, the authors used a policy node (P) with two properties either permit
or deny. Furthermore, to connect between the primitives/attributes and the policy node,
there are three kinds of relationships SUB CON, OBJ CON, and ACT CON which
represent the access conditions based on the subject, object, and action, respectively.
Figure 13(a) illustrates the ABAC graph model. Note that if there is an access policy
that permits/denies both read and write actions, then both primitive nodes can be linked
to one node labelled with ‘full access’ through the HAS ATTR relationship. Now, let

304 B. Alzahrani et al.

us demonstrate the model with an example, assume there is an access policy that says:
human resources (HR) employees can read employees’ salaries. Thus, the graph will be
the same as Figure 13(b).

Figure 13 Graph model implementation of attribute-based access control, (a) the general
graph model of ABAC (b) an example of ABAC graph model

Dhia (2013) proposed an AC model that targets the online social network (OSN) where
users share their data (e.g., personal information, photos, contacts, etc.) with other users
in the network. The proper graph model for OSN is the directed property graph where
nodes and edges can have attributes (e.g., age, gender, etc.). The author built the model
based on two things:

1 the owner privacy preferences (i.e., AC rules)

2 the reachability constraints.

Reachability is a well-known problem in GDB. Having a reachability query means
looking for a path that allows u to reach v, where u and v are nodes in graph G (Jin
et al., 2010). The author considered a specific type of reachability namely distance and
reachability queries with constraints that considers the edge labels, distance, direction,
etc.

Figure 14 shows the main components of the AC model. The definition of the
subject, the action, and the object were mentioned above. The remaining components
are defined as follows:

• The owner: The user who owns the object.

• The access rules (ARs): The ACP is based on the owner’s privacy preferences
and the reachability constraints.

• The reference monitor: A software module that takes the subject request and the
AC rules as input to make the access decision whether permit or deny.

The AR is composed of the constraints that must be satisfied in order to permit the
subject access. The AR syntax is as follows:

AR = (u, r, P, C)

Securing big graph databases 305

where u is the owner of the resource r. C is the list of constraints over the requester
attributes (i.e., age > 20). P = p1, ..., pn represents the list of constraints over the path
between the requester and the owner. Each pi is defined as triple pi = (l, dir, I) where
l is the edge label in

∑
, dir ∈ {←,→,⇔} is the direction of pi, and I = (min,max)

represents the minimum and the maximum length of pi as a pair of integer values.
Let’s demonstrate an example from the OSN subgraph depicted in Figure 15.

Suppose Bill wants to post an advertisement (ad) on his social media account, and just
his direct friends living in the USA are allowed to see the post. In this case, the AR
will be written as the following:

AR1 = (Bill, ad, (′friend′,→, (1, 1)), [location = USA])

Based on this AR, Bob is the only one allowed to access Bill’s post. If Bill wants to
make the ad post available to the friends of his friends (i.e., indirect relationship), then
the revised AR will be

AR1 = (Bill, ad, (′friend′,→, (1, 2)), [location = USA])

Figure 14 Reachability-based access control model

In this work, the AC enforcement is made on the fly when the subject requests a
resource. Moreover, the ACRs here differ from Bastani (n.d.), Bramley (2015) and
Ahmadi and Small (2019), they are not defined as nodes or edges in the original graph.

Figure 15 An OSN subgraph example

As a drawback, all the solutions under this category still answer the queries by traversing
the original graph (i.e., no views), which has a massive size. Thus, it is time-consuming.

306 B. Alzahrani et al.

4.2 Pre-processing level access control

The main technique used in this category is query rewriting. Such a technique allows
reformulating the original query by either removing unauthorised parts (Thimma et al.,
2013), adding security parts (Yalamanchi et al., 2012), or even making the query
refers to views (Fan et al., 2016). The following two subsections classify the proposed
pre-processing-based solutions based on whether they use rewriting or not.

