

International Journal of Intelligent Information and
Database Systems

ISSN online: 1751-5866 - ISSN print: 1751-5858
https://www.inderscience.com/ijiids

Implementing domains in Neo4j

Maja Cerjan, Kornelije Rabuzin, Martina Šestak

DOI: 10.1504/IJIIDS.2023.10060491

Article History:
Received: 01 December 2022
Last revised: 25 August 2023
Accepted: 12 September 2023
Published online: 02 April 2024

Powered by TCPDF (www.tcpdf.org)

Copyright © 2024 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijiids
https://dx.doi.org/10.1504/IJIIDS.2023.10060491
http://www.tcpdf.org

 258 Int. J. Intelligent Information and Database Systems, Vol. 16, No. 3, 2024

 Copyright © 2024 Inderscience Enterprises Ltd.

Implementing domains in Neo4j

Maja Cerjan* and Kornelije Rabuzin
Faculty of Organization and Informatics Varaždin,
University of Zagreb,
Pavlinska 2, 42000 Varaždin, Croatia
Email: macerjan@foi.hr
Email: krabuzin@foi.hr
*Corresponding author

Martina Šestak
Faculty of Electrical Engineering and Computer Science,
Universiti of Maribor,
Koroška cesta 46, 2000 Maribor, Slovenija
Email: martina.sestak@um.si

Abstract: Data growth has led to the need to apply new ways to process data.
Graph databases are increasing their use, which can be seen over the years,
with the Neo4j system being the most common. The biggest problem is the
small number of implemented constraints that can be used. One of the
shortcomings to be explored is the need to create domains, which are used
when large amounts of data are manipulated and where the value needs to be
limited or when multiple attributes have the same restrictions and data types.
The creation of domains can be applied multiple times. This paper summarises
the implementation of domains using Neo4j and the Java programming
language.

Keywords: NoSQL; domains; cypher; graph databases; Neo4j; constraints.

Reference to this paper should be made as follows: Cerjan, M., Rabuzin, K.
and Šestak, M. (2024) ‘Implementing domains in Neo4j’, Int. J. Intelligent
Information and Database Systems, Vol. 16, No. 3, pp.258–285.

Biographical notes: Maja Cerjan graduated from the University of Zagreb’s,
Faculty of Organization and Informatics with a Master’s in Informatics
Education. Her present position at the same faculty is that of an assistant. She is
an early career researcher focused on conducting scientific research on
databases.

Kornelije Rabuzin is currently a Full Professor at the Faculty of Organization
and Informatics, University of Zagreb, Croatia. He holds Bachelor, Master, and
PhD degrees – all in Information Science. He performs research in the area of
databases, as well as in the field of data warehousing and business intelligence.
He published four books and more than a hundred papers. He served as the
Head of Department for Theoretical and Applied Foundations of Information
Science. He has also been working as a database and business intelligence
specialist.

Martina Šestak received her Master’s in Information and Software Engineering
from the Faculty of Organization and Informatics, University of Zagreb in
2016, and PhD in Computer Science at the Faculty of Electrical Engineering

 Implementing domains in Neo4j 259

and Computer Science in Maribor in 2022. She is currently a teaching assistant
and a member of Laboratory for Information Systems at the Faculty of
Electrical Engineering and Computer Science, University of Maribor. Her main
research interests include graph databases, data analytics and knowledge
graphs.

1 Introduction

An integral part of any organisation is a database, where data is structured in a way that
meets the needs of users. The amount of data that IT systems, in the majority of
organisations, need to process is increasing every day. The requirement for application of
new and better solutions for which relational databases do not have satisfactory
characteristics is needed. In 1998, a new database called ‘Strozzi NoSQL’ was created by
Carlo Strozzi, where new ways of storing, accessing data and performing data
manipulation were presented for the first time. Data were retrieved using shell scripts,
while tables were stored in an ASCII file (Domdouzis et al., 2021). A non-relational
database is a relatively newer term that uses a flexible model that can process large
amounts of data and perform operations on more complex data structures than relational
databases [Stojanović, (2016), pp.44–47]. Non-relational databases do not have a strictly
defined schema, and different types of data can be processed. The ability to process large
amounts of data is highlighted, meaning that systems can perform more tasks with
concurrent data processing. This represents just some of the advantages of NoSQL
databases [Sambolek, (2015), p.3]. These databases can be divided into key-value
databases, document databases, column stores and graph databases. In this paper, the
focus has been exclusively on graph databases.

A graph database can be defined as a database solution where data is manipulated
through operations, such as create, update, delete and read, but carried out on a graph
structure. The difference between relational and non-relational graph databases is visible
in how data is stored, i.e., the relational data must be stored in structured tables and
strictly follow the defined database schema. Graph databases have a flexible model,
where data is stored as nodes and edges of a graph and thus can be changed according to
the needs of the flexible database schema (Domdouzis et al., 2021).

An integral part of graph databases is a graph showing real-world entities’
relationships. Hence, graphs are used in highly connected application domains, which we
can represent as graphs with nodes and edges (Rohit, 2015). Each node is an entity
representing some of the domain data and has a label by which it can be inferred whether
a node represents a person, object or something else. Furthermore, two nodes are
connected by an edge that represents a relationship between a pair of entities. The graph
database integrity is, among others, maintained by integrity constraint rules, which ensure
the accuracy and consistency of data stored in the graph database.

Currently, graph databases only support the uniqueness, existence, and constraints
placed on node keys. Intuitively, this list should be extended to meet the maturity level of
relational databases. For this reason, we propose a new integrity constraint called domain
constraints for graph databases. When looking at relational databases, domains are
available in several systems (e.g., PostgreSQL). Domains are beneficial, especially when
working with large amounts of data, where the same attributes with the same constraints

 260 M. Cerjan et al.

and data type can be found in numerous tables. Creating a domain is one of the best
solutions to avoid data redundancy. The name of each domain is defined, which will be
used when a data type is added to a new attribute that is entered.

As already mentioned, we propose a domain constraint to be included in the graph
database schema. We present the definition of such a constraint in the context of the
graph database schema and present the steps required to create a new domain constraint
rule within a graph database. We demonstrate the domain definition and usage process by
setting up a sample exams graph database implemented in the Neo4j Graph Database
Management System (GDBMS). A domain is created in the database, which is a shape
that contains the constraints needed to enter the value of ECTS points properly. The
following restrictions have been implemented within this domain:

• A restriction that prevents the entry of values less than one or greater than eight.

• The ability to enter only one number.

• A constraint that allows the user to enter only an integer as a data type.

