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Abstract: This study explored the application reservoir computing, particularly echo state
networks (ESNs), to control dynamic systems. The design method of a servo-level controller
was proposed, where the ESN matches the objective plant output with the reference output.
The ESN was combined with a feedback controller to obtain the control input of the plant. The
ESN-based controller was first trained using a linear-regression approach with fixed datasets
gathered from the objective plant. Thereafter, feedback error learning was performed during the
control process in real-time to compensate for the control error due to the identification error
of the plant’s inverse transfer function. Computational experiments involving the control of a
discrete-time nonlinear plant were conducted. The simulation results clarified the feasibility of
the proposal and validated the performance of the ESN-based controller.
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1 Introduction

Machine learning holds significant promise for providing
applicable technological solutions to a wide variety
of problems. Accordingly, recent advances in machine
learning have eased the handling of previously intractable
tasks in many fields, including science, engineering, social
science, economics, finance and business (Lu, 2019;
Sarker, 2021). For instance, although neural networks
(NNs) have been employed to solve several engineering
difficulties over the last half-century (Prieto et al., 2016),
deep learning-integrated NNs are superior and have
found application in real-world computing, particularly
in image, speech and text processing and recognition
(Schmidhuber, 2015; Alzubaidi et al., 2021). However, to
train deep learning-integrated NNs to create solutions that
mimic complicated real-world problems sufficiently, large
volumes of data are required. Additionally, the parameter
complexity, memory requirements and computational costs
increase as the training data grow.

This problem notwithstanding, many studies have
attempted to apply NNs in controlling dynamic systems.
These studies often encompass the identification and control
of uncertain or unknown nonlinear and non-stationary
systems, as well as the exploitation of the nonlinear
mapping, learning, generalising and optimising capabilities
of NNs. In this regard, many successful control systems
using NNs have emerged (Hagan et al., 2002; Meireles
et al., 2003; Denäi et al., 2007; Ruano et al., 2014;
Khargonekar and Dahleh, 2018). However, NNs must also
be able to realise system dynamics if they are to be used as
controllers in control systems. Although feedforward NNs
(FNNs) can realise system dynamics using tapped delay
line inputs, recurrent NNs (RNNs) have been shown to
exhibit computational advantages over FNNs in handling
temporal patterns structured in space and time. This is
the case even though the training process of RNNs has a
higher computational complexity, due to backpropagation
through time (BPTT) and real-time recurrent learning
(RTRL), than that of the FNNs (Salehinejad et al., 2017).
In addition, reservoir computing, encompassing echo state
networks (ESNs) (Jaeger and Haas, 2004) and liquid state
machines (Maass et al., 2002), has attracted substantial
attention as a training paradigm for RNNs over the past
two decades (Schrauwen et al., 2007; Lukoševičius and
Jaeger, 2009; Zhang and Vargas, 2023). To this end,
studies have shown that ESNs using several sparsely and
randomly generated connections (described as the reservoir)
can achieve global optimisation with high convergence
speed. They have, therefore, been applied successfully
to handle temporal data during various tasks, such as
dynamic system approximation, signal processing, time
series classification, time series generation and time series
prediction (Bala et al., 2018; Tanaka et al., 2019; Sun et al.,
2020). Moreover, the utilisation of ESNs in the control
engineering field for their computational advantages has
been explored. For instance, an ESN was employed as
an observer and predictive model to estimate controlled
objective plant dynamics in control systems, including state

feedback and model predictive control (Pan and Wang,
2012; Schwedersky et al., 2018; Jordanou et al., 2018;
Ogawa and Takahashi, 2021). Furthermore, a controller in
which an ESN afforded the control input of the objective
plant directly has been investigated, with some empirical
studies presented (Xu et al., 2005; Salmen and Ploger,
2005; Waegeman et al., 2012; Løvlid et al., 2013; Yao et al.,
2020; Perrusqúla and Yu, 2021). Therefore, the design of a
suitable controller based on an ESN for nonlinear dynamic
systems is interesting.