4.2.1 Pre-processing with query rewriting

Yalamanchi et al. (2012) invented a technique that focuses on controlling access to
a specific part of the resource description framework (RDF) data model, instances of
classes or properties. RDF is recommended by W3C. It is used to represent metadata
as a set of triples. A triple is composed of three parts: subject, object, and predicate (or
property) (Kirrane et al., 2020). The subject and object are represented as nodes, while
the property is represented as a link between these nodes to describe their relationship
(Angles and Gutierrez, 2008). The technique proposed in Yalamanchi et al. (2012) can
be applied to any graph model.

Figure 16 An access control model for graph databases

The security policy is composed of three main elements: the graph metadata, the access
constraints that restrict access to the instance data, and the session context information,
which could be used to support the enforcement of dynamic access constraints based on
the runtime values, see Figure 16. The constraint in the security policy is represented
as a pair of a match pattern and an apply pattern. Both are in the compiled form. The
match pattern, as the name indicates, is the pattern that matches the query in terms of
resources. The apply pattern is appended to the query during the query rewriting process
as security conditions. Sometimes we need to restrict access to a property instance based
on a specific value of the property’s object. The FILTER clause in the SPARQL query
language can handle this. The following steps describe how the system works in brief:

1 The user issues a query.

2 The AC enforcement receives the query.

3 It looks for the corresponding metadata, then for the corresponding match pattern.

4 It uses the apply pattern paired with the match pattern and the session context
information in the query rewriting process.

Securing big graph databases 307

5 It retrieves the data that the user is authorised to access.

4.2.2 Pre-processing without query rewriting

Morgado et al. (2018) proposed a security model that facilitates and guides the
development of graph-based applications. The model is based on meta-data and supports
both data definition language (DDL), e.g., create and alter, and data manipulation
language (DML), e.g., insert, update, and delete. The model is composed of five types
of meta-data: meta user, meta group, meta operation, meta node, and meta property, see
Figure 17(a). Each one of them is described through a set of attributes.

Figure 17(b) shows an instance of the model where the DBA creates the account
of User2 which makes him the owner. User2 has ALTER permission to modify the
employee salary. When the plugin layer (AC) where the model is placed receives a
commit transaction from User2, it will check whether the required operation is permitted
or not. In the former case, it will execute the commit, while in the latter, it will roll-back
the transaction.

Figure 17 A security model for access control in graph databases, (a) the general AC model
for GDBMS (b) an instance of the model

(a)

(b)

The model was implemented using RDF but is applicable to other graph models, such
as property graph. Moreover, it supports the concept of group permissions similar to
Bastani (n.d.). The authors were focusing on the feasibility of the model, rather than the
performance, therefore, they implement it at the plugin layer offered by Neo4j, which
works as an intermediate layer between the querying system and GDB.

4.3 Hybrid level access control

In this section, we will explain the papers that combine both categories the view-based
and pre-processing for the AC enforcement.

308 B. Alzahrani et al.

Views and pre-processing without rewriting are found in the work of Akkiraju et al.
(2016) and Hosseinzadeh Kassani et al. (2020). In Akkiraju et al. (2016), they invented
an AC technique that works at the edge level. The edge will be associated with one or
more facts. The fact is composed of a subject, predicate, and object. The identification
of an edge is based on two parameters (source node ID, target node ID). Moreover, the
edge will have a type, a pointer to a node, and an access control list (ACL) properties
(e.g., type: hasSkill, ACL: ALL). ACL identifies the roles of authorised users, who are
permitted to access the fact. Furthermore, a lattice is created for mapping the roles with
the edge types. The roles are arranged in a hierarchical order based on their access
privileges. So, roleR1 ≥ roleR2, this formula is true when the role R1 has privileges
more than or equal to the role R2, see Figure 18.