In this way, the user can directly define multiple domain constraints within the Neo4j
GDBMS. As an additional integrity mechanism, we implemented a trigger that checks
each transaction before entering the data into the database to prevent any incorrect values
from being stored in the database. A Neosemantics/(n10s) plugin with awesome
procedures on cypher (APOC) triggers is used to implement the domain constraint. The
commands are written in the new shapes constraint language (SHACL) syntax, which is
included in the cypher graph query language. As an alternative to database triggers and
SHACL queries, we created a set of Java-based methods for creating and evaluating
Neo4j domain constraints during insertions.

The next chapter will present some related papers that have emerged over the years
on topics related to graph database integrity. This is followed by more details about graph
databases, the query languages used to work with them, the implementation of domain
constraints and the validation of the proposed approach on a selected use case. Finally,
the possibilities of conducting further research on the topic and conclusion are described.

2 Related work

When it comes to domains in graph databases, it must be taken into account that there is
not much available literature since graph database integrity has yet to be studied in detail
thus far. Although there is limited literature on domains in the context of graph database
integrity constraints, many authors studied related topics on graph databases, which we
will mention in the remainder of this section.

• ‘Survey of graph database models (2008)’ – the paper was made as a survey on
graph database models. In this survey, the authors discuss the suitable use cases for
using specific graph database models. A comparison was made with other database
models (relational, network, object-oriented, semantic, etc.). The paper also presents
an overview of available integrity constraints supported by the identified models,
such as integrity constraints, referential integrity, identity constraints, etc.

• ‘Graph database applications and concepts with Neo4j (2013)’ – the paper compares
relational and graph databases using systems that support them: Oracle, MySQL and

 Implementing domains in Neo4j 261

Neo4j. The authors investigated whether graph databases can completely replace
relational databases. The conclusion is that it is necessary to consider each system’s
needs and requirements and decide which database type is most suitable for use.
However, traditional relational databases have the best characteristics for the most
common uses. Both types have their advantages and disadvantages, and the emphasis
in the paper was placed on various features of the data model, queries and data
structure.

• ‘Querying graph databases (2013)’ – the authors of this paper studied the problems
related to queries that are performed in graph databases, where most attention was
paid to path queries and extensions with inversions and conjunctions. Nevertheless,
limitations and optimisation of queries in the presence of these limitations were also
observed. The research continued in the direction of expanding the languages used in
working with trails, where trails are treated in different ways. A comparison of the
semantics of systems working with different languages was made, so the semantics
of paths could be clarified. There are basically two semantics of paths. The first is
based on some simply defined paths that lead to unsolvability when talking about the
complexity of data, and the second is based on some arbitrary paths.

• ‘Graph database – an overview (2014)’ – a detailed overview of graph databases was
made throughout this paper. One can see what graph databases are, what graphs are
and what properties they consist of, and the information on their performance,
flexibility and agility. The authors present real-world use cases suitable for graph
databases such as social networks, telecommunications, security, bioinformatics, etc.
Finally, with the help of graphical representation, a comparison was made between
the most famous relational and graph databases.

• ‘Graph database: a survey (2015)’ – in this paper, an overview of different types of
GDBMSs was made, such as Neo4j, Dex, Infinite Graph, Infogrid, HyperGraph,
Trinity and Titan. Each listed GDBMS has its features, structures, models, APIs, and
protocols. In this paper, a comparison of GDBMS features, their models and
applications was made. As a result, the authors present a summary of query
languages used in each graph database, their availability and usability and available
features.

• ‘Graph databases – are they really so new (2016)’ – this paper provides an overview
of different types of databases that store and manipulate data similarly, namely
hierarchical databases. A detailed insight into network databases and an example of
working with network databases are also presented. The paper also includes an
analysis of graph databases, how to work with graphs, and examples of creating
nodes and connections between nodes. In the end, a comparison of network and
graph databases was made because they include similar concepts of nodes and edges
(Maleković et al., 2016).

• ‘Integrity constraints in graph database implementation challenges (2016)’ – the
paper describes integrity constraints present both in general and in graph databases,
where the first part defines and explains constraints on columns, tables and
databases. Examples in PostgreSQL are also given, as well as an explanation of
integrity constraints in graph databases and examples in Cypher. The second part of
the paper presents challenges that arise during the implementation of integrity

 262 M. Cerjan et al.

constraints with respect to the specifications. The implementation was done in Neo4j
GDBMS by using the layered approach.

• ‘Conceptual and database modelling of graph databases (2016)’ – the first part of this
paper includes a brief introduction to graph databases, graphs and graph database
schemas while observing the limitations of integrity constraints. The second part of
the paper covers the problem of the non-existence of conceptual modelling, where
the authors propose an approach to transforming the conceptual schema of a graph
into a graph database schema. The consistency of the graph database was also
studied since integrity constraints were not explicitly identified and set as they
should be. The relationship between conceptual model schemas and database models
was also analysed.

• ‘Implementing check integrity constraint in a graph database (2016)’ – one part of
the paper contains an insight into graph databases, which includes both the
constraints and the level of support needed to determine the constraints in the
Gremlin and cypher graph query languages. The authors explained the
implementation of the new check integrity constraint in the Neo4j GDBMS.
Examples of the implementation of the author and book nodes are given, as well as
an overview of how the entered values were checked, e.g., when checking whether
the user entered books that were published in a certain period, etc. (Rabuzin et al.,
2016a).

• ‘Implementing unique integrity constraint in a graph database (2016)’ – as the
extension to the previous paper, the authors continued implementing the uniqueness
integrity constraint. The paper began with a brief insight into the existing integrity
constraints in graph databases, and the research done so far on the topic of integrity
constraints. Also, the authors wanted to show the level of support for the constraints
provided by some of the known GDBMSs and finally presented the implementation
of the uniqueness (UNIQUE) constraint. A sample database was prepared in the
Neo4j GDBMS, and the UNIQUE integrity constraints were implemented by using
the Java programming language (Rabuzin et al., 2016c).

• ‘Integrity constraints in graph databases (2017)’ – the Neo4j GDBMS was used to
study the resulting database schema, along with integrity constraints still in
development for this paper. As the essential part of this paper, an extension was
made within Neo4j and the query language that this system uses (cypher). The
extension includes a complete syntax for implementing integrity constraints.

• ‘Creating triggers with trigger by example in graph databases (2019)’ – the paper
describes how to design and implement triggers in graph databases. For this study, a
graph database and a graphical user interface (GUI) were created, which were used
to create triggers stored as event-condition-action (ECA) rules. An overview of the
work made on topics related to graph databases was made, and the
trigger-by-example approach was explained and presented, ending with detailed
explanations to explain graph databases and approaches related to trigger-by-
example (Rabuzin and Šestak, 2019).

