
 
International Journal of Advanced Mechatronic Systems
 
ISSN online: 1756-8420 - ISSN print: 1756-8412
https://www.inderscience.com/ijamechs

 
Finding the optimal path in a 3D environment with predefined
obstacles
 
Gabriel Mansour, Ilias Chouridis, Apostolos Tsagaris
 
DOI: 10.1504/IJAMECHS.2024.10063118
 
Article History:
Received: 04 June 2023
Last revised: 06 November 2023
Accepted: 04 December 2023
Published online: 25 March 2024

Powered by TCPDF (www.tcpdf.org)

Copyright © 2024 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijamechs
https://dx.doi.org/10.1504/IJAMECHS.2024.10063118
http://www.tcpdf.org


50 Int. J. Advanced Mechatronic Systems, Vol. 11, No. 1, 2024 

Copyright © 2024 Inderscience Enterprises Ltd. 

Finding the optimal path in a 3D environment with 
predefined obstacles 

Gabriel Mansour 
Department of Design and Structures, 
Polytechnic School of the Aristotle University of Thessaloniki, 
Thessaloniki, Greece 
Email: mansour@auth.gr 

Ilias Chouridis* and Apostolos Tsagaris 
Department of Industrial Engineering and Management, 
International Hellenic University, 
Thessaloniki, Greece 
Email: iliachour@iem.ihu.gr 
Email: tsagaris@ihu.gr 
*Corresponding author 

Abstract: Robotics has substantially improved people’s daily lives, especially industrial 
production and manufacturing. An offline programming method is proposed for robot’s path 
planning in a 3D environment with obstacles. The purpose of this method is to find the shortest 
3D path between two or more points avoiding obstacles. Two types of paths are created: in the 
first type, the shortest path between the points is created based on their input order; in the second 
type, the shortest path that connects the input points is formed. It is accomplished by using a 
hybrid algorithm that combines the ant colony optimisation algorithm with a genetic algorithm 
called the roulette wheel method. The proposed method takes into consideration the robot’s 
capabilities and the variability of different environments, so that it can be effectively applied to a 
multitude of cases. The method has been tested and applied to real world industrial robots 
successfully. 
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1 Introduction 
Robotics has benefited industrial manufacturing and has 
also proven able to execute dangerous and repetitive 
assignments smoothly. The industrial applications of 
robotics have been developing since 1960. The robots 
operated in fixed, unchangeable conditions, which was an 
especially important achievement for that time because they 
could successfully operate with great precision in 
unchangeable environments. Nowadays, as Malone et al. 
(2020) report, robots are becoming more adept at operating 
in unknown and human-centred environments thanks to 
sophisticated software and algorithms. 

In robotics, the role of path planning is crucial. It is 
essential to find a collision free path so that the robot can 
navigate from a starting point to an end point without being 
damaged by obstacles. Usually, as Zafara and Mohanta 
(2018) mention, there are several paths, that meet the above 
goal, therefore some additional criteria are taking into 
consideration in the path planning process. Some of these 
may be the shortest distance path, the path’s smoothness, 
the minimum energy consumption, or a combination of the 
above. The shortest distance with the least amount of time is 
the most frequently used criterion. The path planning 
methods are divided into two major categories, the classical 
approach and the heuristic approach. 

Patle et al. (2019) pointed out that classical approaches 
were initially quite popular, because artificial intelligence 
methods had not been developed in those days. It has been 
noted that when a task is performed using a classical 
approach, either a result will be obtained or it will be 
confirmed that there is no result. The main downside of 
classical approaches is the increased computational cost and 
the inability to acclimate to environmental unpredictability. 
Therefore, in real-time applications, they are less adopted. 

Mac et al. (2016) utterance that classical approaches 
tend to be trapped in some local minimal and fail to find the 
optimal solution, especially when obstacles are included. 
Heuristic approaches are used to overcome classical 
approaches weaknesses. The heuristic approaches adopt 
artificial intelligence techniques to solve the problem. 

Due to the technological advances that have been made 
in the fields of mechatronics and computers, complex 
algorithms can be developed so that machines can adapt to a 
changeable environment. Up until now, industrial 
production was established based on the machine’s 
capabilities, it was adjusted to the environment and allowed 
minimal variation. Nowadays, Andreu-Perez et al. (2017) 
alleged that the production can be integrated in an 
environment that already exists thanks to artificial 
intelligence’s convergence with the robotics. The 
integration of artificial intelligence with robotics is used for 
path planning optimisation. 

Floreano and Wood (2015) reviewed the capabilities of 
flying robots and the importance of path planning in their 
operations. Santos et al. (2020) studied the application of 
path planning to ground robots in agriculture, taking into 
consideration the constraints imposed by the robot 
composition or the type of terrain. Ma et al. (2019) 

researched path planning in autonomous underwater robots 
by using ant colony optimisation algorithm for finding the 
optimal path. Their model accumulates the path’s length, 
the energy consumption, the collision risk and the steering 
window constraint. Among heuristic-based methods, there 
is a method called ant colony optimisation. Ant colony 
optimisation is extensively used for solving path planning 
problems. Ant colonies are highly organised, the ants 
interact with each other by using pheromones. Several 
optimisation problems can be solved by simulating their 
behaviour. After the first appearance of ant colonies 
optimisation algorithms were considerably developed by the 
researchers. Nonetheless, Ostfeld (2011) noticed that high 
computational power is required and sometimes are 
ineffective. 

