

International Journal of Advanced Mechatronic Systems

ISSN online: 1756-8420 - ISSN print: 1756-8412
https://www.inderscience.com/ijamechs

Finding the optimal path in a 3D environment with predefined
obstacles

Gabriel Mansour, Ilias Chouridis, Apostolos Tsagaris

DOI: 10.1504/IJAMECHS.2024.10063118

Article History:
Received: 04 June 2023
Last revised: 06 November 2023
Accepted: 04 December 2023
Published online: 25 March 2024

Powered by TCPDF (www.tcpdf.org)

Copyright © 2024 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijamechs
https://dx.doi.org/10.1504/IJAMECHS.2024.10063118
http://www.tcpdf.org

50 Int. J. Advanced Mechatronic Systems, Vol. 11, No. 1, 2024

Copyright © 2024 Inderscience Enterprises Ltd.

Finding the optimal path in a 3D environment with
predefined obstacles

Gabriel Mansour
Department of Design and Structures,
Polytechnic School of the Aristotle University of Thessaloniki,
Thessaloniki, Greece
Email: mansour@auth.gr

Ilias Chouridis* and Apostolos Tsagaris
Department of Industrial Engineering and Management,
International Hellenic University,
Thessaloniki, Greece
Email: iliachour@iem.ihu.gr
Email: tsagaris@ihu.gr
*Corresponding author

Abstract: Robotics has substantially improved people’s daily lives, especially industrial
production and manufacturing. An offline programming method is proposed for robot’s path
planning in a 3D environment with obstacles. The purpose of this method is to find the shortest
3D path between two or more points avoiding obstacles. Two types of paths are created: in the
first type, the shortest path between the points is created based on their input order; in the second
type, the shortest path that connects the input points is formed. It is accomplished by using a
hybrid algorithm that combines the ant colony optimisation algorithm with a genetic algorithm
called the roulette wheel method. The proposed method takes into consideration the robot’s
capabilities and the variability of different environments, so that it can be effectively applied to a
multitude of cases. The method has been tested and applied to real world industrial robots
successfully.

Keywords: robotics; industrial robotics; hybrid algorithm; ant colony optimisation; genetic
algorithm; offline programming; path planning; 3D environment; industrial robot navigation;
mechatronic system.

Reference to this paper should be made as follows: Mansour, G., Chouridis, I. and Tsagaris, A.
(2024) ‘Finding the optimal path in a 3D environment with predefined obstacles’,
Int. J. Advanced Mechatronic Systems, Vol. 11, No. 1, pp.50–62.

Biographical notes: Gabriel Mansour is a Professor of Mechanical Engineering, the Head of
Design and Structures Department, Polytechnic School of the Aristotle University of
Thessaloniki. His research interest includes machine tools, machine tools foundation,
CAD/CAM, robotics, vibration measurements, 3D measurements, reverse engineering,
composite and nanocomposite materials. His publications are three books and more than 200
papers, in international scientific journals and conference proceedings.

Ilias Chouridis acquired his Diploma in Mechanical Engineering from the Polytechnic School of
the Aristotle University of Thessaloniki. He is currently pursuing his PhD in Robotics and
Mechatronics Systems Navigation in International Hellenic University. His research interest
includes bio-inspired optimisation methods and evolutionary algorithms based on unmanned
aerial vehicle path planning.

Apostolos Tsagaris is an Associate Professor in Robotics, CAD/CAM/CAE and Mechatronic
Systems in the Department of Industrial Engineering and management at International Hellenic
University of Thessaloniki, Greece and at this time he is the Head of the Department. He
received his Bachelor’s in Automation Engineer, MSc in Design of Interactive and Industrial
Products and Systems, MSc in Mechatronics, MEd in Adult Education and MBA. He has
published a book and more than 84 scientific papers at conferences and journals. He also holds a
patent. Finally, he has participated in over 18 research projects.

 Finding the optimal path in a 3D environment with predefined obstacles 51

1 Introduction
Robotics has benefited industrial manufacturing and has
also proven able to execute dangerous and repetitive
assignments smoothly. The industrial applications of
robotics have been developing since 1960. The robots
operated in fixed, unchangeable conditions, which was an
especially important achievement for that time because they
could successfully operate with great precision in
unchangeable environments. Nowadays, as Malone et al.
(2020) report, robots are becoming more adept at operating
in unknown and human-centred environments thanks to
sophisticated software and algorithms.

In robotics, the role of path planning is crucial. It is
essential to find a collision free path so that the robot can
navigate from a starting point to an end point without being
damaged by obstacles. Usually, as Zafara and Mohanta
(2018) mention, there are several paths, that meet the above
goal, therefore some additional criteria are taking into
consideration in the path planning process. Some of these
may be the shortest distance path, the path’s smoothness,
the minimum energy consumption, or a combination of the
above. The shortest distance with the least amount of time is
the most frequently used criterion. The path planning
methods are divided into two major categories, the classical
approach and the heuristic approach.

Patle et al. (2019) pointed out that classical approaches
were initially quite popular, because artificial intelligence
methods had not been developed in those days. It has been
noted that when a task is performed using a classical
approach, either a result will be obtained or it will be
confirmed that there is no result. The main downside of
classical approaches is the increased computational cost and
the inability to acclimate to environmental unpredictability.
Therefore, in real-time applications, they are less adopted.

Mac et al. (2016) utterance that classical approaches
tend to be trapped in some local minimal and fail to find the
optimal solution, especially when obstacles are included.
Heuristic approaches are used to overcome classical
approaches weaknesses. The heuristic approaches adopt
artificial intelligence techniques to solve the problem.

Due to the technological advances that have been made
in the fields of mechatronics and computers, complex
algorithms can be developed so that machines can adapt to a
changeable environment. Up until now, industrial
production was established based on the machine’s
capabilities, it was adjusted to the environment and allowed
minimal variation. Nowadays, Andreu-Perez et al. (2017)
alleged that the production can be integrated in an
environment that already exists thanks to artificial
intelligence’s convergence with the robotics. The
integration of artificial intelligence with robotics is used for
path planning optimisation.