• ‘A review on graph database and its representation (2019)’– in this paper, the authors
wanted to present the use of graph databases with a real scenario, using professors,
subjects and ‘research scholar’ relationships as examples. Furthermore, different

 Implementing domains in Neo4j 263

graph database models (property graphs, hypergraphs, triple stores) were presented
and explained in detail in the same example. At the very end, relational databases
were compared with graph databases.

• ‘Defining referential integrity constraints in graph-oriented datastores (2020)’ – this
paper presents the approach and solution used in defining referential integrity
constraints. To specify the referential integrity constraint (RIC), creating a
domain-specific language containing clauses for configuring the RIC definition
(cardinality, additional conditions, bidirectionality, etc.) was necessary. The
implementation was successfully performed with the help of model-driven
engineering (MDE) techniques.

Only selected papers that are thought to be the most relevant to our topic were chosen and
presented in chronological order. The emphasis was on discovering works that discovered
approaches and processes for implementing different constraints already available in
relational databases but missing from non-relational databases. This was motivated by a
limited number of integrity constraints currently supported by the Neo4j GDBMS, for
which it was found that it only supports the NOT NULL and UNIQUE constraints at the
moment. While certain constraints have been studied and put into practice, the majority
of constraints have only been proposed theoretically, with no clear indication of their
implementation details.

3 Graph databases

Although graph databases found their true application only a few years ago, graph theory
is a topic that has been worked on for hundreds of years, but not under that term. The
problem of the Seven Bridges of Koeningsberg was modelled with the help of graph
theory, where Euler tried to come up with a solution to cross the seven bridges through
four parts of the city only once. Euler modelled a graph with the same number of peaks as
cities and several edges equal to the number of bridges between those cities. Although
various historical problems have been solved by graph theory, the issue has not been
explored so profoundly (Fošner and Kramberger, 2009).

From the above example, it can be concluded that graph databases store
domain-related data in the form of graphs, which have their foundations from other exact
sciences. While relational databases use tables, here, one uses nodes and edges. It can be
said that graphs are based on the mathematical graph theory, where, as has been defined
before, each graph should contain (Olivera, 2019):

1 Vertices or nodes representing the entities of the domain being observed.

2 Properties that represent the basic information about nodes, being very similar to the
properties of tables in relational databases.

3 Edges/relations/arcs that define the relationship between two nodes.

An integral part of any graph database is a graph, i.e., the data structure that has been
defined as an ordered pair of nodes and edges, which can be represented as G = (V, E),
where V is a set of graph nodes, and E is a set of edges. Edges can be directed or

 264 M. Cerjan et al.

undirected, while data manipulations are performed using graph operations (Chen et al.,
2020).

In relational databases, the referential integrity constraint helps to achieve good
connectivity between tables, protecting data from improper handling (deletion or
modification). It can be said that referential integrity is crucial for the implementation of
a relational database to be valid and to meet the rules at all levels. In graph databases,
some rules must be followed to properly create the graph. When creating graphs, we need
to consider the nodes that will be created, node types and the connections that will be
defined between these nodes. Every edge should have its own start and end node, and
deleting a given node would not be allowed without deleting all edges related to that node
(Olivera, 2019).

A graph database can be considered as an instance of its schema containing a graph
representation of the data. Graphs are needed to understand how to interpret all data
stored in a graph database. In this implementation, first and foremost, the given
constraints have to be respected, and some of them, as mentioned above, are referential
integrity, identity constraint, functions, and dependency on inclusion. Graph databases
can handle large amounts of data since the database queries are executed on subgraphs (a
subset of the entire graph), so the characteristics of the database will not change no matter
how much data is stored in the database (Domdouzis et al., 2021).

Figure 1 Simple graph display

The wide application of graphs can be seen through two general examples. The first
example is one of the most famous social networks, Instagram or Twitter, where one can
define a graph by putting users in nodes and defining the connections between them
depending on whether users follow each other. Therefore, there can be only one

 Implementing domains in Neo4j 265

connection between two nodes if one user follows the other or two connections if both
users follow each other. Such graphs are applied in different organisations to meet all
requirements, achieve the desired goals, and are created using data modelling tools (Chen
et al., 2020).

Figure 1 depicts a simple graph where it can be seen the types of nodes that were used
to create the database in our practical example discussed later. There are seven types of
nodes, and each type has several node instances with their own properties. Between each
node, a named connection that connects the nodes into a meaningful whole can be seen.

4 Graph database query languages

So far, it has been shown and explained what graphs look like as an integral part of graph
databases, but what is also interesting is how to create and manipulate data using query
languages. In relational databases, the most commonly used query language that is used
to manage data is the structured query language (SQL). In graph databases, it is possible
to use two languages for writing queries:

1 Gremlin, which is a low-level language and is used in various programming
languages.

2 Cypher, which can be declared as the most commonly used open-source language,
being also an excellent tool to learn how to operate graphs.

Each of these languages will be briefly presented in the following subsections according
to their basic characteristics, query syntax, etc. We also present the syntax of the SHACL,
a query language used to check and describe RDF graphs according to a set of conditions.

4.1 Gremlin

Gremlin is a low-level language used for graph traversals with compact syntax, created
under the auspices of the Apache ThinkerPop framework. It can be declarative or
imperative (Robinson et al., 2015), and it does not support any integrity constraints or
provide a way to extend the graph traversal process beyond the scope of the work.
However, integrity constraints can be made, as Maleković et al. (2016) have shown in
their research. The authors state that, unlike Cypher, Gremlin can perform complex
queries since the whole process of execution is divided into a certain chain of operations,
where the results do not need additional value conversion (Maleković et al., 2016).

This can be used for graph queries in various programming languages, and to better
illustrate the Gremlin syntax, examples of queries for creating nodes, connections
between nodes, and retrieving data will be presented.

For instance, the addV (add Vertex) command is used to add nodes:

g.addV (‘college’). property (‘id’, 1).property (‘title’, ‘Databases’). property (‘ects’, 6)

To add connections between nodes, the addE (add Edge) command can be used:

gV (). hasLabel (‘course’). has (‘title’, ‘Databases’). addE (‘something’). to (gV ().
hasLabel (‘ course’). has (‘title’, ‘Database basics’))

 266 M. Cerjan et al.

The following syntax is used to retrieve data:

g.V (). hasLabel (‘course’). has (‘title’, ‘Databases’).