The real ants are navigating the environment by 
detecting the higher concentration of pheromone. The 
pheromone concentration is increased by other ants that 
deposited it as they wander in the environment. The 
pheromone deposition is continuous. In ant colony 
optimisation algorithm, Dorigo et al. (2006) proposed that a 
group of artificial ants build solutions to the optimised 
problem. They cooperate with each other to find the optimal 
solution by changing the pheromone value, like the real 
ants. 

The travel salesman problem (TSP) is a famous  
non-deterministic polynomial (NP) time hard problem. The 
TSP consists of a known set of cities and the distances 
between a pair of cities. The salesman must visit each city 
once and then return to the starting city at the end by 
travelling the shortest distance. Li et al. (2008) mentioned 
that ant colony optimisation was mainly used to solve this 
problem. 

As Melanie (1990) reported, John Holland contrived the 
genetic algorithms in the ‘60s. Holland with his students 
and colleagues at Michigan's university expanded the 
genetic algorithms. Holland’s original objective was to 
study how adaptation happens in nature and to develop 
ways to use the same mechanisms in computer systems as 
opposed to evolution strategies and evolutionary 
programming that use algorithms to solve a specific 
problem. 

Kwaśniewski and Kwaśniewski (2018) used genetic 
algorithms for finding the path on a 2D map with obstacles. 
Demir et al. (2021) developed a time optimisation model for 
path planning in an RRR robot by using genetic algorithms. 
Zhang et al. (2020) used an improved A* algorithm for path 
planning in a 2D environment, applying it to pathfinding in 
a game’s map. Dai et al. (2019) proposed an algorithm that 
used the characteristics of the A* algorithm and the  
max-min ant system for path planning in a 2D environment. 
Brand et al. (2010) investigate the application of the ant 
colony optimisation algorithm to robots’ path planning in a 
2D dynamic environment. Reshamwala and Vinchurkar 
(2013) reviewed the variations of the ant colony 
optimisation algorithm in robots’ path planning and 
compared three of the investigated methods. Zhang et al. 
(2021) presented a hybrid approach by combining the 
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enhanced ant colony system with a local optimisation 
algorithm for mobile robots’ path planning. Chaari et al. 
(2012) proposed a hybrid algorithm for a 2D robot’s path 
planning by combining an improved ant colony optimisation 
method with a genetic algorithm. Ravankar et al. (2017) 
proposed a knowledge sharing mechanism for multiple 
robots to achieve efficient path planning in a dynamic 3D 
environment. Liu et al. (2022) proposed an algorithm for 
optimal mission assignment and path planning in a 3D 
environment for multiple UAVs by using the adaptive 
genetic algorithm and the improved artificial bee colony 
method. Sanchez-Lopez et al. (2019) proposed a real-time 
path planning method for aerial robots in a complex, 
dynamic environment with obstacles. Wang et al. (2022) 
used a topological algorithm for multi-robot path planning 
in a complex 3D environment, aiming to reduce the robot’s 
congestion in the environment while avoiding 
communication and coordination between robots. 

In the real world, robots are operating in a 3D 
environment with several obstacles and challenges. A vital 
issue in robot’s navigation and efficiency is path planning. 
An offline programming method for effective path planning 
of robot’s end effectors and mechatronics systems is 
proposed in this paper. The method’s purpose is to find the 
shortest collision-free path between two or more locations 
in a 3D environment with predetermined obstacles, similar 
to the real world. 

There are two types of paths that the algorithm can 
generate. In the first type of path, also called the manual 
option, the algorithm searches for the shortest route that 
connects two or more points located anywhere in a 3D 
environment. The formed path is determined by the input 
order of the points. In the second type of path, also called 
the auto option, the algorithm finds the optimal path 
connecting a set of points regardless of their input order. In 
this manner, a complicated route with multiple target points 
can be optimised. As a result, the algorithm can optimise the 
path and sequence in which the robotic arm executes 
multiple assignments. 

A hybrid algorithm that combines the ant colony 
optimisation algorithm with a genetic algorithm called the 
roulette wheel method is used to find the optimal path in a 
3D environment with several obstacles. The proposed 
method takes into account the movement capabilities of the 
industrial robot as well as the characteristics and uniqueness 
of its operational space. Furthermore, if the requested route 
is short, the algorithm discovers the ideal path in a few 
iterations. In case the requested path is more complicated, 
the algorithm needs more iteration to determine the optimal 
and fine tuned parameters required. 

Moreover, it is worth to mentioning that this method 
also contributes to the adaptation of a classical TSP solution 
to a more intricate and advanced 3D environment with 
obstacles and greater movement possibilities, suitable for 
real world applications. 

A variety of simulations and tests were performed to 
evaluate the results of the proposed method which was also 

applied in a real world scenario by using an industrial 
robotic arm. 

2 Proposed method 
The proposed method was developed using MATLAB 
R2016a by MathWorks. To facilitate data management and 
avoid repeated calculations, the program was divided into 
two main parts: the Pre-processor and the Solver. In the  
pre-processor, the 3D environment is modelled and some 
basic and immutable data from the solver are calculated. in 
the solver, based on pre-processors data and some extra 
parameters for the ant colony optimisation and roulette 
wheel methods, the shortest path is calculated in two 
different ways. In the first way, called manual, the shortest 
path that connects the points is calculated according to the 
order of their input. In the second option, called auto, the 
program calculates the shortest path connecting the input 
points. 