Floreano and Wood (2015) reviewed the capabilities of
flying robots and the importance of path planning in their
operations. Santos et al. (2020) studied the application of
path planning to ground robots in agriculture, taking into
consideration the constraints imposed by the robot
composition or the type of terrain. Ma et al. (2019)

researched path planning in autonomous underwater robots
by using ant colony optimisation algorithm for finding the
optimal path. Their model accumulates the path’s length,
the energy consumption, the collision risk and the steering
window constraint. Among heuristic-based methods, there
is a method called ant colony optimisation. Ant colony
optimisation is extensively used for solving path planning
problems. Ant colonies are highly organised, the ants
interact with each other by using pheromones. Several
optimisation problems can be solved by simulating their
behaviour. After the first appearance of ant colonies
optimisation algorithms were considerably developed by the
researchers. Nonetheless, Ostfeld (2011) noticed that high
computational power is required and sometimes are
ineffective.

The real ants are navigating the environment by
detecting the higher concentration of pheromone. The
pheromone concentration is increased by other ants that
deposited it as they wander in the environment. The
pheromone deposition is continuous. In ant colony
optimisation algorithm, Dorigo et al. (2006) proposed that a
group of artificial ants build solutions to the optimised
problem. They cooperate with each other to find the optimal
solution by changing the pheromone value, like the real
ants.

The travel salesman problem (TSP) is a famous
non-deterministic polynomial (NP) time hard problem. The
TSP consists of a known set of cities and the distances
between a pair of cities. The salesman must visit each city
once and then return to the starting city at the end by
travelling the shortest distance. Li et al. (2008) mentioned
that ant colony optimisation was mainly used to solve this
problem.

As Melanie (1990) reported, John Holland contrived the
genetic algorithms in the ‘60s. Holland with his students
and colleagues at Michigan's university expanded the
genetic algorithms. Holland’s original objective was to
study how adaptation happens in nature and to develop
ways to use the same mechanisms in computer systems as
opposed to evolution strategies and evolutionary
programming that use algorithms to solve a specific
problem.

Kwaśniewski and Kwaśniewski (2018) used genetic
algorithms for finding the path on a 2D map with obstacles.
Demir et al. (2021) developed a time optimisation model for
path planning in an RRR robot by using genetic algorithms.
Zhang et al. (2020) used an improved A* algorithm for path
planning in a 2D environment, applying it to pathfinding in
a game’s map. Dai et al. (2019) proposed an algorithm that
used the characteristics of the A* algorithm and the
max-min ant system for path planning in a 2D environment.
Brand et al. (2010) investigate the application of the ant
colony optimisation algorithm to robots’ path planning in a
2D dynamic environment. Reshamwala and Vinchurkar
(2013) reviewed the variations of the ant colony
optimisation algorithm in robots’ path planning and
compared three of the investigated methods. Zhang et al.
(2021) presented a hybrid approach by combining the

52 G. Mansour et al.

enhanced ant colony system with a local optimisation
algorithm for mobile robots’ path planning. Chaari et al.
(2012) proposed a hybrid algorithm for a 2D robot’s path
planning by combining an improved ant colony optimisation
method with a genetic algorithm. Ravankar et al. (2017)
proposed a knowledge sharing mechanism for multiple
robots to achieve efficient path planning in a dynamic 3D
environment. Liu et al. (2022) proposed an algorithm for
optimal mission assignment and path planning in a 3D
environment for multiple UAVs by using the adaptive
genetic algorithm and the improved artificial bee colony
method. Sanchez-Lopez et al. (2019) proposed a real-time
path planning method for aerial robots in a complex,
dynamic environment with obstacles. Wang et al. (2022)
used a topological algorithm for multi-robot path planning
in a complex 3D environment, aiming to reduce the robot’s
congestion in the environment while avoiding
communication and coordination between robots.

In the real world, robots are operating in a 3D
environment with several obstacles and challenges. A vital
issue in robot’s navigation and efficiency is path planning.
An offline programming method for effective path planning
of robot’s end effectors and mechatronics systems is
proposed in this paper. The method’s purpose is to find the
shortest collision-free path between two or more locations
in a 3D environment with predetermined obstacles, similar
to the real world.

There are two types of paths that the algorithm can
generate. In the first type of path, also called the manual
option, the algorithm searches for the shortest route that
connects two or more points located anywhere in a 3D
environment. The formed path is determined by the input
order of the points. In the second type of path, also called
the auto option, the algorithm finds the optimal path
connecting a set of points regardless of their input order. In
this manner, a complicated route with multiple target points
can be optimised. As a result, the algorithm can optimise the
path and sequence in which the robotic arm executes
multiple assignments.

A hybrid algorithm that combines the ant colony
optimisation algorithm with a genetic algorithm called the
roulette wheel method is used to find the optimal path in a
3D environment with several obstacles. The proposed
method takes into account the movement capabilities of the
industrial robot as well as the characteristics and uniqueness
of its operational space. Furthermore, if the requested route
is short, the algorithm discovers the ideal path in a few
iterations. In case the requested path is more complicated,
the algorithm needs more iteration to determine the optimal
and fine tuned parameters required.

Moreover, it is worth to mentioning that this method
also contributes to the adaptation of a classical TSP solution
to a more intricate and advanced 3D environment with
obstacles and greater movement possibilities, suitable for
real world applications.

A variety of simulations and tests were performed to
evaluate the results of the proposed method which was also

applied in a real world scenario by using an industrial
robotic arm.

2 Proposed method
The proposed method was developed using MATLAB
R2016a by MathWorks. To facilitate data management and
avoid repeated calculations, the program was divided into
two main parts: the Pre-processor and the Solver. In the
pre-processor, the 3D environment is modelled and some
basic and immutable data from the solver are calculated. in
the solver, based on pre-processors data and some extra
parameters for the ant colony optimisation and roulette
wheel methods, the shortest path is calculated in two
different ways. In the first way, called manual, the shortest
path that connects the points is calculated according to the
order of their input. In the second option, called auto, the
program calculates the shortest path connecting the input
points.