Figure 18 A lattice for mapping the roles with the edge types

There are three approaches to populate the value of the ACL property:

1 Populate ACL based on the edge type wherein the edges with the same type will
have the same ACL.

2 Override the ACL by writing a query that retrieves the required edges to update
their ACL.

3 ACL is assigned to derived edges as the group of all authorised users of the edges
passed during the derivation process.

Enforcing AC is done through the following two steps:

1 Breakdown the big graph into sub-graphs (i.e., views) by applying the edge access
control (EAC) enforcement algorithm. Each sub-graph reflects the edge type
associated with the user role. Then, based on the query issuer role unionise the
sub-graphs related to this role and roles with fewer privileges.

2 Processing the issued query by traversing the graph starting from any node. At
each hop, a check is made to ensure whether the following data is allowed to be
seen by the user or not. To do this, the path query is compared with the union
sub-graph from step 1. If all edges of the path query have a match in the
sub-graph, then the query is executed, otherwise, it cannot be processed (i.e., no
rewriting).

Securing big graph databases 309

Hosseinzadeh Kassani et al. (2020) proposed a view-layer architecture that secures the
RDF data against unauthorised access by using blockchain technology. Blockchain is
one of the distributed ledger technology (DLT) that stores accurate transactions in blocks
and make them immutable and indestructible. Furthermore, it supports the use of a smart
contract that contains a pre-defined set of rules. This smart contract is distributed and
automatically executed once an event occurs. The blockchain model in this architecture
follows the role-based access control (RBAC) approach to secure sensitive data. So,
there will be a rule in the smart contract that will check the role of the query-issuer to
decide whether the user is allowed to access the data or not.

Figure 19 illustrates how the model works. First, the view-layer will receive a query
from the user. Note that the user is querying a view of the data, not the original data.
Then, the blockchain RBAC module will check the privileges of the user’s role and
make a decision based on the smart contact response. If the user is authorised, then the
query will be executed and the information of the user and the transaction will be added
to the block, otherwise, the user is denied.

Figure 19 Securing graph data using views and blockchain

Both Akkiraju et al. (2016) and Hosseinzadeh Kassani et al. (2020) are relying on RBAC
which lacks the support of context conditions.

Unlike Akkiraju et al. (2016) and Hosseinzadeh Kassani et al. (2020), Thimma et al.
(2013) combine the views with query rewriting. This research is targeting the XML
graph. XML is mainly produced to exchange data between web-based applications.
Its graph representation consists of labelled nodes, connected via edges in a tree-like
structure (Angles and Gutierrez, 2008). The authors adopted a simple AC model, in
which its rules come in the form of a tuple with four parts:

R = Subject (role), Object (XML node), Action (e.g., read and write),

Sign (+, − (i.e., permit or deny)

In most researches, the views are classified on a per-role basis, which causes a high
redundancy that affects the storage. This redundancy is caused by having multiple roles

310 B. Alzahrani et al.

with the same views. Therefore, the authors make the classification of sub-views on a
per-rule basis, which supports the proposed notion of sub-views sharing. Query rewriting
in this model is used in case of having negative rules to eliminate the parts of the query
that breach the rules.

The limitation of this solution is that it supports only the tree-like structure graph.
In Table 8, we summarise the pros and cons of all the above-mentioned solutions

that enforce AC over graph database.

Table 8 Pros and cons of state-of-the-art access control solutions

Ref. Ref. type Category Pros Cons

Bastani (n.d.) Commercial
solution

Engine level • A fine-grained
relationship makes the
traversing faster.

• Assigning the users to
groups, reduces the
redundancy of
permissions.

• Inheritance permission
simplifies the
enforcement process.

• Requires traversing the
original graph.

• Large overhead on the
engine.

• Using the DENIED
relationship is equal
to removing the edge.

Bramley
(2015)

Commercial
solution

Engine level • A fine-grained
relationship makes
the traversing faster.

• Requires traversing the
original graph.

• Large overhead on the
engine.

• Requires checking
multiple classification
levels (i.e., more hops).