2.1 Pre-processor 

2.1.1 Environment modelling 
Industrial robotic arms, due to their flexibility, could be 
programmed to move their end effector in a three 
dimensional space. In order to find a path that corresponds 
to the real conditions and advantages of industrial robotic 
arms, instead of a 2D grid method, a 3D grid method was 
adopted. In the 3D grid method, the space is divided into 
several horizontal planes perpendicular to the Z axis. Each 
horizontal plane is divided into grids. 

First of all, an initial O-XYZ coordinate system is 
defined. Based on this system, the coordinates of operating 
space are defined. The operating space is a 3D rectangular 
prism, the sides OB, OD and OE are defined based on the 
real operation space’s dimensions. The definition of the 
point coordinates starts from the XOZ plane OBCD region 
and then continues across the Y-axis EFGHD region. 

Each side consists of a certain number of nodes n along 
the X-axis, l along the Z-axis and m along the Y-axis. The 
numbers n, l and m determine the mesh density of the 
corresponding axis. Node numbering starts from the OBCD 
plane along the OX axis, with Y and Z coordinates fixed. 
After defining the coordinates of the first line, the Z 
coordinate is changed and the same process is repeated until 
all the coordinates of the nodes on the OBCD plane are 
precisely defined. These coordinates are entered into a 2D 
matrix named nodes. The nodes matrix consists of n*l*m 
rows and 4 columns. In each row is registered the number 
on the node and its X, Y and Z coordinates. 

After creating the matrix of nodes, the matrix of 
elements of each smaller rectangular prism is created. Each 
3D rectangle prism consists of 12 elements. Elements are a 
sequence of connecting nodes. Nodes are joined in pairs. 
These sequences are entered into a 2D matrix called 
elements. The elements matrix consists of (n – 1) * (l – 1) * 
(m – 1) * 12 rows and 3 columns. The number of each 
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element is registered in the first column, followed by the 
number of the first node and then the number of the second 
node. The correspondence between the element and its 
nodes starts with the left and right edge rectangles. It starts 
from the lower right node and goes clockwise, as shown in  
Figure 2(b). After the elements of parallelograms are 
registered, the elements of the compounds are registered, 
starting clockwise from the bottom to the top. Table 1 
shows a transpose matrix example of Figure 2(a) elements 
registering, the different colours depict the different 
registering phases. The first row contains the number of 
each element, the second and third rows contain the number 
of the first and second element’s nodes, respectively. 

Figure 1 Path planning operating space (see online version  
for colours) 

 

Figure 2 (a) Numbering of nodes of a 3D rectangular prism  
(b) Clockwise nodes registering (see online version  
for colours) 

  
(a)   (b) 

Table 1 Transpose matrix of elements registering  
(see online version for colours) 

1 2 3 4 5 6 7 8 9 10 11 12 
1 2 8 7 25 26 32 31 1 2 8 7 
2 8 7 1 26 32 31 25 25 26 32 31 

After generating the 3D operating space, a set of movement 
points is created on which the robot can move. These points 
are located at the centre of gravity of each 3D rectangle 
prism and are defined by X, Y and Z coordinates. These 
points are directly related to the previous 3D modelling 
data. The method of their registration is the same as that of 
nodes. The number of points also represents the number of 
3D rectangle prisms. They are stored in a 2D matrix named 
nodes2. The nodes2 matrix consists of (n – 1) * (l – 1)  
* (m – 1) rows and 4 columns. Each row contains the 
number of movement points and their X, Y and Z 

coordinates. Figure 3 represents the plotting results of 
Movement points and the 3D operating space. 

Figure 3 3D operating space with movements points  
(see online version for colours) 

  

2.1.2 Navigation 
The robot can only move on the movements points, as a 
result, there are specific sequences of nearby points that can 
navigate from a definite position. Due to the fact that the 
process of finding the next feasible points from a current 
position is repeated several times in an ant colony 
optimisation algorithm, to avoid repeated calculation and 
calculation time waste, it is considered beneficial to create 
in advance a matrix that contains all the possible navigation 
choices for every movement point. The advantages of the 
robotic system are also taken into consideration in the 
possible choices. The first column of each row contains the 
number of the movement point at which the robot is located 
at a current time, then the numbers of all the next feasible 
points are registered in each column. During the algorithm’s 
operation time, the matrix row for the given position is 
recalled. 

The robot’s movement choices within its working space 
are divided into three main areas, depending on its 
movement ability at the surrounding points. In Figure 4, 
these three areas can be distinguished by their colour. The 
first one is on the left (grey), the second is in the middle 
(yellow) and the third is on the right (green). 

These three regions are subdivided according to the 
number of nearby movements points on the same horizontal 
plane. In Figures 4(a) and 4(b) for the left area, three 
individual cases can be distinguished, one for the top point 
with three possible movement’s points, one for the bottom 
with three possible movement’s points and one for the 
middle with five possible movement’s points. 