2.1 Pre-processor

2.1.1 Environment modelling
Industrial robotic arms, due to their flexibility, could be
programmed to move their end effector in a three
dimensional space. In order to find a path that corresponds
to the real conditions and advantages of industrial robotic
arms, instead of a 2D grid method, a 3D grid method was
adopted. In the 3D grid method, the space is divided into
several horizontal planes perpendicular to the Z axis. Each
horizontal plane is divided into grids.

First of all, an initial O-XYZ coordinate system is
defined. Based on this system, the coordinates of operating
space are defined. The operating space is a 3D rectangular
prism, the sides OB, OD and OE are defined based on the
real operation space’s dimensions. The definition of the
point coordinates starts from the XOZ plane OBCD region
and then continues across the Y-axis EFGHD region.

Each side consists of a certain number of nodes n along
the X-axis, l along the Z-axis and m along the Y-axis. The
numbers n, l and m determine the mesh density of the
corresponding axis. Node numbering starts from the OBCD
plane along the OX axis, with Y and Z coordinates fixed.
After defining the coordinates of the first line, the Z
coordinate is changed and the same process is repeated until
all the coordinates of the nodes on the OBCD plane are
precisely defined. These coordinates are entered into a 2D
matrix named nodes. The nodes matrix consists of n*l*m
rows and 4 columns. In each row is registered the number
on the node and its X, Y and Z coordinates.

After creating the matrix of nodes, the matrix of
elements of each smaller rectangular prism is created. Each
3D rectangle prism consists of 12 elements. Elements are a
sequence of connecting nodes. Nodes are joined in pairs.
These sequences are entered into a 2D matrix called
elements. The elements matrix consists of (n – 1) * (l – 1) *
(m – 1) * 12 rows and 3 columns. The number of each

 Finding the optimal path in a 3D environment with predefined obstacles 53

element is registered in the first column, followed by the
number of the first node and then the number of the second
node. The correspondence between the element and its
nodes starts with the left and right edge rectangles. It starts
from the lower right node and goes clockwise, as shown in
Figure 2(b). After the elements of parallelograms are
registered, the elements of the compounds are registered,
starting clockwise from the bottom to the top. Table 1
shows a transpose matrix example of Figure 2(a) elements
registering, the different colours depict the different
registering phases. The first row contains the number of
each element, the second and third rows contain the number
of the first and second element’s nodes, respectively.

Figure 1 Path planning operating space (see online version
for colours)

Figure 2 (a) Numbering of nodes of a 3D rectangular prism
(b) Clockwise nodes registering (see online version
for colours)

(a) (b)

Table 1 Transpose matrix of elements registering
(see online version for colours)

1 2 3 4 5 6 7 8 9 10 11 12
1 2 8 7 25 26 32 31 1 2 8 7
2 8 7 1 26 32 31 25 25 26 32 31

After generating the 3D operating space, a set of movement
points is created on which the robot can move. These points
are located at the centre of gravity of each 3D rectangle
prism and are defined by X, Y and Z coordinates. These
points are directly related to the previous 3D modelling
data. The method of their registration is the same as that of
nodes. The number of points also represents the number of
3D rectangle prisms. They are stored in a 2D matrix named
nodes2. The nodes2 matrix consists of (n – 1) * (l – 1)
* (m – 1) rows and 4 columns. Each row contains the
number of movement points and their X, Y and Z

coordinates. Figure 3 represents the plotting results of
Movement points and the 3D operating space.

Figure 3 3D operating space with movements points
(see online version for colours)

2.1.2 Navigation
The robot can only move on the movements points, as a
result, there are specific sequences of nearby points that can
navigate from a definite position. Due to the fact that the
process of finding the next feasible points from a current
position is repeated several times in an ant colony
optimisation algorithm, to avoid repeated calculation and
calculation time waste, it is considered beneficial to create
in advance a matrix that contains all the possible navigation
choices for every movement point. The advantages of the
robotic system are also taken into consideration in the
possible choices. The first column of each row contains the
number of the movement point at which the robot is located
at a current time, then the numbers of all the next feasible
points are registered in each column. During the algorithm’s
operation time, the matrix row for the given position is
recalled.

The robot’s movement choices within its working space
are divided into three main areas, depending on its
movement ability at the surrounding points. In Figure 4,
these three areas can be distinguished by their colour. The
first one is on the left (grey), the second is in the middle
(yellow) and the third is on the right (green).

These three regions are subdivided according to the
number of nearby movements points on the same horizontal
plane. In Figures 4(a) and 4(b) for the left area, three
individual cases can be distinguished, one for the top point
with three possible movement’s points, one for the bottom
with three possible movement’s points and one for the
middle with five possible movement’s points.

In Figures 4(c) and 4(d) for the left area, three individual
cases can be distinguished, one for the top points with five
possible movement’s points, one for the bottom with five
possible movement’s points and one for the middle with
eight possible movement’s points.

54 G. Mansour et al.

Figure 4 The three main movement’s areas, (a) movement
points on the edge of the left region (b) movement
points on the middle of the left region (c) movement
points on the top and bottom of the middle region
(d) movement points on the middle of the middle
region (e) movement points on the edge of the right
region (f) movement points on the middle of the right
region (see online version for colours)

(a) (b)

(c) (d)

(e) (f)

In Figures 4(e) and 4(f) for the left area, three individual
cases can be distinguished, one for the top point with three
possible movement’s points, one for the bottom with three
possible movement’s points and one for the middle with
five possible movement’s points.

The industrial arm has a great degree of flexibility, in
addition to the points shown in Figure 4, it can also move
along the z-axis to the corresponding points of the planes
above and below the reference plane, including the points
above and below the current position point. These points are
stored in a 2D matrix named mov. The mov matrix consists
of (n – 1) * (l – 1) * (m – 1) rows and (8 + 1) * (l – 1)
columns. For points where the number of allowed
movement nodes is less than the number of columns, the
remaining positions are filled with 0 until the row is
completed.

In every row, the first column contains the number of
the movement point at which the robot is located at a
current time, then the next feasible points are registered
following a specific process. The registration starts on the
reference plane and then expands along the Z-axis. Initially,
the points that are perpendicular to the position point are
recorded in a counter-clockwise direction, starting from the
one below it, as shown in Figure 5(a). During the execution
of this process, some vertical sections are encountered, in
which there are not movement’s points, such as those of the

dotted lines. In this case, no point is recorded and the
process continues to the next vertical section.