4.2 Cypher

Cypher can be defined as the declarative and most commonly used query language for
graphs in Neo4j and graph databases in general. It allows users to search, store and
manipulate data using available create, read, update and delete (CRUD) operations and
test and update graphs. Also, by using Cypher, it is possible to describe the visual
patterns found in a graph, as well as to create and define nodes, edges, and properties, and
use a simple SQL-like syntax. ASCII syntax is used to describe the forms, so writing and
reading queries should be fine if one has experience in standard querying.

In addition to manipulating data, this language offers the ability to use different ways
of filtering, grouping and retrieving only certain data that is needed at the time, which is
extremely important when there is a selective display of data. Various aggregate
functions can also be used to perform data aggregations. The new version provides the
ability to work with dates and calculate the duration. As a good feature of the system that
can be mentioned, there is an openCypher initiative, where users can contribute to the
development of the language by correcting errors observed during operation (Neo4j,
2021a).

An example of creating nodes in Neo4j using Cypher is the following:

CREATE (Smith: Student {student_id: 1, surname: ‘Smith’, name: ‘Christian’, oib:
34214356765, year_study: 2})

CREATE (Exam1_mathematics: Exam {course: ‘Mathematics’, deadline:
localdatetime (‘20200630T11: 00: 00’), student_id: 1, application_date: localdatetime
(‘20200620T09: 00: 00’), grade: 1, exam_name: Exam1_ mathematics ‘})

In the above example, two nodes are created. One of type Exam called
Exam1_mathematics, and the other of type Student, having used the name of the node
Smith. The way to write the CREATE command is as follows:

First, the command’s name is specified, then the node’s name, the node’s type, and
the properties of the newly created node are defined within the curly brackets.

Figure 2 Display of the connection between the nodes (see online version for colours)

Each node has properties that describe its so-called descriptors. Once the two nodes are
created, an edge can be established between them. The name of the edge between the
Smith nodes of the Student type and Exam1_mathematics of the Exam type is
PARTICIPATES.

 Implementing domains in Neo4j 267

MATCH(Smith:Student), (Exam1_mathematics: Exam)

WHERE Smith.student_id = 1 AND Exam1_mathematics.student_id = 1

CREATE (Smith) – [r: PARTICIPATES] -> (Exam1_mathematics)

RETURN Smith, Exam1_mathematics

The merge via a property called student_id was created. The nodes are entered first, and
then the student_id is checked. When an exam contains the same student_id as in the
Smith node, an edge is created.

If we want to retrieve all nodes from the database, the following command could be
used:

MATCH (n) RETURN n

Figure 3 Display of all nodes in database (see online version for colours)

4.3 SHACL

As mentioned, SHACL is a query language used to check and describe RDF graphs
according to conditions. SHACL form graphs work by validating an existing graph
against the conditions given and ultimately executing them as part of a commit()
transaction. To avoid problems, the best is to execute transactions one after another since
validation may not be performed correctly when two transactions are performed at once.
In these cases, data in the database may be validated, newly created forms updated, etc. If
some already created forms are updated, the transaction will not be executed if the data
entered is not correctly entered.

For this reason, validation is performed again to see if everything is written correctly.
If so, the commit will confirm the changes and enter the updated data in the database.
Writing commands and creating checks is done using features (sh: targetClass, sh:
targetNode, sh: path, etc.). A number of features can be used, but it has to be kept in
mind that many of them are not implemented. In the following example, it can be seen
how validation is done as the most important part of the SHACL language. If there are
nodes with properties that belong to them, it can use SHACL to check if the property

 268 M. Cerjan et al.

belongs to the requested node. The following examples can show how validity works
(Rdf4j, 2021).

ex: CourseShape

a sh: NodeShape;

sh: targetClass ex: College;

sh: property [

sh: path ex: ects;

sh: datatype xsd: integer;

]

A college-type node and the corresponding object ECTS are considered in the proposed
example. To get some initial data, first, the commands are entered under number 1, and to
save the data in the database with the help of a transaction, there is the need to enter what
is below number 2. What is in the background writing these the command actually serves
to check whether the ex: ects is of type ex: Course and whether it may already be stored
in the database as ex: Course.

sh: targetClass ex: College

sh: path ex: ects ‘1’

4.4 Shapes

To verify and enforce data restrictions inside the graph, SHACL can be implemented in
Neo4j, a well-known graph database. SHACL shapes are node structures and property
restrictions that the graph’s data must follow. With nodes denoting resources and
relationships denoting connections between them, the property graph model of Neo4j and
SHACL are well matched. When implementing SHACL in Neo4j, users always start by
creating a collection of SHACL shapes using the SHACL expressions and defining the
node types, property requirements, cardinality restrictions, and validation requirements.
These shapes may be saved as specialised nodes in the graph or as SHACL-specific
nodes or characteristics.

The SHACL documentation distinguishes between two categories of shapes:

• Node shape – denotes a shape that is not a component of the triple with the predicate
sh:paths. The node shape should be specified as a SHACL instance of
sh:NodeShape. They do not place as much emphasis on the node’s property values,
in contrast to property shapes, which do.

• Property shape – represents a form in the shapes graph that is a component of a triple
with the predicate sh:path. It is advised to declare the property shape as a SHACL
instance of the sh:PropertyShape class.

The constraint component parameters allow each shape to declare constraints. For
instance, the sh:MinCount parameter is declared by the sh:MinCountConstraint

 Implementing domains in Neo4j 269

Component component to signify the need for a node to have a minimal quantity of
values for a particular attribute.

Specific components specify only one parameter. As an illustration,
sh:ClassConstraintComponent only has one parameter – sh:class. Each value of these
parameters is defined as a separate constraint, and they can be utilised more than once in
a single shape. Such a statement is interpreted as a conjunction, meaning that all
limitations are observed (W3C, 2017). All examples are available on W3C official site
listed in the literature.

ex:TestShape

 a sh:NodeShape ;

 sh:property [

 sh:path ex:customer ;

 sh:class ex:Customer ;

 sh:class ex:Person ;

].

According to the example, the ex:customer property values must be SHACL instances of
both ex:Customer and ex:Person.

The following steps can be taken to define constraints using various property shapes:

ex:MultiplePatternsShape

 a sh:NodeShape ;

 sh:property [

 sh:path ex:name ;

 sh:pattern ‘^Start’ ;

 sh:flags ‘i’ ;

];

 sh:property [

 sh:path ex:name ;

 sh:pattern ‘End$’ ;

].

For each form, a severity parameter can also be defined. Violation is the present value for
severity.

Three levels of severity exist:

• Info – non-critical and shows an information message.