In Figures 4(c) and 4(d) for the left area, three individual 
cases can be distinguished, one for the top points with five 
possible movement’s points, one for the bottom with five 
possible movement’s points and one for the middle with 
eight possible movement’s points. 
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Figure 4 The three main movement’s areas, (a) movement 
points on the edge of the left region (b) movement 
points on the middle of the left region (c) movement 
points on the top and bottom of the middle region  
(d) movement points on the middle of the middle 
region (e) movement points on the edge of the right 
region (f) movement points on the middle of the right 
region (see online version for colours) 

  
(a)   (b) 

  
(c)   (d) 

  
(e)   (f) 

In Figures 4(e) and 4(f) for the left area, three individual 
cases can be distinguished, one for the top point with three 
possible movement’s points, one for the bottom with three 
possible movement’s points and one for the middle with 
five possible movement’s points. 

The industrial arm has a great degree of flexibility, in 
addition to the points shown in Figure 4, it can also move 
along the z-axis to the corresponding points of the planes 
above and below the reference plane, including the points 
above and below the current position point. These points are 
stored in a 2D matrix named mov. The mov matrix consists 
of (n – 1) * (l – 1) * (m – 1) rows and (8 + 1) * (l – 1) 
columns. For points where the number of allowed 
movement nodes is less than the number of columns, the 
remaining positions are filled with 0 until the row is 
completed. 

In every row, the first column contains the number of 
the movement point at which the robot is located at a 
current time, then the next feasible points are registered 
following a specific process. The registration starts on the 
reference plane and then expands along the Z-axis. Initially, 
the points that are perpendicular to the position point are 
recorded in a counter-clockwise direction, starting from the 
one below it, as shown in Figure 5(a). During the execution 
of this process, some vertical sections are encountered, in 
which there are not movement’s points, such as those of the 

dotted lines. In this case, no point is recorded and the 
process continues to the next vertical section. 

Figure 5 (a) Vertical sections recording (b) Diagonal sections 
recording (see online version for colours) 

   
(a)   (b) 

When the recording of the vertical points is completed, the 
recording of the diagonals begins in the same way, as shown 
in Figure 5(b). The recording of the diagonal elements starts 
from the lower right in a counter-clockwise direction. When 
some empty diagonal sections are encountered, as in the 
case of the vertical, no point is recorded and the process 
continues to the next diagonal section. 

Figure 6 The three planes of 3D operating space depicted in 
Figure 4 

  
After recording the points of the reference plane is 
completed, start recording the corresponding points on the 
parallel planes along the Z-axis. The points are recorded in 
columns parallel to the Z-axis and it takes place at all the 
points of the reference plane, including the point where the 
robot’s end effector is located. The Z-axis point recording 
starts from the plane closest to the XOY plane and each 
point is recorded only once. If the number of filled row’s 
columns is less than the number of matrices’ columns, the 
remaining columns are filled with 0. Each column contains 
the number of a moving point. 

Figure 6 shows the 3D operation environment of  
Figure 3. This operation environment consists of 3 planes. 
In this example, the robot is located at point number 1. The 
reference plane also happens to be the closest to the XOY 
plane. Table 2 shows the point registration in the first row 
of the mov matrix. The matrix will consist of 75 rows and 
27 columns. 
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Table 2 A part of the example’s first row 

1 2 16 17 6 11 7 12 21 26 22 27 

2.1.3 Obstacles 
The presence of obstacles in the 3D operation space 
prohibits the robot from moving at certain points and 
alternative routes are explored. Two main types of obstacles 
are introduced: the single point obstacle and the continuous 
points obstacle. Any physical space can be modelled with 
these two obstacle types. The obstacles can be used to 
transform the environment into any 3D shape, so that it is 
not necessarily rectangular. In this way, the simulation 
converges as closely as possible to the real conditions. 

The existence of obstacles is registered in a 2D matrix 
called obs. The obs matrix consists of (n – 1) * (l – 1)  
* (m – 1) rows and 2 columns. Each line has information on 
whether or not movement is allowed at a specific movement 
point. In the first column is registered the number of 
movement point and in the second is the number 0, or 1. 
The number 1 allows the movement to this movement point 
and the number 0 indicates the existence of the obstacle at 
this point. Different obstacles can be introduced for each 
operation space. Obstacles are plotted as black dots, as 
shown in Figure 7. 

2.1.4 Safety value 
Due to the complexity of the 3D operation space, the high 
number of potential paths and the existence of the obstacles, 
the safety value of movement points is introduced. Wang  
et al. (2019) proposed the calculation of safety value to 
improve the understanding of the space and obstacles when 
forming the path. The safety value is calculated as: 

v uS(i, j, k)
v
−=  (1) 

where v indicates the total number of movement points at 
the current position point (i, j, k) and u indicates the number 
of obstacles at the same position point. The safety value is 
used in the solver. Because the safety value as well as the 
movement points for navigation need to be calculated 
several times in the ant colony optimisation algorithm, the 
are calculated in the pre-processor and stored in a 2D matrix 
called S. The matrix S consists of (n – 1) * (l – 1) * (m – 1) 
rows and 2 columns. In each row is registered the number of 
movement point and the result of safety value calculation. 

2.1.5 Pre-processor txt file extraction 
Before the pre-processor operation is finished, a txt file is 
created with the necessary data for running the Solver 
independently. The data entered in the txt file are the nodes, 
elements, nodes2 and obs matrices to model the 3D 
operation space and the number of nodes on the Z axis, as 
well as the mov and S matrices to define the ant movement 
and the safety value, respectively. All the above data are 
specified by the user and are necessary for the independent 

operation of the Solver. The txt export allows the simulation 
environment to be maintained constant without repeating 
the creation process every time the solver input parameters 
change. 