Figure 5 (a) Vertical sections recording (b) Diagonal sections
recording (see online version for colours)

(a) (b)

When the recording of the vertical points is completed, the
recording of the diagonals begins in the same way, as shown
in Figure 5(b). The recording of the diagonal elements starts
from the lower right in a counter-clockwise direction. When
some empty diagonal sections are encountered, as in the
case of the vertical, no point is recorded and the process
continues to the next diagonal section.

Figure 6 The three planes of 3D operating space depicted in
Figure 4

After recording the points of the reference plane is
completed, start recording the corresponding points on the
parallel planes along the Z-axis. The points are recorded in
columns parallel to the Z-axis and it takes place at all the
points of the reference plane, including the point where the
robot’s end effector is located. The Z-axis point recording
starts from the plane closest to the XOY plane and each
point is recorded only once. If the number of filled row’s
columns is less than the number of matrices’ columns, the
remaining columns are filled with 0. Each column contains
the number of a moving point.

Figure 6 shows the 3D operation environment of
Figure 3. This operation environment consists of 3 planes.
In this example, the robot is located at point number 1. The
reference plane also happens to be the closest to the XOY
plane. Table 2 shows the point registration in the first row
of the mov matrix. The matrix will consist of 75 rows and
27 columns.

 Finding the optimal path in a 3D environment with predefined obstacles 55

Table 2 A part of the example’s first row

1 2 16 17 6 11 7 12 21 26 22 27

2.1.3 Obstacles
The presence of obstacles in the 3D operation space
prohibits the robot from moving at certain points and
alternative routes are explored. Two main types of obstacles
are introduced: the single point obstacle and the continuous
points obstacle. Any physical space can be modelled with
these two obstacle types. The obstacles can be used to
transform the environment into any 3D shape, so that it is
not necessarily rectangular. In this way, the simulation
converges as closely as possible to the real conditions.

The existence of obstacles is registered in a 2D matrix
called obs. The obs matrix consists of (n – 1) * (l – 1)
* (m – 1) rows and 2 columns. Each line has information on
whether or not movement is allowed at a specific movement
point. In the first column is registered the number of
movement point and in the second is the number 0, or 1.
The number 1 allows the movement to this movement point
and the number 0 indicates the existence of the obstacle at
this point. Different obstacles can be introduced for each
operation space. Obstacles are plotted as black dots, as
shown in Figure 7.

2.1.4 Safety value
Due to the complexity of the 3D operation space, the high
number of potential paths and the existence of the obstacles,
the safety value of movement points is introduced. Wang
et al. (2019) proposed the calculation of safety value to
improve the understanding of the space and obstacles when
forming the path. The safety value is calculated as:

v uS(i, j, k)
v
−= (1)

where v indicates the total number of movement points at
the current position point (i, j, k) and u indicates the number
of obstacles at the same position point. The safety value is
used in the solver. Because the safety value as well as the
movement points for navigation need to be calculated
several times in the ant colony optimisation algorithm, the
are calculated in the pre-processor and stored in a 2D matrix
called S. The matrix S consists of (n – 1) * (l – 1) * (m – 1)
rows and 2 columns. In each row is registered the number of
movement point and the result of safety value calculation.

2.1.5 Pre-processor txt file extraction
Before the pre-processor operation is finished, a txt file is
created with the necessary data for running the Solver
independently. The data entered in the txt file are the nodes,
elements, nodes2 and obs matrices to model the 3D
operation space and the number of nodes on the Z axis, as
well as the mov and S matrices to define the ant movement
and the safety value, respectively. All the above data are
specified by the user and are necessary for the independent

operation of the Solver. The txt export allows the simulation
environment to be maintained constant without repeating
the creation process every time the solver input parameters
change.

2.2 Solver

2.2.1 Mathematical formulas of ant colony
optimisation

The mathematical model, equation and method can be
described as follows.

The total number of ants is described by the variable
rAnt. Assuming that the total number of the ant’s movement
points is s, the distances between the point where the ant is
located and its possible movement points are known. The
pheromone concentration for the path connecting a point e
with a point f for a specific time is τe,f(t). Before the
iterations and the changing of a point’s pheromone value
begin, the pheromone’s value for each point is defined by an
initial value τe,f(0) = τ0. The ant g = (1, 2, …, rAnt)
determines its movement from the current movement point
to another through the pheromone’s concentration of
possible points. The variable g

e,fP (t) represents the
probability that ant g is moving from the current point e to
point f. It is calculated as:

[] []
[] []()

g

g
e,f

α β
e,f e,f

gα β
e,f e,fR allow

g

P (t)

τ (t) η (t)
, R allow

τ (t) η (t)

0, R allow
∈

 ×
 ∈= ×

∉

 (2)

where R represents all the next possible points, ηe,f(t) is the
heuristic function, allowg g = (1, 2, …, rAnt) is a set of
movement points that ant g can visit. The exponent α is the
importance factor of the pheromone and the exponent β is
the importance factor of the heuristic function. The larger
the value β, the more important the heuristic function’s role
is in determining the probabilities for the ant’s movement.

The pheromones help with information exchange
between ants by changing their environment. They act as a
pole of attraction for the ants during the process of food’s
searching. In the algorithm, they influence its coverage
speed and the path’s result. Each movement point has its
own pheromone value. The higher the value of the
pheromone, the more it attracts ants. Local and general
pheromone updates of movement points is used in the
algorithm.

2.2.2 Local pheromone update
Every time an ant passes a movement point A(i, j, k) it
directly invokes the pheromone update rule for that point. In
a local update, the pheromone decreases. In this way, the
probability of visiting points previously passed by the ants
is reduced and the probability of selecting a different point

56 G. Mansour et al.

and exploring new routes is increased. The local pheromone
update is calculated as:

i, j,k i, j,kτ (t 1) (1 ξ) τ (t)+ = − × (3)

where τi,j,k(t) is the concentration of the pheromone at the
movement point A(i, j, k), t is the update number of the
specific pheromone, while ξ is the attenuation coefficient of
the pheromone and must be 0 < ξ < 1. The attenuation
coefficient ξ represents the percentage reduction of
pheromone between time t and t + 1. A percentage reduction
of pheromone is used to avoid negative values in
pheromone throughout several iterations and to consistently
reduce the reselection rate of that point based on how many
times it has already been selected. In this way, the ants
explore more paths to find the optimal solution. The
coefficient is also directly related to the coverage speed of
the algorithm.