Ahmadi and
Small (2019)

Research
project

Engine level • A fine-grained
relationship makes
the traversing faster.

• Supports the use of
context information.

• Requires traversing the
original graph.

• Large overhead on the
engine.

Dhia (2013) Research
project

Engine level • Fine-grained ACR.
• Access decision is made

on the fly.
• Attributes are involved

in the ACR.
• The ACR combines both

user privacy preferences
and the reachability
constraints.

• Requires traversing the
original graph.

• Large overhead on the
engine.

• Targets only OSN graph.

Morgado et al.
(2018)

Research
project

Pre-processing
(no rewriting)

• Works with various
graph models.

• Low performance.
• Not supporting the query

rewriting technique.
Yalamanchi
et al. (2012)

Patent Pre-processing
(rewriting)

• It works with any graph
model.

• Fine-grained ACR.
• Supports context-based

AC.
• The named groups (i.e.,

set of constraints per
role) facilitate AC
enforcement.

• The query is evaluated
against the original
graph.

Securing big graph databases 311

Table 8 Pros and cons of state-of-the-art access control solutions (continued)

Ref. Ref. type Category Pros Cons

Akkiraju et al.
(2016)

Patent View-based and
pre-processing
(no rewriting)

• Creates sub-graphs per
secret type.

• Not traversing the entire
original graph.

• The AC management
computation can be
applied on a copy of the
graph that contains only
the edge type and ACL
information.

• Relies on RBAC which
ignores the context
environment conditions.

• Not supporting the query
rewriting technique.

Hosseinzadeh
Kassani et al.
(2020)

Research
project

View-based and
pre-processing
(no rewriting)

• It works with any graph
model.

• Not traversing the entire
original graph.

• Combining the views
and the blockchain
technologies adds
strength to the solution.

• Relies on RBAC which
ignores the context
environment conditions.

• Not supporting the query
rewriting technique.

Thimma et al.
(2013)

Research
project

View-based and
pre-processing
(rewriting)

• Traversing views, not
the entire graph.

• Define sub-view based
on ACR instead of
roles.

• Allow sub-views
sharing.

• Reduce the views
redundancy.

• Only supports the XML
graph model.

• The sub-view notion is
easy to implement in a
tree-like structure.

4.4 Post-processing

Following this technique means the user query will be computed first, then the retrieved
data will be evaluated against the AC policies to remove unauthorised parts if exists,
then the final result will be displayed. Although this category was mentioned by Thimma
et al. (2013), there was no reference supporting it and we have been unable to locate
one during our research.

Though supporting the use of contextual information will strengthen any security
model, we can notice in Table 9 that only (Ahmadi and Small, 2019; Yalamanchi
et al., 2012) considered contextual information. This highlights a deficiency in this area.
Furthermore, most of the recent solutions except (Akkiraju et al., 2016; Hosseinzadeh
Kassani et al., 2020; Thimma et al., 2013) rely on traversing the original graph instead
of the views. This approach is time-consuming and inefficient. Moreover, the RBAC
model is the most commonly used model in current state-of-the-art techniques. However,
ABAC is more efficient and is only used in Bramley (2015), Ahmadi and Small (2019),
and Dhia (2013).

Table 9 shows a comparison between all solutions we mentioned earlier. The criteria
used are listed below:

• Graph type: Which type of graph the model supports, whether property graph,
RDF graph, or tree-like structure graph.

312 B. Alzahrani et al.

• Context: Context information, e.g., time and the user’s role.

• Metadata: The data of the data, helps in instantiating and referencing data.

• Subject in ACR as a node: The subject specified in the ACR is represented as a
node in the graph. Some solutions deal with the subject as the query issuer only
without being depicted in the graph.

• Group permissions: Having a node denoted as group that takes as input all
subjects sharing the same access permissions.

• Views: Traversing views instead of the big graph.