2.2 Solver 

2.2.1 Mathematical formulas of ant colony 
optimisation 

The mathematical model, equation and method can be 
described as follows. 

The total number of ants is described by the variable 
rAnt. Assuming that the total number of the ant’s movement 
points is s, the distances between the point where the ant is 
located and its possible movement points are known. The 
pheromone concentration for the path connecting a point e 
with a point f for a specific time is τe,f(t). Before the 
iterations and the changing of a point’s pheromone value 
begin, the pheromone’s value for each point is defined by an 
initial value τe,f(0) = τ0. The ant g = (1, 2, …, rAnt) 
determines its movement from the current movement point 
to another through the pheromone’s concentration of 
possible points. The variable g

e,fP (t)  represents the 
probability that ant g is moving from the current point e to 
point f. It is calculated as: 

[ ] [ ]
[ ] [ ]( )

g

g
e,f

α β
e,f e,f

gα β
e,f e,fR allow

g

P (t)

τ (t) η (t)
, R allow

τ (t) η (t)

0, R allow
∈

 ×
 ∈= ×


∉


 (2) 

where R represents all the next possible points, ηe,f(t) is the 
heuristic function, allowg g = (1, 2, …, rAnt) is a set of 
movement points that ant g can visit. The exponent α is the 
importance factor of the pheromone and the exponent β is 
the importance factor of the heuristic function. The larger 
the value β, the more important the heuristic function’s role 
is in determining the probabilities for the ant’s movement. 

The pheromones help with information exchange 
between ants by changing their environment. They act as a 
pole of attraction for the ants during the process of food’s 
searching. In the algorithm, they influence its coverage 
speed and the path’s result. Each movement point has its 
own pheromone value. The higher the value of the 
pheromone, the more it attracts ants. Local and general 
pheromone updates of movement points is used in the 
algorithm. 

2.2.2 Local pheromone update 
Every time an ant passes a movement point A(i, j, k) it 
directly invokes the pheromone update rule for that point. In 
a local update, the pheromone decreases. In this way, the 
probability of visiting points previously passed by the ants 
is reduced and the probability of selecting a different point 
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and exploring new routes is increased. The local pheromone 
update is calculated as: 

i, j,k i, j,kτ (t 1) (1 ξ) τ (t)+ = − ×  (3) 

where τi,j,k(t) is the concentration of the pheromone at the 
movement point A(i, j, k), t is the update number of the 
specific pheromone, while ξ is the attenuation coefficient of 
the pheromone and must be 0 < ξ < 1. The attenuation 
coefficient ξ represents the percentage reduction of 
pheromone between time t and t + 1. A percentage reduction 
of pheromone is used to avoid negative values in 
pheromone throughout several iterations and to consistently 
reduce the reselection rate of that point based on how many 
times it has already been selected. In this way, the ants 
explore more paths to find the optimal solution. The 
coefficient is also directly related to the coverage speed of 
the algorithm. 

2.2.3 Global pheromone update 
After a computational cycle of ants is completed, each 
colony ant has formed a path, the optimal path is selected 
and the global pheromone update is applied to the set of its 
movement points. The global pheromone update is 
calculated as: 

i, j,k i, j,k i, j,kτ (t 1) (1 ρ) τ (t) ρ τ+ = − × + × Δ  (4) 

{ }( )i, j,k
λ (N M) Kτ

min length(g)
× − +Δ =  (5) 

where ρ is the global pheromone update coefficient, 0 < ρ  
< 1 and length(g) indicates the path length set of ant g,  
g = 1, 2, …, rAnt, min ({length(g)}) indicates the shortest 
path calculated by ant g. In equation (5), N indicates the 
maximum iteration number, M indicates the current 
iteration number and K, λ are constants. 

Ν, Μ, λ variables decrease the increase of pheromone 
while the iteration’s number increases. Therefore, the 
pheromone concentration on the optimal path increases less, 
which reduces the probability of other ants choosing only 
the optimal path and increases the possibility of searching 
for a solution near the optimal. In this way, ants are more 
easily oriented in space and search for the overall optimal 
solution, avoiding at the same time the continuous selection 
of an optimal path and the transformation of the algorithm 
into a local optimum. 

2.2.4 Heuristic function 
The heuristic function uses the heuristic rules to guide the 
ant from the starting point to the end point. The heuristic 
rules should not only contain finding of the shortest path but 
also avoiding obstacles. The safety value calculated in the 
pre-processor is used in the heuristic function. The heuristic 
function is calculated as: 

w1 w2 w3Q(i, j, k) U(i, j, k) V(i, j, k) S(i, j, k)= + ×  (6) 

( ) ( ) ( )2 2 2
c c c

1U(i, j, k)
i i j j k k

=
− + + + −

 (7) 

( ) ( ) ( )2 2 2
e e e

1V(i, j, k)
i i j j k k

=
− + + + −

 (8) 

where (i, j, k) indicates the next candidate movement point, 
(ic, jc, kc) are the coordinates of the current movement point, 
(ie, je, ke) are the coordinates of the end point. Q(i, j, k) is 
the heuristic function of the next candidate movement point, 
U(i, j, k) expresses the reciprocal of distance between the 
current point and the next candidate point, V(i, j, k) 
expresses the reciprocal of distance between the next 
candidate point and the end point. S(i, j, k) is the safety 
value of the next candidate point. w1, w2 and w3 are the 
coefficients, which represent the importance of U(i, j, k), 
V(i, j, k) and S(i, j, k) respectively, w1, w2 and w3 ∈ [0, 1]. 
The heuristic function is used for the calculation of the 
probability in equation (2). 