2.2.3 Global pheromone update
After a computational cycle of ants is completed, each
colony ant has formed a path, the optimal path is selected
and the global pheromone update is applied to the set of its
movement points. The global pheromone update is
calculated as:

i, j,k i, j,k i, j,kτ (t 1) (1 ρ) τ (t) ρ τ+ = − × + × Δ (4)

{ }()i, j,k
λ (N M) Kτ

min length(g)
× − +Δ = (5)

where ρ is the global pheromone update coefficient, 0 < ρ
< 1 and length(g) indicates the path length set of ant g,
g = 1, 2, …, rAnt, min ({length(g)}) indicates the shortest
path calculated by ant g. In equation (5), N indicates the
maximum iteration number, M indicates the current
iteration number and K, λ are constants.

Ν, Μ, λ variables decrease the increase of pheromone
while the iteration’s number increases. Therefore, the
pheromone concentration on the optimal path increases less,
which reduces the probability of other ants choosing only
the optimal path and increases the possibility of searching
for a solution near the optimal. In this way, ants are more
easily oriented in space and search for the overall optimal
solution, avoiding at the same time the continuous selection
of an optimal path and the transformation of the algorithm
into a local optimum.

2.2.4 Heuristic function
The heuristic function uses the heuristic rules to guide the
ant from the starting point to the end point. The heuristic
rules should not only contain finding of the shortest path but
also avoiding obstacles. The safety value calculated in the
pre-processor is used in the heuristic function. The heuristic
function is calculated as:

w1 w2 w3Q(i, j, k) U(i, j, k) V(i, j, k) S(i, j, k)= + × (6)

() () ()2 2 2
c c c

1U(i, j, k)
i i j j k k

=
− + + + −

 (7)

() () ()2 2 2
e e e

1V(i, j, k)
i i j j k k

=
− + + + −

 (8)

where (i, j, k) indicates the next candidate movement point,
(ic, jc, kc) are the coordinates of the current movement point,
(ie, je, ke) are the coordinates of the end point. Q(i, j, k) is
the heuristic function of the next candidate movement point,
U(i, j, k) expresses the reciprocal of distance between the
current point and the next candidate point, V(i, j, k)
expresses the reciprocal of distance between the next
candidate point and the end point. S(i, j, k) is the safety
value of the next candidate point. w1, w2 and w3 are the
coefficients, which represent the importance of U(i, j, k),
V(i, j, k) and S(i, j, k) respectively, w1, w2 and w3 ∈ [0, 1].
The heuristic function is used for the calculation of the
probability in equation (2).

For solving the TSP, the heuristic function is calculated as:

k,l
k,l

1Q
d

= (9)

where k represents the current moving point and l the next
candidate movement point, dk,l is the reciprocal of the
distance between the current point and the next candidate
point.

2.2.5 Roulette wheel method
The roulette method was implemented as a separate
function. Its input is a vector with the selection probabilities
of each point and its output is the number of the positions of
the chosen probability in the vector. As Chipperfield and
Fleming (2020) explained, the roulette wheel is the sum of
all possible movement points, each movement point has
different selection probability. The selection probability is
calculated using equation (2). To select a point, a random
number is generated in the interval [0, sum of the point’s
expected selection probabilities]. The point whose interval
segment spans the random number is selected. Any option
whose probability is greater than 0 can be the exit option of
the roulette wheel.

2.2.6 Path length calculation
The movement points in space are defined by specific
coordinates (x, y, z).The distance between two points is
given by the following formula:

() () () ()2 22
1 2 1 2 1 2 1 2d A , A x x y y z z= − + − + − (10)

The calculation of the paths’ total length can be expressed
as the sum of the distances of the movement points and is
calculated as:

() () ()q 1 2 2 2
a 1 a a 1 a a 1 aa 1

L x x y y z z
−

+ + +=
= − + − + − (11)

 Finding the optimal path in a 3D environment with predefined obstacles 57

where q is the total number of path’s movement points.

2.2.7 Initial pheromone value
The pheromone value is stored in a 2D matrix called tau0.
The tau0 matrix consists of rows and 2 columns. In the first
column, the number of each movement point is stored and
in the second column, the pheromone value of each point is
stored. Initially, all the points have the same amount of
pheromone except the obstacles that have a number that
approaches 0, like 10–8.

Figure 8 (a) Results of manual method (b) Results of auto
method (see online version for colours)

(a)

(b)

2.2.8 Solver explanation
The solver can solve the problem in two ways. The first
way, called manual, calculates the shortest path according to
the order of input points. The second way, called auto,
calculates the shortest path that connects the input points.
Figures 8(a) and 8(b) show the two method’s results for the
same input order of points: 1, 50, 5, and 25. Both solutions
are derived from the equations and the methodologies
described in previous sections.

In the beginning, the pre-processor’s data are entered
from the txt file. Additionally, one of the methods must be
selected, the manual or the auto method. Then the quantity
of target points, the parameters of equations (2)–(6), the
number of ants in colony and the colonies number are

entered. After this, the target points are entered, which are
considered the starting and ending points of a path. These
points are recorded in a row vector called point. The
vector’s column size is equal to the quantity of target points,
one column for each point. The first column contains the
starting point. After this process is completed, the
calculation of the solution begins according to the selected
method, manual or auto.

2.2.9 Manual option
In the manual option, a procedure is followed to find the
optimal path between two consecutive points of the point2
vector and then expand for all defined points. A total of
f – 1 optimal paths are constructed, where f is the number of
points2 vector’s columns. A starting and an end point are
defined based on the point2 vector, after finding the optimal
path is completed, the ending point is considered the
starting point of the next path. This process is repeated f – 1
times.