• Caution – non-critical and shows a warning.

• Infraction – imperative.

 270 M. Cerjan et al.

By setting sh:deactivated to true or false, every shape can be made inactive.
The following list presents all constraint components that can be set in SHACL

shapes:

• Non-validating property shape characteristics
1 sh:name, sh:description, sh:order, sh:group and sh:defaultValue

• Value type constraint components
1 sh:class, sh:datatype and sh:nodeKind

• Cardinality constraint components
1 sh:minCount and sh:maxCount

• Value range constraint components
1 sh:minExclusive, sh:minInclusive, sh:maxExclusive and sh:maxInclusive

• String-based constraint components
1 sh:minLength, sh:maxLength, sh:pattern, sh:languageIn and sh:uniqueLang

• Property pair constraint components
1 sh:equals, sh:disjoint, sh:lessThan and sh:lessThanOrEquals

• Logical constraint components
1 sh:not, sh:and, sh:or and sh:xone

• Shape-based constraint components
1 sh:node, sh:property, sh:qualifiedValueShape, sh:qualifiedMinCount and

sh:qualifiedMaxCount

• Other constraint components.
1 sh:closed, sh:ignoredProperties, sh:hasValue and sh:in

In Neo4j, every option is easily accessible. It is important to remember that components
of the ‘property pair constraint’ and ‘other constraint components’ may require some
external tools or custom processes for complete implementation.

5 Domains

Several limitations can be observed looking at relational databases and different database
management systems (DBMSs) that seek to preserve data integrity. Restrictions can be
placed over the entire database or over only certain parts such as tables or columns. Each
constraint can be seen as a criterion that must be met for data entry into the database to
succeed. For instance, if the defined rules are not followed, enrolment in the Database
course will not be possible. Some of the existing and very well-known limitations that are
constantly encountered in general are (Carić and Buntić, 2015):

• Primary key – a unique identifier of each record, where the primary key can have
one or more attributes that have unique values.

• Foreign key – needed to be able to connect tables in the right way.

 Implementing domains in Neo4j 271

• Not null or null – to determine whether the data is required for entry or not.

• Unique – a constraint that determines the uniqueness of the data, which means that it
will not be possible for an attribute to have a repeated value.

• Check/between – implies a range of values that an attribute may have, e.g., ECTS
between numbers 1 and 8.

• Default – the value will be assumed an initial value by applying this constraint.

• References – used to merge tables where the name of the table and the attribute are
specified.

On the other hand, there are GDBMSs such as Neo4j where only some limitations are
available. When creating a database, nodes must exist. Each node must have its label
(name) that must be unique in order to be able to distinguish them. Each node has
assigned properties and values that belong to it. When nodes are created, connections
must be established between them. A node cannot be created without any properties or if
the property value variants are not unique. Deleting the required properties will
automatically result in an error. All the limitations that must be adhered to when working
with graph databases will now be explained in more detail. The limitations currently
available in Neo4j are as follows (Neo4j, 2021b):

• Node unique property constraint – nodes can have unique tag property values, and if
there is a need for multiple property values in a single node to which this constraint
should be placed, then this combination of values must also be unique.

• Restriction on the existence of node properties – each node must have properties
with values that belong to a particular label. When we want to create a new node for
a label and omit the property, it will report an error. Queries that are used to create
new nodes and some specific labels without entering the type of a property will also
fail and report an error.

• Restriction on the existence of a property connection - this restriction serves to
always merge nodes over the same properties.

• Node (key) limit – the key is placed in each label with certain properties. The values
contained within this property must be unique.

One of the most interesting limitations is the creation of domains that are still unavailable
in graph databases. To begin with, the creation of domains in PostgreSQL is explained
(PostgreSQL, 2021) as one of the relational DBMSs that can create them. This paper
aims to implement a similar way of creating domains in graph databases in the Neo4j
system. In the PostgreSQL system, there is the possibility of creating new domains by
using the CREATE DOMAIN command, which is ultimately a property, and in
accordance with the SQL standard. As a result of creating a domain, a new type of data is
generated, which will already contain some built-in restrictions that will have to be
respected when entering data. Each domain that is created must have its unique name
among the variants that are within its scheme. Each domain name must be assigned to a
specific type of data that is required. In the example of this paper, when talking about
ECTS points assigned to each course, it is necessary to have an integer data type, so the
domain would be called ECTS and would be displayed as a numeric value. For example,

 272 M. Cerjan et al.

suppose one can have a personal identification number (PIN) in several different tables
instead of defining a constraint in each table. In that case, one can create a domain that
will have a predefined constraint within it. So, in detail, when assigning a data type, a
PIN domain will be included as a type and skip writing restrictions. This is very handy in
databases with large amounts of data since attributes with the same types and constraints
are repeated in multiple tables.

Restrictions that are required must be placed after the name and type of data. Some of
the restrictions that can be used are NOT NULL, NULL and CHECK. In this case, a
CHECK is needed since it is the objective to check if the user entered values in the ECTS
field are between 1 and 8, and for this reason, it is placed BETWEEN 1 AND 8. The
known constraint must have its name, and if not defined, the system will automatically
assign a name. After creating a restricted domain, a table must be created in which that
domain is used.

CREATE DOMAIN name [AS] data_type

[COLLATE collation]

[DEFAULT expression]

[constraint [...]]

Where are the restrictions:

[CONSTRAINT constraint_name]

(NOT NULL | NULL | CHECK (expression)}

In this case, the following constraint in PostgreSQL would be written.

CREATE DOMAIN type_ects AS INTEGER

CHECK (VALUE BETWEEN 1 AND 8)

After the domain is created, the course table is also created.

CREATE TABLE COURSES (

id integer primary key not null unique,

Name text NOT NULL,

ect type_ects NOT NULL

);

The implementation of the Neo4j extension will be presented below.

6 Domain constraint

Working with databases, database practitioners quickly realise that constraints are
significant for creating a good and functional database. Many systems have various
limitations that can be applied, but Neo4j is not one of them. The only available

 Implementing domains in Neo4j 273

constraints that can be currently used are uniqueness, node key constraints, and exist.
Something that could certainly be listed as a weakness of this system is that too few
limitations are implemented in such a large and developed system. For this reason,
various solutions have been sought regarding how to set a limit on a property in order to
limit inputs.

We propose to create a domain constraint defined as a SHACL shape with the
following mandatory properties:

• Shape name – unique string under which the constraint will be saved in the database
(e.g., CourseShape, PersonShape, AccountShape).

• Node label – referring to the node label in the database on which the constraint is
imposed, (e.g., nodes of type course, person, account).