Based on this background, this study explores a possible
approach for controlling nonlinear dynamic systems using
an ESN and investigates the performance of the ESN-based
controller. In the control system, the ESN was designed
to comprise the objective plant’s control input that acts
as a servo-level controller, thereby ensuring that the
plant output matches the reference output. The ESN-based
controller was first trained using a linear-regression
approach with fixed datasets gathered from the objective
plant. Subsequently, feedback error learning in real time
was conducted during the control process, followed by
computational experiments to establish the effectiveness
of the ESN in control applications and evaluate the
characteristics of the ESN-based controller. The main
contributions of this study are summarised as follows:

1 An ESN-based approach applicable to the servo
control problem of nonlinear systems is proposed.

2 A practical design method for a feedback feedforward
controller based on ESN integration and feedback
error learning is provided.

3 The control performance and characteristics of the
proposed controller for a range of different nonlinear
systems are clarified.

2 ESN-based controller

2.1 The ESN

A standard model of an ESN consists of a reservoir
representing a fixed RNN and a readout element that
linearly connects the reservoir states to the output layer
(a guideline for designing ESN parameters can be found
in Lukoševičius (2012). In this study, by incorporating
connections from the input layer directly to the output
layer and feedback connections from the output layer to the
reservoir states, the input-output relationship of the ESN
can be obtained, as follows:

x(t+ 1) = (1− α)x(t) + αf(W ins(t+ 1)

+Wx(t) +W fbσ(t))
σ(t+ 1) =W outx̃(t+ 1)

, (1)

where s(t) ∈ RL, x(t) ∈ RM and σ(t) ∈ RN represent the
external input vector, the reservoir’s state vector and the
network output vector at the sampling time t, respectively.
The extended vector x̃(t) consists of the external input
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and the reservoir’s state vectors: x̃(t) = [s(t) . x(t)]T.
Additionally, W in ∈ RM×L is the input weight matrix
representing the connection weight from the input layer
to the reservoir, W ∈ RM×M is the internal connection
weight matrix between reservoirs, W fb ∈ RM×N is the
feedback connection weight matrix from the output layer
to the reservoir and W out ∈ RN×(M+L) is the readout
matrix representing the output connection weight from the
extended vector to the output layer, where the connection
weights include the threshold weight based on a constant
value. Furthermore, this study notably employs a leaky
integrator neuron in the reservoir to tune the network
dynamics with a leaking rate of α ∈ (0, 1], where the
function f(·) is an element-wise activation function of the
reservoir, which is typically given by a hyperbolic tangent
function to attain the nonlinearity of the network.

Subsequently, the connection weight matrices W in

and W fb are respectively initialised randomly using
uniform distributions of ranges [−ain, ain] and [−afb, afb].
Contrarily, the internal connection weight matrix between
reservoirs W is first initialised randomly using a uniform
distribution of range [−1, 1]. The connection fraction or
sparseness of this connection weight matrix is controlled
using the interconnectivity rate P . Thereafter, it is
significantly scaled to satisfy the echo state property
with a spectral radius of ρ(W ) < 1, where the function
ρ(·) indicates the maximum eigenvalue. These connection
weight matrices are kept constant. The readout matrix
W out is trained offline using the linear-regression approach
on a fixed dataset of desired input-output sets to minimise
the following real-valued cost function J :

J =
T∑

t=1

∥r(t)− σ(t)∥2 + γ∥W out∥2, (2)

where r(t) is the reference output vector, γ ∈ R+ is
a regularisation parameter and T indicates the time
series length. Notably, the ridge regression could also be
employed to derive the following expression:

W out = RX̃
T
(X̃X̃

T
+ γI)−1, (3)

where the matrices, X̃ = [ x̃(1) . x̃(2) . ... . x̃(T )] ∈
R(M+L)×T and R = [r(1) . r(2) . ... . r(T )] ∈ RN×T , are
the column-wise concatenation of the extended vectors
and the reference output vectors in the column direction,
respectively, and I is the identity matrix.

2.2 Feedforward feedback controller

In this study, a servo controller based on an ESN,
which ensures that the objective plant’s output matches
the reference output, is considered. To simplify the
controller design, we assume that the objective plant
is a predominantly linear discrete-time single-input and
single-output system, represented as follows:

y(t) = F (y(t− d), ..., y(t− n+ 1− d),

u(t− d), ..., u(t− ν − d)) , (4)

where y(t) and u(t) are the plant output and the control
input, respectively; n and m are the plant orders; d is
the plant dead time; ν = m+ d− 1 and function F (·)
expresses the input-output characteristics of the plant. Here,
we also assume that the upper limit order of the plant and
the dead time are known. Therefore, assuming the existence
of an inverse function of the plant characteristic function in
relation to the control input u(t− d), the condition under
which the control error, defined by the difference between
the reference and objective plant’s outputs, is zero can be
expressed as follows:

u(t) = F−1 (yr(t+ d), y(t), ..., y(t− n+ 1),

u(t− 1), ..., u(t− ν)) , (5)

where the sampling time is shifted by the dead time,
and yr(t) indicates the reference output of the plant. A
multilayer NN can approximate a static arbitrary nonlinear
function with arbitrary accuracy in general. Therefore,
such a network using an input vector whose components
are variables on the right side of equation (5) acquires
the inverse function F−1(·) after the convergence of
its learning and thus yields the control input u(t) for
conducting the control task. Similarly, when the ESN is
applied to synthesise the control input u(t), the input of
the ESN s(t) could be defined using the reference and
objective plant’s outputs by considering equation (5) and
the dynamics of the recurrent network based on the inner
feedback loop in the network: s(t) = [yr(t+ d) . y(t)]T.

In the offline training process of the readout matrix
W out based on equation (3), the control input u(t− d)
is selected as the teaching signal against the network
output σ(t), where the input of the ESN is defined as
s(t) = [y(t) . y(t− d)]T. Consequently, the ESN identifies
the inverse transfer function of the plant, as shown
in Figure 1(a), and acts as an inverse model-based
controller in the control process. Additionally, the readout
matrix is trained in real time by the least mean square
approach during the control task to compensate for the
identification error. However, when the cost function E,
defined straightforwardly using the squared control error,
is minimised during the real-time training, the Jacobian
information of the plant ∂y(t)

∂u(t−d) is required to calculate
the gradient of E in relation to the components of the
readout matrix. To address this problem, a feedback error
learning scheme is introduced. Therefore, the cost function
E is defined using a feedback loop output synthesised by
a conventional feedback controller, and the updated rule of
the readout matrix is finally derived, as follows:

W out(t+ 1) = (1− β)W out(t) + ηv(t)x̃T(t), (6)

where v(t) is the feedback loop output, η ∈ R+ is the
learning rate and β ∈ R is the decay rate. Consequently,
the control input comprises the ESN output σ(t) and
the feedback loop output v(t), as shown in Figure 1(b).
Although the feedback loop is also expected to prevent
system instability due to the ESN’s identification error,
the ESN becomes a feedforward controller if the ESN
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training by the feedback error learning proceeds ideally.
Such a controller is called a feedforward feedback controller
(Yamada, 2009).

2.3 Controller stability

The stability of the controller is vital for its performance;
however, it is occasionally difficult to achieve because
of the nonlinearity of the ESN and the plant, even if
the feedback controller is linear. Therefore, the local
stability condition of the feedforward feedback controller is
addressed under the following assumptions:

1 The plant expressed by equaiton (4) is a linear
time-invariant system where the upper limit orders of
the plant and the dead time are known.

2 The input of the ESN is given by
s(t) = [yr(t+ d) . y(t)]T, and the ESN output σ(t) is
used to synthesise the control input: L = 2 and
N = 1.

3 The feedback controller uses a proportional (P)
control law, i.e., v(t) = Kp{yr(t)− y(t)}, where Kp

is the gain factor, and there exist the ESN’s
connection weight matrices that can make the output
of the feedback controller sufficiently small.

According to Assumption 1, the plant can be represented by
the state-space equation, as follows:{

ζ(t+ 1) = Aζ(t) + bu(t)

y(t) = cTζ(t)
, (7)

where ζ(t) ∈ Rn is the state vector. Applying Assumption
3 to equation (6), the readout matrix can be assumed to
be a constant matrix when the decay factor is adequately
small. By substituting the control input u(t) = σ(t) + v(t)
given by Assumption 2 into equation (7) and combining
with equation (1), we obtain the following expression:

q(t+ 1) = Ψq(t) +Φyr(t), (8)

where q(t) = [ζ(t) . x(t)]T and the coefficient matrices are
given by

Ψ =

[
A+ bW out

12 c
T −Kpbc

T bW out
2

αHψ21 (1− α)I + αHψ22

]
, (9)