The methodology and process followed for the creation
of each route are as follows. Each ant creates its own path
separately. Each ant colony has a specific number of ants
and the number of colonies is already inputted. Initially,
according to the position and with the help of the mov
matrix from the pre-processor, a vector r is created.
Depending on the number of the ant’s position point, vector
r is the row of the mov matrix. When the row contains 0,
they are deleted, so the vector r contains only the next
feasible points. Moreover, the ant’s position point is not
registered in the r vector.

After creating the vector r, the heuristic function is
calculated for all its points. Then the product τ(i, j, k) × Q(i,
j, k) is calculated to calculate the probability of each point.
After calculating the probability of each point using the
roulette wheel method, the next point of the ant’s movement
is selected. After the next point is selected, the local
pheromone update rule is used for this point. This process is
repeated until the ant reaches its final determination.

The optimal route is stored in a 2D matrix called
storemat. This matrix consists of f – 1 rows, where f is the
number of points2 vector’s columns and p columns, and p is
the number of movement points in the space, the same as
the number of rows in the mov matrix. In each row of the
storemat, the optimal route between two points is entered.
The number of optimal path’s movement point’s is
registered in each column. The remaining columns of mov
matrix are filled with 0. In addition to the above, a 2D
matrix named Ddiag is also created. Ddiag contains the
optimal path’s length of each colony and is used to create a
diagram with the number of iterations and the optimal
path’s length. This diagram assists in the solver’s input
parameters optimisation.

2.2.10 Auto option
The auto option uses a part of the manual option to solve the
tsp problem between the input points. In the beginning, the
same data as the manual are inputted. A square matrix

58 G. Mansour et al.

called Dtsp is created. The Dtsp matrix consists of f rows
and f columns, where f is the number of points2 vector’s
columns. The matrix’s rows represent the starting point and
its columns represent the ending point. In each position of
the table, the length of the route between the starting point
and the end point of the corresponding row and column is
registered. The main diagonal of the matrix is zero. In
addition, the matrix is symmetric since the distance between
two identical points remains constant regardless of which is
considered the starting or ending point. It follows that
Dtsp(i, j) = Dtsp(j, i). Table 3 shows an example of Dtsp
matrix for 4 points.

Table 3 Dtsp matrix 4 points example

n/n 1 2 3 4

1 0 20.62 8 11.77
2 20.62 0 18.18 15.77
3 8 18.18 0 6.66
4 11.77 15.77 6.66 0

The path’s length between two points is calculated in the
same way as described in the manual option. A square
matrix similar to the Dtsp matrix called tsptauis is created.
A Tsptau matrix consists of f rows and f columns. Tsptau
contains the initial value of tsp pheromones. Then the
heuristic function is calculated by using equation (9). Later,
the probability of each point is calculated and based on the
roulette wheel method, the next point is chosen. This
process is repeated until the final tsp path is formed. Based
on this formed tsp path, the local update of the pheromone
takes place, namely the reduction of the corresponding
values of the pheromone in the tsptau matrix. Reduction
occurs when an ant is transported from one point to another.
When decrementing the tsptau(i, j) value, the ant moved
from point i to j. The values of the diagonal of the matrix
remain with the initial value of the pheromone. Table 4
shows an example of pheromone reduction. The formed tsp
path describes the transportation from points 1 to 2, 2 to 4
and 4 to 3. The reduction of the pheromone has an
indicative value of 15. The example’s initial pheromone
value is 100.

Table 4 Tsptau matrix pheromone reduction example

n/n 1 2 3 4

1 100 85 100 100
2 100 100 100 85
3 100 100 100 100
4 100 100 85 100

After the colony completes finding the shortest path
between the points, the general pheromone is updated in a
similar way as the local. In addition, a tspDdiag is created.
TspDdiag contains the optimal path’s length of each colony
and is used to create a diagram with the number of iterations
and the optimal path’s length for tsp problem solving.

Finally, after finding the shortest path that connects
these points to each other based on the storemat matrix, the
path is drawn in the 3D operating space diagram. In
addition, the Ddiag chart is generated separately with the
number of iterations and the shortest path for every two
consecutive points. The tspDdiag diagram is also created in
a separate window. As mentioned in the manual option,
these diagrams assist in the solver’s input parameters
optimisation.

At the end of the solver, a txt file is created with the
coordinates of the movement points of the optimal path. The
txt file is created for both the manual and auto options.

2.2.11 Algorithm’s parameter selection
The number of ants should be determined according to the
size of the problem. The grid density and the size of the
operating spaces have a leading role in ant’s number
selection. The final values should be determined after
performing a number of tests. Indicatively, for an operating
space with 75 movement points, the number of ants could
range from 20 to 100. The coefficients a, b, ρ and ξ are
interdependent. Several combinational simulations are
needed to set them up. The values of the coefficients in this
paper were set to a = b = 1 and ρ = ξ = 0.2.

Figure 9 Flowchart of manual option

The heuristic function is significantly affected by the values
of the parameters w1, w2, and w3. The routes that are
constructed up until the optimal route is found alter as a
result of the various combinations of these parameters. They
also alter the number of iterations needed until the optimal

 Finding the optimal path in a 3D environment with predefined obstacles 59

solution is found. The values of w1, w2 and w3 in this paper
were set to w1 = w2 = w3 = 1.

Figure 10 Flowchart of auto method

Another parameter that can be adjusted is the number of
ant’s colonies. A large number of ant’s colonies costs
computing time. On the other hand, a small number may not
find the optimal path. Ant’s colony number depends on the
grid’s density, operation space size, and the quantity and
complexity of obstacles. λ and Κ variables significantly
affect the pheromone update process and, therefore, the path
generation. The values of ant’s colonies, λ and K in this
paper were set: ant’s colonies number = 100, K = 200 and
λ = 0.3.

2.2.12 Flowcharts of manual and auto methods
Figures 9 and 10 show the flow charts for manual and auto
options, respectively.