• Property name – denotes the property name of a given node type which value
requires checking, (e.g., course ects, person social security number (SSN), bank
account balance or account type).

• Property constraint – defines restrictions on the value of a given property in the form
<constraint type>:<allowed values>. Some possible property constraint types are:
a Sh:has value – property value must be among the allowed values (e.g., course

name must be databases, account type must be savings).
b Sh:in – property value must be a member of a pre-defined array of allowed

values (e.g., course name must be databases or programming, person gender can
be male, female or other).

c Sh:pattern – property value must match a given regular expression (e.g., course
name must start with ‘databases’, person SSN must include precisely ten digits).

• Minimum and maximum cardinality – define if the property is mandatory or optional
(for the sh:minCount constraint, this can be 0, 1 or more) and the maximum number
of values entered for a given property (1 or more), (e.g., person SSN must have
sh:minCount and sh:maxCount both set to 1, as it is a mandatory attribute and a
person is allowed to have only one SSN).

• Data type – restricts the allowed data type for property values to an instance of RDF
data types, (e.g., xsd:string for account type or person gender, xsd:integer for person
SSN). This could be extended to multiple value types allowed by using the
sh:datatypeIn SHACL constraint.

Therefore, the general syntax representing the domain constraint rule defined in SHACL
can be summarised as follows:

neo4j: <shape_name> a sh: NodeShape;

sh: targetClass neo4j: <node_label>;

sh: property [

sh: path neo4j: <property_name>;

sh:<property_constraint>;

sh: minCount <min_cardinality>;

 274 M. Cerjan et al.

sh: maxCount <max_cardinality>;

sh: datatype xsd:<data_type>;

]

Based on this definition, it can be observed that the definition setting restrictions on
multiple properties of the same type of node simultaneously. In general, we can specify
the allowed data types, cardinality and various kinds of values allowed for a given
property. In addition to defining specific values and value ranges for property values with
sh:hasValue, sh:in and sh:pattern SHACL operators, it is also possible to combine such
value patterns with sh:and and sh:or operators to gain a more detailed specification of the
allowed values. For instance, we could create a domain constraint for nodes labelled
Person, which sets a person’s firstname property to be mandatory, unique and a string,
and the SSN property a ten-digit mandatory and unique number, we would specify a
domain constraint as a combination of several restrictions with the following SHACL
syntax:

neo4j: PersonShape a sh: NodeShape;

sh: targetClass neo4j: Person;

sh: and (

 [sh: property [

 sh: path neo4j: firstname;

 sh: minCount 1;

 sh: maxCount 1;

 sh: datatype xsd:string;

]

]

 [sh: property [

 sh: path neo4j: ssn;

 sh: minCount 1;

 sh: maxCount 1;

 sh: pattern ‘^ \d{10} $’;

 sh: datatype xsd:integer;

]

]

).

Our current implementation of SHACL-based domain constraints enables users to create
restrictions on node properties. These restrictions correspond to the fundamental

 Implementing domains in Neo4j 275

definition of domain constraints (property type, minimum and maximum cardinality, and
the range of acceptable property values), as outlined in Section 5. Thus, our proposed
approach can be employed in a GDBMS environment, which supports a semantics plugin
able to run SHACL queries (e.g., Neosemantics in Neo4j). Then, the user can use the
SHACL syntax presented above to create a domain constraint on nodes in the database.
Once created, the constraint rule will be evaluated during the insertions or updates of
node properties specified by the constraint. The list of current restrictions will be
extended to include other restrictions supported by the SHACL syntax in our future
implementations. Furthermore, the SHACL domain definition syntax does not
incorporate any mechanisms to verify the accuracy of constraint properties, given that the
underlying W3C standard does not support recursion or other validation methods. This
leads to the potential for users to define domains in which allowed property values could
potentially map to empty sets (for instance, allowed values specified as an intersection
between two separate ranges). This issue could be addressed by potentially introducing
an additional syntax validation step during the domain creation process in Neo4j.

As the next step, to implement domain constraints in Neo4j, we propose to create
restrictions using APOC triggers and the Neosemantics (n10s) plugin with SHACL
check, which is the standard W3C language for writing restrictions. The first method is
implemented entirely within Neo4j, while the second method is implemented on an
application level by using the Java programming language, where it is checked whether
the user has entered a correct value according to the created constraint. In Neo4j, we
decided to make one SHAPE which was named after the type of node, namely the
CourseShape. In this case, the CourseShape represents the domain that the work requires.

The graph database created for this example will be shown below, and the SHACL
syntax for creating the domain constraint will be explained, followed by a detailed
presentation of the implementation in Neo4j and the Java programming language.

7 Validation

7.1 Creating a database for validation purposes

This section will describe how to create a database in the Neo4j system and how to
implement a sample domain constraint. The idea is to create a domain that would limit
the entry of ECTS points for a given course to the 1–8 value range. Any other value
entered will result in an error. Prior to development, a data model was designed and
developed for the sample exams database (Figure 4). The sample graph model includes
exams, participants taking the exam and their exam grades, as well as other information
required to schedule an exam deadline (lecture hall and professor).

The data model can be represented as follows:

• Each student takes an exam from a course.

• This course is taught by a professor who is also the examiner.

• Each exam has a scheduled deadline and a hall where it takes place;

Each entity represents one type of node to be created, and each node has properties that
describe it and by which edges are ultimately established. In total, there are 55 nodes in
the database and 74 edges between these nodes. The ‘MATCH p = (n)-[e]-() RETURN p’

 276 M. Cerjan et al.

command gives the final state of the database, i.e., nodes and edges between nodes.
Nodes and edges were created in the standard way, as explained in the following section.
To make the edges as visible as possible, only a small part of the entire created database
is presented, as can be seen in the following figure.

Figure 4 Data model for the database ‘exams’ (see online version for colours)

7.2 Creating a domain constraint

According to the Neo4j documentation (Neo4j, 2020), the first thing to do is to copy the
jar file to the ‘neo_home/plugins’ DBMS directory. Once the jar file has been placed in
the directory for the sample database called ‘foi’, one must go to the settings to change
the configurations.

The ‘neo_home/conf/neo4j.conf’ configurations file must be changed with the
following configuration added:

• dbms.unmanaged_extension_classes= n10s.endpoint=/rdf

• dbms.security.procedures.unrestricted=apoc.*

• apoc.trigger.enabled=true.

When the plugin is added, the server must be restarted to verify that the installation was
successful. The list of procedures must contain those starting with n10s, which can be
seen in Figure 8.