Φ =

[
Kpb

αHϕ2

]
, (10)

where ψ21 = {W in
2 c

T(A+ bW out
12 c

T −Kpbc
T) +

W fbW out
12 c

T}, ψ22 = (W fb +W in
2 c

Tb)W out
2 +W

and ϕ2 = {W in
1 zd+1 + (W fb +W in

2 c
Tb)W out

11 zd +
KpW

in
2 c

Tb}. The connection weight matrices are
represented using block matrices: W in = [W in

1 .W in
2 ]

(W in
1 ,W in

2 ∈ RM ), W out = [W out
11 .W out

12 .W out
2 ]

(W out
11 ,W out

12 ∈ R, W out
2 ∈ RM ). Moreover, matrix H

represents the nonlinear property of the ESN: H =

diag[ f(θi)θi
] ∈ RM×M , where θi =

∑L
j=1 W

in
ij sj(t+ 1) +∑M

j=1 Wijxj(t) +W fb
i σ(t). Consequently, the local

stability can be guaranteed if the spectral radius of matrix
Ψ in equation (8) is less than one. This result is derived
under very limited conditions; however, it may provide
information on the stability condition of the controller.

Figure 1 Block diagram showing the control system using the
ESN-based controller, where z is the shift operator,
(a) identification system during the training process
(b) feedback error learning during the control process
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3 Computational experiments

To investigate the capability and characteristics of the
ESN-based feedforward feedback controller, computational
experiments were conducted using a second-order dominant
autoregressive-moving-average (ARMA) model with
nonlinear and parasitic terms as the objective plant:

y(t) = −
2∑

i=1

aiy(t− i) +

2∑
i=1

biu(t− i)

+ any
2(t− 1) + apy(t− p) +

2∑
i=1

ciξ(t− i), (11)

where ξ(t) is the random noise given by a uniform
distribution of range [–0.05, 0.05]. Thus, the coefficients
were set as follows: a1 = –1.3, a2 = 0.3, b1 = 1, b2 = 0.7,
an = 0.2, ap = –0.03, p = 3, c1 = 1 and c2 = –0.3.

First, the influence of the ESN model parameters on
the learning performance was investigated because the
performance of the controller depends on the identification
accuracy. Using the identification system shown in
Figure 1(a), we investigated the scaling model parameters
systematically, including the uniform distribution scales ain
and afb for the input and feedback connection weight
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matrices, the number of reservoirs M , the interconnectivity
rate P for the internal connection weight matrix and the
leaking rate α. Here, the spectral radius was scaled to
ρ = 0.9 after the maximum eigen value of the internal
connection weight matrix was evaluated. Training samples
consisting of the input-output sets for the plant were
assembled in advance. The assembly was achieved through
a preliminary experiment where the plant was driven by
using the plant input generated randomly based on a
uniform distribution of range [–0.5, 0.5]. Two hundred
trials were conducted, and the length of a single trial was
50 sampling numbers: {(y(1), u(1)), ..., (y(50), u(50))}.
Therefore, the total number of training patterns was
10,000 (hereinafter, this dataset is called ‘D10K’). After
training the readout matrix using equation (3) with
the regularisation parameter of 0.0001, the learning
performance was evaluated using the mean of the squared
error (MSE) approach during the identification experiment.
Here, the control input u(t) was synthesised using the
proportional-integral-derivative (PID) controller with P,
I and D gains of 0.5, 0.1 and 0.01, respectively,
against the rectangular wave as the reference output
of the plant. Further, the MSE in the identification
experiment was defined using the control input u(t) and
the ESN output σ(t): MSEI = 1

TI

∑TI
t=1 |u(t)− σ(t)|2. In

the identification experiment, the length of a single trial TI
was 200 sampling numbers. Figure 2(a) shows the resulting
MSEI surface obtained using the result of the ten runs
for each uniform distribution scale (ain, afb) combination
for each number of reservoirs M , with the leaking rate
of the neuron set to 0.9. The amplitudes of MSEI are
indicated by the colour bar on the right side of the figure.
The Shapiro-Wilk test with a 5% significance level did
not show normal distributions in several cases. Therefore,
the evaluation was conducted using the median and
interquartile ranges of MSEI. Investigations revealed that
increasing the scale ain decreased the identification error,
whereas increasing the scale afb increased the identification
error. Moreover, the Kruskal-Wallis test showed statistical
differences, with a significance level of 5%. Increasing the
number of reservoirs also decreased the identification error;
however, no statistical difference was observed between
the parameter combinations showing MSEI less than 0.01.
Moreover, using a considerably large number of reservoirs
against the number of datasets might lead to increased
computational costs, network overfitting and the occurrence
of the ill-posed problem during the readout matrix training.
For these investigations, the number of reservoirs was
set to 200, and the scales ain and afb were set to
1.0 and 0.1, respectively, in the subsequent experiments.
Figure 2(b) shows the resulting MSEI surface obtained
using the result of the 10 runs for each interconnectivity rate
and leaking rate (P, α) combination. The evaluation was
also conducted using the median and interquartile ranges
of MSEI. Although the interconnectivity rate did not
affect the learning performance, increasing the leaking rate
decreased the identification error. Considering this result,
the interconnectivity rate and the leaking rate were set to