For solving the TSP, the heuristic function is calculated as: 

k,l
k,l

1Q
d

=  (9) 

where k represents the current moving point and l the next 
candidate movement point, dk,l is the reciprocal of the 
distance between the current point and the next candidate 
point. 

2.2.5 Roulette wheel method 
The roulette method was implemented as a separate 
function. Its input is a vector with the selection probabilities 
of each point and its output is the number of the positions of 
the chosen probability in the vector. As Chipperfield and 
Fleming (2020) explained, the roulette wheel is the sum of 
all possible movement points, each movement point has 
different selection probability. The selection probability is 
calculated using equation (2). To select a point, a random 
number is generated in the interval [0, sum of the point’s 
expected selection probabilities]. The point whose interval 
segment spans the random number is selected. Any option 
whose probability is greater than 0 can be the exit option of 
the roulette wheel. 

2.2.6 Path length calculation 
The movement points in space are defined by specific 
coordinates (x, y, z).The distance between two points is 
given by the following formula: 

( ) ( ) ( ) ( )2 22
1 2 1 2 1 2 1 2d A , A x x y y z z= − + − + −  (10) 

The calculation of the paths’ total length can be expressed 
as the sum of the distances of the movement points and is 
calculated as: 

( ) ( ) ( )q 1 2 2 2
a 1 a a 1 a a 1 aa 1

L x x y y z z
−

+ + +=
= − + − + −  (11) 
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where q is the total number of path’s movement points. 

2.2.7 Initial pheromone value 
The pheromone value is stored in a 2D matrix called tau0. 
The tau0 matrix consists of rows and 2 columns. In the first 
column, the number of each movement point is stored and 
in the second column, the pheromone value of each point is 
stored. Initially, all the points have the same amount of 
pheromone except the obstacles that have a number that 
approaches 0, like 10–8. 

Figure 8 (a) Results of manual method (b) Results of auto 
method (see online version for colours) 

 
(a) 

 
(b) 

2.2.8 Solver explanation 
The solver can solve the problem in two ways. The first 
way, called manual, calculates the shortest path according to 
the order of input points. The second way, called auto, 
calculates the shortest path that connects the input points. 
Figures 8(a) and 8(b) show the two method’s results for the 
same input order of points: 1, 50, 5, and 25. Both solutions 
are derived from the equations and the methodologies 
described in previous sections. 

In the beginning, the pre-processor’s data are entered 
from the txt file. Additionally, one of the methods must be 
selected, the manual or the auto method. Then the quantity 
of target points, the parameters of equations (2)–(6), the 
number of ants in colony and the colonies number are 

entered. After this, the target points are entered, which are 
considered the starting and ending points of a path. These 
points are recorded in a row vector called point. The 
vector’s column size is equal to the quantity of target points, 
one column for each point. The first column contains the 
starting point. After this process is completed, the 
calculation of the solution begins according to the selected 
method, manual or auto. 

2.2.9 Manual option 
In the manual option, a procedure is followed to find the 
optimal path between two consecutive points of the point2 
vector and then expand for all defined points. A total of  
f – 1 optimal paths are constructed, where f is the number of 
points2 vector’s columns. A starting and an end point are 
defined based on the point2 vector, after finding the optimal 
path is completed, the ending point is considered the 
starting point of the next path. This process is repeated f – 1 
times. 

The methodology and process followed for the creation 
of each route are as follows. Each ant creates its own path 
separately. Each ant colony has a specific number of ants 
and the number of colonies is already inputted. Initially, 
according to the position and with the help of the mov 
matrix from the pre-processor, a vector r is created. 
Depending on the number of the ant’s position point, vector 
r is the row of the mov matrix. When the row contains 0, 
they are deleted, so the vector r contains only the next 
feasible points. Moreover, the ant’s position point is not 
registered in the r vector. 

After creating the vector r, the heuristic function is 
calculated for all its points. Then the product τ(i, j, k) × Q(i, 
j, k) is calculated to calculate the probability of each point. 
After calculating the probability of each point using the 
roulette wheel method, the next point of the ant’s movement 
is selected. After the next point is selected, the local 
pheromone update rule is used for this point. This process is 
repeated until the ant reaches its final determination. 

The optimal route is stored in a 2D matrix called 
storemat. This matrix consists of f – 1 rows, where f is the 
number of points2 vector’s columns and p columns, and p is 
the number of movement points in the space, the same as 
the number of rows in the mov matrix. In each row of the 
storemat, the optimal route between two points is entered. 
The number of optimal path’s movement point’s is 
registered in each column. The remaining columns of mov 
matrix are filled with 0. In addition to the above, a 2D 
matrix named Ddiag is also created. Ddiag contains the 
optimal path’s length of each colony and is used to create a 
diagram with the number of iterations and the optimal 
path’s length. This diagram assists in the solver’s input 
parameters optimisation. 