3 Experimental results
The results of the proposed method were further
investigated by applying them to a real experimental
challenge. In order to simulate a 3D environment with
obstacles and determine an optimal path for safe navigation
of a tool attached to the robot’s end effector, the proposed
method has been used. A Kawasaki RS010N industrial
robot was employed for the experiment. The environment
consists of three obstacles and four target points, as shown
in Figure 11. Figure 11(a) shows the results of the proposed
algorithm in a simplified manner and Figures 11(b)–11(h)
show the different stages of path execution.

The method was tested for various values and
combinations of w1, w2 and w3 coefficients. There is no
mathematical restriction on the values of w1, w2 and w3.

However, as mentioned above, it is recommended w1, w2,
w3 ∈ [0, 1]. The values of w1, w2, w3 represents the
importance of U(i, j, k), V(i, j, k) and S(i, j, k) respectively.
As a result, they affect the heuristic function’s value. When
w1, w2 and w3
> 1, the values of U(i, j, k), V(i, j, k) and S(i, j, k) are
decreasing. Hence, this decrease affects the contribution of
the heuristic function to the probability calculation
equation (2). When the value of the heuristic function is
decreased, the value of probability’s calculation is more
impacted by the value of the pheromone, thus, the formed
path depends almost exclusively on the pheromone’s
concentration. This fact may lead to a local optimal
solution, an increase in computation time, or an incorrect
finding of the optimal path.

Figure 11 Experimental results of a real world path planning
challenge, (a) simplified results of the proposed
method (b) robot’s tool at starting point (c) robot’s
tool before 1st obstacle (d) robot’s tool at 2nd target
point (e) robot’s tool after 2nd obstacle (f) robot’s
tool at 3rd target point (g) robot’s tool crossing 3rd
obstacle (h) Robot’s tool at 4th target point
(see online version for colours)

The following diagrams depict the algorithm’s behaviour
for the aforementioned tests. The tests were conducted in
the same operation spaces with the same predefined
obstacles. The tests carried out in the operation space
depicted in Figure 8(a) are for the manual method. The
purpose was to examine the algorithm’s responsiveness and
reliability in order to determine the optimal path from start
point 1 to end point 50. The initial pheromone value was
equal to 1,000, the ant’s colonies number was equal to 100
and the number of ants in the colony was equal to 40. The
coefficients a and b of equation (2) were equal to 1, the
coefficients ξ and ρ of equations 3 and 4 were equal to 0.2,
the constant λ of equation 5 was set to 0.3 and the constant
K of equation 5 was equal to 200.

60 G. Mansour et al.

Figure 12 shows the results for w1 = w2 = 1 and the
value of w3 is changed.

Figure 12 Diagrams for constant w1, w2 and changeable w3
(see online version for colours)

Figure 13 Diagram for constant w1, w3 and changeable w2
(see online version for colours)

In Figure 12, some variations are observed for different
values of w3, but all tests converge to the optimal solution
after a certain number of iterations.

Figure 13 shows the results for w1 = w3 = 1 and the
value of w2 is changed.

In Figure 13, some variations are observed for different
choices of the arithmetical values of w2, but after a certain
number of iterations, all the experimental tests converge to
the optimal solution.

Figure 14 shows the results for w2 = w3 = 1 and the
value of w1 is changed.

In Figure 14, some variations are observed for different
values of w1, however all tests converge to the optimal
solution after a certain number of iterations. For the case of
w1 = 5 the coverage of the optimal solution needs a higher
number of ant’s colonies compared to other tests.

Figure 15 shows the results for w1 = w2 = w3.

The graphs in Figures 12–15 show that for various
values of w1, w2, and w3, the ants can efficiently navigate
from a starting point to an end point, despite the fact that
there are a vast number of alternative selections from one
point to another. In addition, paths of varying length are
formed, indicating that the ants are exploring several
instances throughout the area. The length of the formed path
is longer than the length of the ideal path in the initial
iterations, indicating that the formed route improves as the
algorithm executes and the methods of navigation and
obstacle placement are taken into account during the path
forming process, allowing a more q realistic simulation of
the robot’s movement. If the length of the created routes is
initially unusually short, it indicates that the algorithm may
not take into account the obstacles or that the movement
strategy is improper. When the ant colony optimisation and
roulette wheel methods are used with erroneous obstacle
placement and movement strategy, they can create a path
that approaches the target through the obstacles, which does
not occur with the proposed method.

Figure 14 Diagram for constant w2, w3 and changeable w1
(see online version for colours)

Figure 15 Diagram for w1 = w2 = w3 (see online version
for colours)

 Finding the optimal path in a 3D environment with predefined obstacles 61

4 Conclusions

Ant colony optimisation combined with the roulette wheel
method can be used effectively for offline programming of
industrial robots. The proposed method finds the optimal
path in a 3D operation space with obstacles consistently.
The manual method can find the shortest distance between
two or more points while avoiding obstacles. The auto
method, assisted by the fundamentals of the manual method,
successfully applies the ant colony optimisation solution to
the TSP in a 3D operation with obstacles. One of the
disadvantages of applying the ant method in 3D space is the
increased computational requirements, which are mitigated
by calculating a priori some indispensable processes such as
the calculation of safety value and the feasible movement
points of the robot from a specified position. In this way, the
demanding calculations are performed only once and the
data can be accessed when necessary.

Ant colony optimisation depends on a variety of
coefficients that, with proper tuning, can drastically affect
the speed of finding the optimal path. The proper tuning can
also help avoid local optimal solutions and form efficient
and fast paths in a convoluted 3D operation space with
several points and obstacles. Optimal coefficient values may
vary proportionately with the complexity of the
environment.

References

Andreu-Perez, J., Deligianni, F., Ravi, D. and Yang, G-Z. (2017)
‘Artificial intelligence and robotics’, EPSRC UK-RAS, https://
doi.org/10.31256/wp2017.1.

Brand, M., Masuda, M., Wehner, N. and Yu, X-H. (2010) ‘Ant
colony optimization algorithm for robot path planning’, in
International Conference on Computer Design and
Applications, 25–27 June, https://doi.org/10.1109/iccda.2010.
5541300.

Chaari, I., Koubaa, A., Bennaceur, H., Trigui, S. and
Ai-Shalfan, K. (2012) ‘SmartPATH: a hybrid ACO-GA
algorithm for robot path planning’, in IEEE Congress on
Evolutionary Computation, 10–15 June, https://doi.org/
10.1109/cec.2012.6256142.