0.2 and 0.9, respectively. Figure 3 shows an example of
the system response during the identification experiment,
where the ESN model parameters use the values determined
through the investigation, as shown in Figure 2. As shown
at the bottom of Figure 3, the ESN output aligned with
the control input synthesised using the PID controller. This
confirmed that the ESN could sufficiently approximate the
control input with adequate accuracy and that the MSEI

was less then 0.01, thereby affording the inverse transfer
function of the plant.

Figure 2 Error (MSEI) surface of the ESN-based controller in
the identification experiment, (a) effect of the scales
for the input and feedback connection weights and
the number of reservoirs (b) effect of the
interconnectivity rate for the reservoir and the leaky
integrator neuron’s leaking rate (see online version
for colours)
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Next, the control performance of the ESN-based controller
was assessed using the control system shown in Figure 1(b),
where the P control law was used in the feedback controller
to apply the feedback error learning to the ESN. In
the control experiment, the ESN was first trained offline
with 50,000 training patterns (hereinafter, this dataset is
called ‘D50K’) assembled from 1,000 trials with a length
of 50 sampling numbers per single trial, following the
same procedure employed for the learning performance
experiment. For the feedback error learning, the P gain was
0.1 and the learning and decay rates were set to 0.05 and
0.0001, respectively. Here, the P gain was determined by
trial and error to ensure that the feedback error learning
proceeds without the divergence of the plant output. The
reference output of the plant yr(t) appeared as a rectangular
wave. Figure 4 shows examples of the system response
with and without the implementation of the feedback error
learning. Control errors, e.g., the offset, can be observed
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in Figure 4(a), caused by the identification error of the
ESN. Fortunately, subjecting the ESN-based controller to
feedback error learning can reduce the control error, as
shown in Figure 4(b). Figure 5 compares the control
performances obtained using the MSE during the control
experiment: MSEC = 1

TC

∑TC
t=1 |yr(t)− y(t)|2, where the

length of a single trial TC was 200. The evaluation was
conducted using the median and interquartile ranges of the
MSEC obtained from the results of the 100 runs. This
was done because normal distributions were lacking in
these indices, according to the Shapiro-Wilk test with a
significance level of 5%. However, the Kruskal-Wallis test
showed a statistical difference, with a significance level of
5%. This result confirms the feasibility of the proposed
controller and the effectiveness of real-time feedback error
learning in reducing the control error. Although the control
error could be reduced using feedback error learning, the
feedback loop increased the overshoot of the plant output at
a transient point where the reference output varied rapidly.
This occasionally made the plant output unstable since the
sign of the feedback controller output was the same as that
of the ESN output. Consequently, the control parameters
of the feedback controller should be tuned carefully to
guarantee the stability of the control system.

Figure 3 Examples of the system response in identifying the
inverse transfer function of the ARMA model plant
(see online version for colours)

Notes: The top figure shows the system’s output,
where the reference and plant outputs are
denoted by the thin black and blue lines, respectively.
The bottom figure shows the control input,
where the PID controller and ESN outputs are
denoted by thin black and red lines, respectively.