• AC model: The type of the AC model such as IBAC, RBAC, or ABAC. The AC
model is not necessarily explicitly mentioned in the research.

Table 9 Comparison of the state-of-the-art solutions

Ref. Graph type Context Metadata Subject in ACR Group Views AC
as a node permissions model

Bastani (n.d.) Labelled graph 5 5 3 3 5 RBAC
Bramley (2015) Directed property 5 5 3 5 5 ABAC

graph
Ahmadi and Small Directed property 3 5 3 5 5 ABAC
(2019) graph
Dhia (2013) Directed property 5 5 5 5 5 ABAC

graph
Morgado et al. (2018) RDF and others 5 3 3 3 5 IBAC
Yalamanchi et al. (2012) RDF and others 3 3 - 3 5 RBAC
Akkiraju et al. (2016) Property graph 5 5 5 5 3 RBAC
Hosseinzadeh Kassani RDF and others 5 5 - - 3 RBAC
et al. (2020)
Thimma et al. (2013) Tree-like graph 5 5 5 5 3 RBAC

5 Discussion and future research directions

Access control (AC) is crucial in graph databases, just as it is in any other type of
database. Graph databases often store sensitive information, such as customer data and
financial records, making it essential to ensure that only authorised individuals can
access and manipulate such data. AC in graph databases ensures that users have the
appropriate permissions to read, write, or delete data, and that these permissions are
granted based on their role or level of access.

AC for graph databases is challenging for several reasons. Firstly, graph databases
store data in a highly interconnected manner, which makes it difficult to define and
enforce AC at a granular level. Secondly, graph databases often support complex
querying capabilities, which can make it challenging to define rules for AC that are
both effective and efficient. Thirdly, graph databases often require collaboration between
multiple users or organisations, which can create difficulties in defining and enforcing
AC policies across different entities.

Securing big graph databases 313

Based on the limitations identified in the reviewed solutions that applied AC in
graph databases, we recommend several directions for future research.

5.1 Views and pre-processing (with rewriting)

Most of the recent solutions fall under the categories of engine-level and pre-processing
level. As a result, they typically require traversing the entire original graph to evaluate
the query and retrieve authorised data. This can be a time-consuming process.

Certain solutions integrate both pre-processing and views approaches. While they do
allow for the use of views, meaning that there is no requirement to traverse the entire
original graph, many of these solutions do not support the query rewriting approach.
This means that if a complete answer cannot be provided, there is no option for an
approximate answer either.

To enhance the performance and efficiency of the solution, it is suggested to
combine the techniques of views and pre-processing (with rewriting) in AC enforcement.
This approach leverages the strengths of both techniques and yields better results.
Using views will minimize the time needed to traverse the graph (Fan et al., 2016),
while rewriting the user pattern query will increase user satisfaction by retrieving an
approximate answer rather than no answer.

5.2 Unified AC enforcement mechanism

There are several graph models available, including RDF, property graph, and tree-like
structure. However, some solutions are designed to work exclusively with a specific type
of graph, making the AC model incompatible with others. For this reason, it is advisable
to ensure that support for various graph types is taken into account when constructing
a solution. Doing so will increase the overall usability and versatility of the solution.

5.3 Context conditions

It manifests in various aspects such as time, roles, and environment. Overlooking such
a fact while designing an AC model results in limited and rigid AC scenarios. For
instance, academic advisors in universities have the authority to add or drop courses
for a limited period. In such a situation, time becomes a critical factor that must be
considered when defining the AC rules.

Considering contextual conditions is essential for security models across all areas.
As such, research has shown that implementing context conditions in cloud computing
(Alagar and Wan, 2018) and IoT (Schuster et al., 2018) can enhance security measures.
For instance, it will allow for various and unlimited AC scenarios. However, recent
analysis of solutions in graph databases revealed that only two (Ahmadi and Small,
2019) and Yalamanchi et al. (2012) support context information by fetching data such
as user roles during sessions. This highlights a shortage in graph AC models that take
context conditions into account.