Chipperfield, A. and Fleming, P. (1994) Genetic Algorithms: A
Survey, Research Report, in Department of Automatic
Control and Systems Engineering, ACSE Research
Report 518.

Dai, X., Long, S., Zhang, Z. and Gong, D. (2019) ‘Mobile robot
path planning based on ant colony algorithm with A*
heuristic method’, Front. Neurorobot, Vol. 13, https://doi.org/
10.3389/fnbot.2019.00015.

Demir, H., Tolun, M.R. and Sari, F. (2021) ‘Time optimal path
planning model using genetic algorithm in RRR robot’,
International Journal of Engineering Technologies and
Management Research, Vol. 8, https://doi.org/10.29121/
ijetmr.v8.i5.2021.938.

Dorigo, M., Birattari, M. and Stützle, T. (2006) ‘Ant colony
optimization artificial ants as a computational intelligence
technique’, in IEEE Computational Intelligence Magazine,
18–20 October, pp.28–39, https://doi.org/10.1109/CI-M.2006.
248054.

Floreano, D. and Wood, R.J. (2015) ‘Science, technology and the
future of small autonomous drones’, Nature, Vol. 521,
pp.460–466, https://doi.org/10.1038/nature14542.

Kwaśniewski, K.K. and Kwaśniewski, K.K. (2018) ‘Genetic
algorithm for mobile robot route planning with obstacle
avoidance’, Acta Mechanica et Automatica, Vol. 12,
pp.151–159, https://doi.org/10.2478/ama-2018-0024.

Li, B., Wang, L. and Song, W. (2008) ‘Ant colony optimization for
the traveling salesman problem based on ants with memory’,
Fourth International Conference on Natural Computation,
https://doi.org/10.1109/icnc.2008.354.

Liu, H., Ge, J., Wang, Y., Li, J., Ding, K., Zhang, Z., Guo, Z.,
Li, W. and Lan, J. (2022) ‘Multi-UAV optimal mission
assignment and path planning for disaster rescue using
adaptive genetic algorithm and improved artificial bee
colony method’, Actuators, Vol. 11, https://doi.org/10.3390/
act11010004.

Ma, Y-N., Xiao, C-F., Gong, Y-J. and Zhang, J. (2019) ‘Path
planning for autonomous underwater vehicles: ant colony
algorithm incorporating alarm pheromone’, IEEE
Transactions on Vehicular Technology, Vol. 68, pp.141–154,
https://doi.org/10.1109/tvt.2018.2882130.

Mac, T.T., Copot, C., Tran, D.T. andDe Keyser, R. (2016)
‘Heuristic approaches in robot path planning: a survey’,
Robotics and Autonomous Systems, Vol. 86, pp.13–28,
https://doi.org/10.1016/j.robot.2016.08.001.

Malone, T.W., Rus, A.D., Viterbi, E. and Laubacher, R. (2020)
‘Artificial intelligence and the future of work’, MIT Work of
the Future, Research Brief 17.

Melanie, M. (1999) An Introduction to Genetic Algorithms, 5th
ed., MIT Press, London.

Ostfeld, A. (2011) Ant Colony Optimization Methods
and Applications, 4th ed., Intech Open, https://doi.org/
10.5772/577.

Patle, B.K., Babu, L.G., Pandey, A., Parhi, D.R.K. and
Jagadeesh, A. (2019) ‘A review: on path planning strategies
for navigation of mobile robot’, Defence Technology, Vol. 15,
pp.582–606, https://doi.org/10.1016/j.dt.2019.04.011.

Ravankar, A., Ravankar, A.A., Kobayashi, Y. and Emaru, T.
(2017) ‘Symbiotic navigation in multi-robot systems with
remote obstacle knowledge sharing’, Sensors, Vol. 17,
https://doi.org/10.3390/s17071581.

Reshamwala, A. and Vinchurkar, D.P. (2013) ‘Robot path
planning using an ant colony optimization approach: a
survey’, International Journal of Advanced Research in
Artificial Intelligence, Vol. 2, https://doi.org/10.14569/ijarai.
2013.020310.

Sanchez-Lopez, J.L., Wang, M., Olivares-Mendez, M.A.,
Molina, M. and Voos, H. (2019) ‘A real-time 3D path
planning solution for collision-free navigation of multirotor
aerial robots in dynamic environments’, Journal of Intelligent
& Robotic Systems, Vol. 93, pp.33–53, https://doi.org/
10.1007/s10846-018-0809-5.

62 G. Mansour et al.

Santos, L., Valente, A., Dos Santos, F.N. and Costa, P. (2020)
‘Path planning for ground robots in agriculture: a short
review’, in IEEE International Conference on Autonomous
Robot Systems and Competitions, 15–17 April, https://doi.org/
10.1109/icarsc49921.2020.9096177.

Wang, L., Kan, J., Guo, J. and Wang, C. (2019) ‘3D path planning
for the ground robot with improved ant colony optimization’,
Sensors, Vol. 19, https://doi.org/10.3390/s19040815.

Wang, X., Sahin, A. and Bhattacharya, S. (2022)
Coordination-free Multi-robot Path Planning for Congestion
Reduction Using Topological Reasoning, https://doi.org/
10.48550/arXiv.2205.00955.

Zafara, M.N. and Mohanta, J.C. (2018) ‘Methodology for path
planning and optimization of mobile robots: a review’,
Procedia Computer Science, Vol. 133, pp.141–152, https://
doi.org/10.1016/j.procs.2018.07.018.

Zhang, C., Ao, L., Yang, J. and Xie, W. (2020) ‘An improved A*
algorithm applying to path planning of games’, Journal of
Physics 2nd International Conference on Artificial
Intelligence and Computer Science, https://doi.org/10.1088/
1742-6596/1631/1/012068.

Zhang, S., Pu, J., Si, Y. and Sun, L. (2021) ‘Path planning for
mobile robot using an enhanced ant colony optimization and
path geometric optimization’, International Journal
of Advanced Robotic Systems, https://doi.org/10.1177/
17298814211019222.