Next, the control capability of the ESN-based controller
against other plants was tested. Figure 6(a) shows the
system’s response when controlling the Hammerstein
model, represented by the following expression:

y(t) = −
2∑

i=1

aiy(t− i) +
2∑

i=1

{biu(t− i)

+ miu
2(t− i) + niu

3(t− i)
}
+

2∑
i=1

ciξ(t− i), (12)

where the coefficients were set as follows: a1 = –0.6, a2
= 0.1, b1 = 1.8, b2 = –0.15, m1 = –1.8, n1 = 0.15, m2

= 0.6 and n2 = –0.05. Figure 6(b) shows the system’s
response when controlling the bilinear model, represented
by the following expression:

y(t) = −
2∑

i=1

aiy(t− i) +
2∑

i=1

biu(t− i)

+
2∑

i=1

miy(t− i)u(t− i) +
2∑

i=1

ciξ(t− i), (13)

where the coefficients were set as follows: a1 = –0.4,
a2 = 0.09, b1 = 0.3, b2 = –0.1, m1 = 0.1 and m2 =
0.05. Notably, the ESN-based controller had to be retrained
offline using the new datasets obtained from the new plant,
and the feedback error learning was performed during the
control process. Here, the ESN model parameters were the
same as those employed for controlling the ARMA model
plant. Investigations revealed that the ESN-based controller
ensured that each plant output matched the reference
output appropriately even though the ESN was not exactly
optimised for each plant. By so doing, the usefulness of
the proposed controller for controlling nonlinear plants was
established. However, as shown in Figures 4(b) and 6, the
ESN-based controller could not compensate for the effect of
the plant noise completely. Further, even though the output
of the feedback controller appeared to be close to zero, the
control error remained because of the plant noise.

The control performance obtained with the ESN-based
controller was compared with that obtained using a
conventional control method. Here, the generalised
predictive control (GPC), a model predictive control
approach that outperforms the PID controller (Schwenzer
et al., 2021), was considered. Although the GPC was
designed using a linear model of the objective plant, i.e., a
controlled autoregressive-integrated-moving-average model,
it ensured that the plant output matched the desired output,
where the prediction and control horizons were set to one.
As shown in Figure 7, the ESN-based controller exhibited
better performance than the GPC in controlling each
plant. The Kruskal-Wallis test demonstrated their statistical
differences, revealing a significance level of 5%. This
result also demonstrates the effectiveness of the proposed
controller in controlling nonlinear plants.

Finally, the characteristics of the ESN in control
applications were investigated by comparing it with the
other networks. A RNN and a nonlinear autoregressive
exogenous network (NARXN) were tested as replacements
of the ESN in the feedforward feedback controller. Here, an
Elman network was considered as the RNN, and a FNN and
a radial basis function network (RBFN) were adopted as
the NARXN. Although these networks are popular and their
methodologies are well known, there are several variations
depending on the intended application. The experimental
conditions of each network for this task are as follows:

• RNN: The input-output relationship of the Elman
network consisting of the input, hidden, context and
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output layers can be expressed as follows:{
x(t+ 1) = f(W ins(t+ 1) +Wx(t))
σ(t+ 1) =W outx(t+ 1)

, (14)

where s(t) ∈ RL, x(t) ∈ RM and σ(t) ∈ RN are the
external input vector, the output vector from the
hidden layer and the network output vector,
respectively. Moreover, W in ∈ RM×L is the input
weight matrix representing the connection weight
from the input layer to the hidden layer, W ∈ RM×M

is the connection weight matrix from the context
layer to the hidden layer, W out ∈ RN×M is the
connection weight matrix from the hidden layer to the
output layer and f(·) is an element-wise activation
function of the neuron in the hidden layer. In the
controller, the network output σ(t) was employed to
synthesise the control input u(t) and the input of the
RNN was the same vector used for the ESN. The
activation function f(·) was the same as that for the
ESN. Using the truncated BPTT algorithm, all
connection weight matrices were trained offline with
the training samples to minimise the cost function,
defined by summing the squared error between the
desired control input and the network output over the
length of the single trial.

• FNN: The input-output relationship of the FNN
consisting of the input, hidden and output layers can
be expressed as follows:

σ(t) =W outf(W ins(t)), (15)

where s(t) ∈ RL and σ(t) ∈ RN are the external
input vector and the network output vector,
respectively. W in ∈ RM×L is the input weight matrix
representing the connection weight from the input
layer to the hidden layer, W out ∈ RN×M is the
connection weight matrix from the hidden layer to the
output layer and f(·) is an element-wise activation
function of the neuron in the hidden layer. In the
controller, the network output σ(t) was employed to
synthesise the control input u(t) and the input of the
FNN was defined based on the tapped delay line of
the plant input-output sets:
s(t) = [yr(t+ d) . y(t) . y(t− 1) . u(t− 1)]T. The
activation function f(·) was the same as that for the
ESN. Applying the stochastic gradient descent
method, all connection weight matrices were trained
offline with the training samples to minimise the cost
function to be the same as that for the RNN.