314 B. Alzahrani et al.

6 Conclusions

The increase in storage capacity and advancements in technology have resulted in the
generation and exchange of a vast amount of data that traditional database management
systems are incapable of processing. To address this challenge, a plethora of NoSQL
databases have emerged, designed specifically to manage BD more efficiently. These
databases come in various forms, ranging from document and key-value to graph
databases. In this survey, our focus was on graph databases, as they are the most
commonly used type in many social media applications to capture the relationships
between users. There are different topics under the umbrella of graph databases, such
as security, pattern matching algorithms, and views. These topics are attracting more
and more attention from researchers. However, none of the existing investigations have
fully addressed them. Therefore, to bridge the gap, we analysed the proposed pattern
matching algorithms for answering the queries. Additionally, we discussed views in
graph databases. Additionally, we looked at solutions to solve the security problem
in graph databases. We have classified these solutions based on the AC enforcement
mechanisms they use. Our survey makes a significant contribution by providing a
starting point for a better understanding of the state-of-the-art solutions in this area.
As described in this survey, recent solutions lack integration between views and
preprocessing with rewriting, which decreases user satisfaction. Additionally, most of
them do not support the use of contextual information. We therefore proposed valuable
insights and clear research directions for the development of future solutions.

References

Ahmadi, H. and Small, D. (2019) Graph Model Implementation of Attribute-based Access Control
Policies, p.20, arXiv preprint arXiv:1909.09904.

Akkiraju, R.K.T., Mukherjee, D., Nakamura, T., Qiao, M. and Jr, H.R.S. (2016) Edge Access
Control in Querying Facts Stored in Graph Databases [online] https://patents.google.com/patent/
US20160203327A1/en (accessed 5 August 2022).

Alagar, V. and Wan, K. (2018) ‘Uniform service description and contextual access control for
trustworthy cloud computing’, in 2018 International Conference on Cloud Computing, Big Data
and Blockchain (ICCBB), pp.1–7, ISSN: 7281-1277.

Angles, R. and Gutierrez, C. (2008) ‘Survey of graph database models’, Vol. 40, No. 1, pp.1:1–1:39,
https://doi.org/10.1145/1322432.1322433.

Bastani, K. (n.d.) Entitlements and Access Control – Neo4j GraphGist [online] https://neo4j.com/
graphgist/entitlements-and-access-control (accessed 15 September 2022).

Bramley, R. (2015) Attribute-based Access Control with a Graph Database [online] https://
leanjavaengineering.wordpress.com/2015/04/13/attribute-based-access-control-with-a-graph-
database/ (accessed 10 September 2022).

Colombo, P. and Ferrari, E. (2018) ‘Access control in the era of big data: state of the art and research
directions’, in Proceedings of the 23nd ACM on Symposium on Access Control Models and
Technologies, SACMAT ‘18, Association for Computing Machinery, pp.185–192, https://doi.org/
10.1145/3205977.3205998.

da Trindade, J.M.F., Karanasos, K., Curino, C., Madden, S. and Shun, J. (2020) ‘Kaskade: graph views
for efficient graph analytics’, in 2020 IEEE 36th International Conference on Data Engineering
(ICDE), IEEE, pp.193–204, https://ieeexplore.ieee.org/document/9101351/.

Securing big graph databases 315

Dhia, I.B. (2013) ‘Large-scale data management in real-world graphs’, Data Structures and Algorithms
[cs.DS], Télécom ParisTech.

Fan, W., Wang, X. and Wu, Y. (2016) ‘Answering pattern queries using views’, Vol. 28, No. 2,
pp.326–341, http://ieeexplore.ieee.org/document/7101284/.

Gupta, A. and Mumick, I.S. (1999) Maintenance of Materialized Views: Problems, Techniques, and
Applications, pp.145–157, MIT Press, Cambridge, MA, USA.