Verification is done via the following query:

call dbms.procedures ()

 Implementing domains in Neo4j 277

Figure 5 Overview of one part of the exam database (see online version for colours)

Figure 6 Inserting a jar file (see online version for colours)

 278 M. Cerjan et al.

Figure 7 Configurations modification (see online version for colours)

Figure 8 List of procedures registered for the sample database (see online version for colours)

After checking, it is necessary to initialise the configuration with the following query:

CALL n10s.graphconfig.init ({handleVocabUris: ‘IGNORE’});

If there are nodes, this step is skipped, but if not, courses with their corresponding
properties must be created. In the proposed case, it would be:

CREATE (Databases: Course {id: 1, title: ‘Databases’, ects: 5})

The next step to create a constraint is to create a schema. The database schema is tailored
to the needs of each system. In our case, the schema will include a check on the value of
the ects property entered by the user when creating a new course node. This custom
schema was created directly in Neo4j, and it looks like this:

call n10s.validation.shacl.import.inline (‘

@prefix neo4j: <neo4j: //graph.schema#>.

@prefix sh: <http://www.w3.org/ns/shacl#>.

 Implementing domains in Neo4j 279

neo4j: CourseShape a sh: NodeShape;

sh: targetClass neo4j: Course;

sh: property [

sh: path neo4j: ects;

sh: pattern ‘^ ([1-8]) $’;

sh: maxCount 1;

sh: datatype xsd: integer;

];

.

‘,’ Turtle ‘);

A SHACL constraint has been added to Neo4j. First, it was necessary to define the name
of the shape that was created (e.g., shape Course). A constraint must then be placed on
the node to which this constraint is applied. In this case, it is the course node. When a
node is defined, it is necessary to specify the property to which the constraint is assigned,
which is ects in this case. Once everything is defined, boundaries can be set.

Figure 9 SHACL constraint view (see online version for colours)

The condition is set that the entered value of ECTS must be between 1 and 8 (therefore,
the user must not enter a value less than 1 or greater than 8). The next condition that must
be met is the type of data that must be an integer (sh: datatype xsd: integer), and that only
one number (sh: maxCount: 1) can be entered. The string pattern constraint was applied
in our example to restrict the use of property ects. Value range constraints and property
pair restrictions can also be employed if ECTS were an integer. Parameters and defined
conditions can be seen in Figure 9.

Afterwards, the active shapes are checked using the command:

call n10s.validation.shacl.listShapes ()

The command will check and show all restrictions currently active in the database.
Once it is confirmed that the limits exist, it must be checked that all values are

correctly entered. The entered values are checked as follows:

 280 M. Cerjan et al.

call n10s.validation.shacl.validate () yield focusNode, nodeType, propertyShape,
offendingValue, resultPath, severity

If an ECTS value within the database is greater than 8 or less than 1, it will return those
records to us. An example can be seen in Figure 10.

Figure 10 Checking for incorrect values (see online version for colours)

Figure 11 Display of correctly entered values (see online version for colours)

Figure 12 Creating a trigger (see online version for colours)

If all values are entered correctly, the following window will be displayed (Figure 11).

 Implementing domains in Neo4j 281

To prevent any errors and save all correct data to the database, one trigger was
created that will be triggered before the transaction, regardless of the transaction being
executed. The created trigger is defined in the following way:

CALL apoc.trigger.add (‘shacl-validate’, ‘call n10s.validation.shacl.validate
Transaction ($ createdNodes, $ createdRelationships, $ assignedLabels, $
removedLabels, $ assignedNodeProperties, $ removedNodeProperties, $
deletedRodelations, $ deletedRelationships, $ deletedNodes) (phase: ‘before’})

Each trigger created can be paused, if necessary, which we can see in Figure 12.

Figure 13 Incorrectly entered ECTS property value (see online version for colours)

Figure 14 Correctly entered ECTS property value (see online version for colours)

Now, an attempt will be made to add a new course. The course will be called data
warehouses and business intelligence and is the first example where the ECTS property
will have a value of 9. Given that the entered value does not meet the limitations imposed
by the domain constraint, Neo4j returns the following error:

The same course will now be entered, but value ‘5’ will be added to the value of the
ECTS, resulting in a successfully inserted node (Figure 14).

It can be seen that if an incorrect value is entered, it will immediately throw out the
error and will not allow the incorrect value to be saved in the database. Still, if a value is
entered that meets the permitted values; it will execute the command and save the data to
the database.

Besides the database mechanisms, we can also use the Java programming language to
enforce domains. In this case, the Neo4j driver and Maven were used for the
implementation. Maven is actually an environment in which various projects are
developed. It simplifies the construction process, as it is used to load libraries and add
them to the application. The first step is to make a connection to the prepared sample
database. Once the connection is established, an attempt is made to create a new node.

 282 M. Cerjan et al.

For this, it was necessary to create a method createCourseCheckECTS(), where two
parameters were passed (course name and ECTS).

Figure 15 Creating a method in the Java programming language (see online version for colours)

Figure 16 Saving courses to a database (see online version for colours)

Figure 17 Inability to save courses to the database (see online version for colours)

Before saving it to the database, it is checked whether ECTS are in the correct value
range.

 Implementing domains in Neo4j 283

If ECTS is in the correct value range, it will return ‘You have successfully created a
new node: Databases 1, from node 22’ as shown in Figure 16.

If an incorrect ECTS value is entered, i.e., a value is less than 1 or greater than 8, the
error ‘Error, is not in 1–8’ will be returned, which can be seen in Figure 17.

8 Discussion

As a result of our research, it is clear that developing and integrating restrictions that may
not yet exist in graph databases but are already supported in SQL databases is a viable
area for additional study. This creates interesting opportunities for growing the landscape
of constraints and enhancing the capabilities of our SHACL-based strategy.

There is space for improvement by adding additional constraints that are suited to
certain nodes in addition to the limitations we have previously mentioned. We could
expand this approach even though we now enforce a constraint on the ECTS attribute
within the course node. We might impose constraints on the PIN property for students
and instructors, requiring that it contain precisely 11 characters. Similar constraints might
be put in place to prohibit users from providing numbers lower than 1 or more than 5
when specifying a year of study. This adaptability shows how our method may be able to
handle various constraints conditions.

One exciting prospect for future use is the provision of domain limits through a
user-friendly graphical interface. While this goal still informs our work as it develops,
our present priorities are the conceptualisation, development, and validation of our
method for building domains in the Neo4j graph database.

We highlight the dynamic nature of our SHACL implementation and demonstrate its
flexibility to a wide range of real-world circumstances by recognising the capacity to add
a variety of limitations beyond our initial scope. Because of its versatility, data validation
has the potential to become more thorough and resilient, improving the precision and
quality of graph data representation.