2.2.10 Auto option 
The auto option uses a part of the manual option to solve the 
tsp problem between the input points. In the beginning, the 
same data as the manual are inputted. A square matrix 
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called Dtsp is created. The Dtsp matrix consists of f rows 
and f columns, where f is the number of points2 vector’s 
columns. The matrix’s rows represent the starting point and 
its columns represent the ending point. In each position of 
the table, the length of the route between the starting point 
and the end point of the corresponding row and column is 
registered. The main diagonal of the matrix is zero. In 
addition, the matrix is symmetric since the distance between 
two identical points remains constant regardless of which is 
considered the starting or ending point. It follows that 
Dtsp(i, j) = Dtsp(j, i). Table 3 shows an example of Dtsp 
matrix for 4 points. 

Table 3 Dtsp matrix 4 points example 

n/n 1 2 3 4 

1 0 20.62 8 11.77 
2 20.62 0 18.18 15.77 
3 8 18.18 0 6.66 
4 11.77 15.77 6.66 0 

The path’s length between two points is calculated in the 
same way as described in the manual option. A square 
matrix similar to the Dtsp matrix called tsptauis is created. 
A Tsptau matrix consists of f rows and f columns. Tsptau 
contains the initial value of tsp pheromones. Then the 
heuristic function is calculated by using equation (9). Later, 
the probability of each point is calculated and based on the 
roulette wheel method, the next point is chosen. This 
process is repeated until the final tsp path is formed. Based 
on this formed tsp path, the local update of the pheromone 
takes place, namely the reduction of the corresponding 
values of the pheromone in the tsptau matrix. Reduction 
occurs when an ant is transported from one point to another. 
When decrementing the tsptau(i, j) value, the ant moved 
from point i to j. The values of the diagonal of the matrix 
remain with the initial value of the pheromone. Table 4 
shows an example of pheromone reduction. The formed tsp 
path describes the transportation from points 1 to 2, 2 to 4 
and 4 to 3. The reduction of the pheromone has an 
indicative value of 15. The example’s initial pheromone 
value is 100. 

Table 4 Tsptau matrix pheromone reduction example 

n/n 1 2 3 4 

1 100 85 100 100 
2 100 100 100 85 
3 100 100 100 100 
4 100 100 85 100 

After the colony completes finding the shortest path 
between the points, the general pheromone is updated in a 
similar way as the local. In addition, a tspDdiag is created. 
TspDdiag contains the optimal path’s length of each colony 
and is used to create a diagram with the number of iterations 
and the optimal path’s length for tsp problem solving. 

Finally, after finding the shortest path that connects 
these points to each other based on the storemat matrix, the 
path is drawn in the 3D operating space diagram. In 
addition, the Ddiag chart is generated separately with the 
number of iterations and the shortest path for every two 
consecutive points. The tspDdiag diagram is also created in 
a separate window. As mentioned in the manual option, 
these diagrams assist in the solver’s input parameters 
optimisation. 

At the end of the solver, a txt file is created with the 
coordinates of the movement points of the optimal path. The 
txt file is created for both the manual and auto options. 

2.2.11 Algorithm’s parameter selection 
The number of ants should be determined according to the 
size of the problem. The grid density and the size of the 
operating spaces have a leading role in ant’s number 
selection. The final values should be determined after 
performing a number of tests. Indicatively, for an operating 
space with 75 movement points, the number of ants could 
range from 20 to 100. The coefficients a, b, ρ and ξ are 
interdependent. Several combinational simulations are 
needed to set them up. The values of the coefficients in this 
paper were set to a = b = 1 and ρ = ξ = 0.2. 

Figure 9 Flowchart of manual option 

  
The heuristic function is significantly affected by the values 
of the parameters w1, w2, and w3. The routes that are 
constructed up until the optimal route is found alter as a 
result of the various combinations of these parameters. They 
also alter the number of iterations needed until the optimal 
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solution is found. The values of w1, w2 and w3 in this paper 
were set to w1 = w2 = w3 = 1. 

Figure 10 Flowchart of auto method 

  
Another parameter that can be adjusted is the number of 
ant’s colonies. A large number of ant’s colonies costs 
computing time. On the other hand, a small number may not 
find the optimal path. Ant’s colony number depends on the 
grid’s density, operation space size, and the quantity and 
complexity of obstacles. λ and Κ variables significantly 
affect the pheromone update process and, therefore, the path 
generation. The values of ant’s colonies, λ and K in this 
paper were set: ant’s colonies number = 100, K = 200 and  
λ = 0.3. 

2.2.12 Flowcharts of manual and auto methods 
Figures 9 and 10 show the flow charts for manual and auto 
options, respectively. 

3 Experimental results 
The results of the proposed method were further 
investigated by applying them to a real experimental 
challenge. In order to simulate a 3D environment with 
obstacles and determine an optimal path for safe navigation 
of a tool attached to the robot’s end effector, the proposed 
method has been used. A Kawasaki RS010N industrial 
robot was employed for the experiment. The environment 
consists of three obstacles and four target points, as shown 
in Figure 11. Figure 11(a) shows the results of the proposed 
algorithm in a simplified manner and Figures 11(b)–11(h) 
show the different stages of path execution. 