Gutiérrez, A., Pucheral, P., Steffen, H. and Thévenin, J-M. (1994) ‘Database graph views: a practical
model to manage persistent graphs’, in Proceedings of the 20th International Conference on Very
Large Data Bases, VLDB ‘94, Morgan Kaufmann Publishers Inc., pp.391–402.

Halevy, A.Y. (2001) ‘Answering queries using views: a survey’, Vol. 10, No. 4, pp.270–294, https:
//doi.org/10.1007/s007780100054.

Hosseinzadeh Kassani, S., Schneider, K.A. and Deters, R. (2020) ‘Leveraging protection and efficiency
of query answering in heterogenous RDF data using blockchain’, in Alhajj, R., Moshirpour, M.
and Far, B. (Eds.): Data Management and Analysis: Case Studies in Education, Healthcare and
Beyond, Studies in Big Data, pp.1–15, Springer International Publishing, https://doi.org/10.1007/
978-3-030-32587-9_1

Hu, V.C., Ferraiolo, D., Kuhn, R., Schnitzer, A., Sandlin, K., Miller, R. and Scarfone, K. (2014)
Guide to Attribute Based Access Control (ABAC) Definition and Considerations [online] https:
//nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-162.pdf.

Jin, R., Hong, H., Wang, H., Ruan, N. and Xiang, Y. (2010) ‘Computing label-constraint reachability
in graph databases’, in Proceedings of the 2010 ACM SIGMOD International Conference on
Management of Data, ACM, pp.123–134, https://dl.acm.org/doi/10.1145/1807167.1807183.

Kirrane, S., Mileo, A., Polleres, A. and Decker, S. (2020) Query Based Access Control for Linked
Data.

Ma, S., Cao, Y., Fan, W., Huai, J. and Wo, T. (2011) ‘Capturing topology in graph pattern matching’,
Vol. 5, No. 4, pp.310–321, https://doi.org/10.14778/2095686.2095690.

Mahfoud, H. (2018) ‘Graph pattern matching preserving label-repetition constraints’, in
Abdelwahed, E.H., Bellatreche, L., Golfarelli, M., Méry, D. and Ordonez, C. (Eds.): Model
and Data Engineering, Lecture Notes in Computer Science, Springer International Publishing,
pp.268–281.

Milner, R. (1989) Communication and Concurrency, Prentice-Hall, Inc., USA.
Morgado, C., Busichia Baioco, G., Basso, T. and Moraes, R. (2018) ‘A security model for access

control in graph-oriented databases’, in 2018 IEEE International Conference on Software Quality,
Reliability and Security (QRS), pp.135–142.

Pang, J. and Zhang, Y. (2015) ‘A new access control scheme for facebook-style social networks’,
Vol. 54, pp.44–59, https://www.sciencedirect.com/science/article/pii/S0167404815000632.

Patil, N., Kiran, P., Kavya, N. and Patel, K. (2018) ‘A survey on graph database management
techniques for huge unstructured data’, International Journal of Electrical and Computer
Engineering, Vol. 81, pp.1140–1149.

Schuster, R., Shmatikov, V. and Tromer, E. (2018) ‘Situational access control in the internet of
things’, in Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS ‘18, Association for Computing Machinery, pp.1056–1073, https://doi.org/10.1145/
3243734.3243817.

Thimma, M., Tsui, T.K. and Luo, B. (2013) ‘HyXAC: a hybrid approach for XML access control’,
in Proceedings of the 18th ACM Symposium on Access Control Models and Technologies,
SACMAT ‘13, Association for Computing Machinery, pp.113–124, https://doi.org/10.1145/
2462410.2462424.

Yalamanchi, A., Banerjee, J. and Das, S. (2012) Access Control for Graph Data
[online] https://patents.google.com/patent/US8250048B2/en?q=access+control+grapg&oq=access+
control+for+grapg (accessed 5 September 2022).