9 Conclusions

Graph databases are a very effective instrument/method for accessing and managing
interconnected data. They become great solutions in many contemporary systems (like
social networks) because of their capability to graphically represent complicated
relationships between data and the potential to execute queries over big data sets at high
speed. The ability to swiftly run queries and see data relationships is one of the critical
advantages of graph databases over relational databases. Graph traversal allows for the
effective querying of nodes and edges, allowing for the execution of complex queries,
which may involve several joins in relational databases. A flexible schema is
undoubtedly another crucial component of graph databases. One of the key distinctions
between them and relational databases is their flexibility. Namely, users can continuously
improve and modify their database models to suit their needs without wasting resources
on costly schema migrations.

 284 M. Cerjan et al.

Graph databases do, however, have some limitations. The limited amount of
constraints that can be employed is unquestionably one of the main drawbacks of these
databases.

The primary focus of this study is on graph database constraints that still need to be
met. It was suggested to use the so-called domains to impose new constraints. To avoid
data redundancy, numerous constraints are specifically added at once while building a
domain. In our example, the newly established domain had three constraints (data types,
ranges, and counts). Our research is innovative, and the suggested implementation is
practical and straightforward to apply if we follow the procedures outlined in the earlier
chapters. A method involving the usage of APOC triggers, Neosemantics (n10s) plugin
and SHACL verification were utilised to construct a domain in Neo4j. Graphs can be
validated using SHACL following predetermined criteria that are met, and after that, they
can be executed as part of the transaction commit. We gained the native ability to specify
various constraints with the domain creation directly within Neo4j. APOC triggers were
utilised to increase the implementation’s safety and lower the likelihood of mistakes
when communicating with the database. More specifically, we obtained an automatic
check of the domain-defined limitations by using triggers that are triggered in the phase
before the transaction’s actual commit. The user needs to enter data into the database
after the domain, SHACL validation, and APOC trigger have been correctly defined. All
checks will be carried out automatically before the transaction is committed. In addition
to the native implementation, it is demonstrated how the Java programming language can
be used to implement the constraints outlined in the paper. Although constraints in graph
databases are a very effective and significant element for maintaining data consistency,
their implementation is very challenging. The methods for constructing constraints given
in this study can serve as a foundation for future graph database research, which may
even propose a specific syntax for creating domains in Neo4j that can be used in later
system iterations. In the end, every additional constraint that is investigated will result in
a rise in the stability and dependability of graph databases.

Acknowledgements

This work was funded by the Slovenian Research Agency (Research Core Funding
No. P2-0057).

References
Carić, T. and Buntić, M. (2015) Uvod u relacijske baze podataka.
Chen, J., Song, Q., Zhao, C. and Li, Z. (2020) ‘Graph database and relational database performance

comparison on a transportation network’, in Communications in Computer and Information
Science, (Vol. 1244 CCIS, pp.407–418), Springer, https://doi.org/10.1007/978-981-15-6634-
9_37.

Domdouzis, K., Lake, P. and Crowther, P. (2021) Concise Guide to Databases: A Practical
Introduction, Springer Nature.

Fošner, M. and Kramberger, T. (2009) ‘Teorija grafova i logistika’, Math.e, Vol. 14, No. 1 [online]
https://hrcak.srce.hr/41959 (accessed 6 November 2022).

 Implementing domains in Neo4j 285

Maleković, M., Rabuzin, K. and Šestak, M. (2016) ‘Graph databases – are they really so new’,
International Journal of Advances in Science Engineering and Technology, Vol. 4, No. 4,
pp.8–12 [online] https://urn.nsk.hr/urn:nbn:hr:211:997990 (accessed 6 November 2022).

Miller, J.J. (2013) ‘Graph database applications and concepts with Neo4j’, SAIS 2013 Proceedings,
p.24 [online] https://aisel.aisnet.org/sais2013/24(accessed 6 November 2022).

Neo4j (2020) Validating Neo4j Graphs against SHACL [online] https://neo4j.com/labs/
neosemantics/4.0/validation/ (accessed 5 November 2022).

Neo4j (2021a) Constraints [online] https://neo4j.com/docs/cypher-manual/current/constraints/
(accessed 5 November 2022).

Neo4j (2021b) Syntax [online] https://neo4j.com/docs/cypher-manual/current/syntax/ (accessed
7 November 2022).

Olivera, L. (2019) Everything you Need to Know about NoSQL [online]
https://dev.to/lmolivera/everything-you-need-to-know-about-nosql-databases-3o3h (accessed
6 November 2022).

PostgreSQL (2021) Create Domain [online] https://www.postgresql.org/docs/9.5/sql-
createdomain.html (accessed 6 November 2022).

Rabuzin, K. and Šestak, M. (2019) ‘Creating triggers with trigger-by-example in graph databases’,
in Proceedings of the 8th International Conference on Data Science, Technology and
Applications – DATA, ISBN: 978-989-758-377-3; ISSN: 2184-285X, pp.137–144, DOI:
10.5220/0007829601370144.

Rabuzin, K., Konecki, M. and Šestak, M. (2016a) ‘Implementing CHECK integrity constraint in
graph databases’, in Suresh, P. (Ed.), Proceedings of the 82nd IIER International Conference,
Berlin.

Rabuzin, K., Šestak, M. and Konecki, M. (2016c) ‘Implementing UNIQUE integrity constraint in
graph databases’, in Westphall, C., Nygard, K. and Ravve, E. (Eds.), Proceedings of The
Eleventh International Multi-Conference on Computing in the Global Information
Technology.

Rdf4j (2021) Validation With SHACL [online] https://rdf4j.org/documentation/programming/shacl/
(accessed 6 November 2022).

Robinson, I., Webber, J. and Eifrem, E. (2015) Graph Databases: New Opportunities for
Connected Data, O’Reilly Media, Inc.

Rohit, K. (2015) Graph Databases: A Survey, Computer Science & Engineering, Shiv Nadar
University Greater Noida, India.

Sambolek, S. (2015) NoSQL: pregledni rad, Srednja škola Tina Ujevića Kutina, Kutina.
Stojanović, A. (2016) Osvrt na NoSQL baze podataka – četiri osnovne tehnologije,

Polytechnic&Design, Tehničko veleučilište Zagreb, članak, Vol. 4, No. 1, Zagreb.
W3C (2017) Shapes Constraint Language (SHACL) [online] from https://www.w3.org/TR/shacl/

(accessed 25 May 2022).