The method was tested for various values and 
combinations of w1, w2 and w3 coefficients. There is no 
mathematical restriction on the values of w1, w2 and w3. 

However, as mentioned above, it is recommended w1, w2, 
w3 ∈ [0, 1]. The values of w1, w2, w3 represents the 
importance of U(i, j, k), V(i, j, k) and S(i, j, k) respectively. 
As a result, they affect the heuristic function’s value. When 
w1, w2 and w3  
> 1, the values of U(i, j, k), V(i, j, k) and S(i, j, k) are 
decreasing. Hence, this decrease affects the contribution of 
the heuristic function to the probability calculation  
equation (2). When the value of the heuristic function is 
decreased, the value of probability’s calculation is more 
impacted by the value of the pheromone, thus, the formed 
path depends almost exclusively on the pheromone’s 
concentration. This fact may lead to a local optimal 
solution, an increase in computation time, or an incorrect 
finding of the optimal path. 

Figure 11 Experimental results of a real world path planning 
challenge, (a) simplified results of the proposed 
method (b) robot’s tool at starting point (c) robot’s 
tool before 1st obstacle (d) robot’s tool at 2nd target 
point (e) robot’s tool after 2nd obstacle (f) robot’s 
tool at 3rd target point (g) robot’s tool crossing 3rd 
obstacle (h) Robot’s tool at 4th target point  
(see online version for colours) 

  
The following diagrams depict the algorithm’s behaviour 
for the aforementioned tests. The tests were conducted in 
the same operation spaces with the same predefined 
obstacles. The tests carried out in the operation space 
depicted in Figure 8(a) are for the manual method. The 
purpose was to examine the algorithm’s responsiveness and 
reliability in order to determine the optimal path from start 
point 1 to end point 50. The initial pheromone value was 
equal to 1,000, the ant’s colonies number was equal to 100 
and the number of ants in the colony was equal to 40. The 
coefficients a and b of equation (2) were equal to 1, the 
coefficients ξ and ρ of equations 3 and 4 were equal to 0.2, 
the constant λ of equation 5 was set to 0.3 and the constant 
K of equation 5 was equal to 200. 
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Figure 12 shows the results for w1 = w2 = 1 and the 
value of w3 is changed. 

Figure 12 Diagrams for constant w1, w2 and changeable w3 
(see online version for colours) 

  

Figure 13 Diagram for constant w1, w3 and changeable w2  
(see online version for colours) 

  

In Figure 12, some variations are observed for different 
values of w3, but all tests converge to the optimal solution 
after a certain number of iterations. 

Figure 13 shows the results for w1 = w3 = 1 and the 
value of w2 is changed. 

In Figure 13, some variations are observed for different 
choices of the arithmetical values of w2, but after a certain 
number of iterations, all the experimental tests converge to 
the optimal solution. 

Figure 14 shows the results for w2 = w3 = 1 and the 
value of w1 is changed. 

In Figure 14, some variations are observed for different 
values of w1, however all tests converge to the optimal 
solution after a certain number of iterations. For the case of 
w1 = 5 the coverage of the optimal solution needs a higher 
number of ant’s colonies compared to other tests. 

Figure 15 shows the results for w1 = w2 = w3. 
 
 
 

The graphs in Figures 12–15 show that for various 
values of w1, w2, and w3, the ants can efficiently navigate 
from a starting point to an end point, despite the fact that 
there are a vast number of alternative selections from one 
point to another. In addition, paths of varying length are 
formed, indicating that the ants are exploring several 
instances throughout the area. The length of the formed path 
is longer than the length of the ideal path in the initial 
iterations, indicating that the formed route improves as the 
algorithm executes and the methods of navigation and 
obstacle placement are taken into account during the path 
forming process, allowing a more q realistic simulation of 
the robot’s movement. If the length of the created routes is 
initially unusually short, it indicates that the algorithm may 
not take into account the obstacles or that the movement 
strategy is improper. When the ant colony optimisation and 
roulette wheel methods are used with erroneous obstacle 
placement and movement strategy, they can create a path 
that approaches the target through the obstacles, which does 
not occur with the proposed method. 

Figure 14 Diagram for constant w2, w3 and changeable w1  
(see online version for colours) 

  

Figure 15 Diagram for w1 = w2 = w3 (see online version  
for colours) 
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4 Conclusions 

Ant colony optimisation combined with the roulette wheel 
method can be used effectively for offline programming of 
industrial robots. The proposed method finds the optimal 
path in a 3D operation space with obstacles consistently. 
The manual method can find the shortest distance between 
two or more points while avoiding obstacles. The auto 
method, assisted by the fundamentals of the manual method, 
successfully applies the ant colony optimisation solution to 
the TSP in a 3D operation with obstacles. One of the 
disadvantages of applying the ant method in 3D space is the 
increased computational requirements, which are mitigated 
by calculating a priori some indispensable processes such as 
the calculation of safety value and the feasible movement 
points of the robot from a specified position. In this way, the 
demanding calculations are performed only once and the 
data can be accessed when necessary. 

Ant colony optimisation depends on a variety of 
coefficients that, with proper tuning, can drastically affect 
the speed of finding the optimal path. The proper tuning can 
also help avoid local optimal solutions and form efficient 
and fast paths in a convoluted 3D operation space with 
several points and obstacles. Optimal coefficient values may 
vary proportionately with the complexity of the 
environment. 
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