• RBFN: The input-output relationship of the RBFN
consisting of the input, RBF and output layers can be
expressed as follows:

σ(t) =W outg(s(t)), (16)

where s(t) ∈ RL and σ(t) ∈ RN are the external
input vector and the network output vector,

respectively; W out ∈ RN×M is the connection
weight matrix from the RBF layer to the output layer.
The ith component of the vector g is defined by the
RBF with centre µi ∈ RL and distribution κi ∈ R+.
In the controller, the network output σ(t) was
employed to synthesise the control input u(t) and the
input of the RBFN was the same vector used for the
FNN. The RBF was given by a Gaussian function:
gi(x) = exp(−∥x−µi∥

2

κ2
i

). The RBF parameters were
defined by k-means clustering using the training
samples, after which the connection weight matrix
was trained offline following the same procedure
employed for the ESN.

Figure 4 Examples of the system response in controlling the
ARMA model plant using the ESN-based controller,
(a) control without feedback error learning (b) control
with feedback error learning (see online version
for colours)

(a)

(b)

Notes: The top figure shows the system’s output,
where the reference and plant outputs are
denoted by thin black and blue lines, respectively.
The bottom figure shows the control input,
where the control input and the feedback
controller’s output are denoted by red and thin
black lines, respectively.
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Figure 5 Control performance of the ESN-based controller
with feedback error learning (see online version
for colours)

Without With

Feedback error learning
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c

Note: *p < 0.05.

Figure 6 Examples of the system response in controlling the
nonlinear plant using the ESN-based controller,
(a) controlling the Hammerstein model plant
(b) controlling the bilinear model plant
(see online version for colours)

(a)

(b)

Notes: The top figure shows the system’s output,
where the reference and plant outputs are
denoted by thin black and blue lines, respectively.
The bottom figure shows the control input,
where the control input and the feedback
controller’s output are denoted by red and thin
black lines, respectively.

Figure 7 Comparison of the control performances of the
ESN-based controller for different plants
(see online version for colours)
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Figure 8 Comparison of the controller performances among
the networks, (a) controlling the ARAM model plant
(b) controlling the Hammerstein model plant
(c) controlling the bilinear model plant
(see online version for colours)
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In the identification experiment, which was conducted
following the same procedure employed for the ESN, each
network parameter was first tuned in advance using each
network’s MSEI based on the result of the ten runs with
the D10K, where 5 ≤ M ≤ 200 in the RNN (the truncation
length τ in the BPTT was 10 ≤ τ ≤ 50), 5 ≤ M ≤ 100 in
the FNN and 10 ≤ M ≤ 500 in the RBFN. The results of
the statistical test and the consideration of the computational
cost indicated that the RNN used ten units in the hidden
layer and ten units in the context layer, truncating the
training sample to a length of 25; the FNN used ten units
in the hidden layer; and the RBFN used 100 RBFs. The
identification and control experiments were conducted in
the same manner as those for the ESN; that is, after each
network was trained with the D50K corresponding to each
plant, the 100 runs using each network were conducted.
Thereafter, each network-based controller’s performance
represented by MSEC was evaluated. Here, the feedback
error learning of the connection weight matrix W out

was implemented for each network-based controller to
make the control experimental condition the same as that
for the ESN. In Figures 8(a)–8(c), the results of the
control experiment using each network-based controller are
summarised. Statistical differences were observed between
all networks for all plants according to the Steel-Dwass
test, with a significance level of 5%. Investigations revealed
that the control performance with the ESN does not
always outperform those with the other networks even
if the ESN could achieve accurate control. The RNN,
FNN and RBFN approximate the mapping function of
the target by preserving the information contained in the
training data. This includes the intercorrelations and pattern
structures distributed in the connection weight matrices
and the RBF parameters by training the network. In
contrast, the ESN approximates the computational task
of the target using dynamic patterns, which are excited
by the external input for a constant period within the
reservoir, as the reference data. Accordingly, the readout
matrix learns the task itself by adjusting the combination
of such dynamic patterns rather than merely memorising
the training patterns. Therefore, these results indicate that
a good reservoir is necessary and important for attaining
outstanding performance with the ESN even though the
ESN has the advantage in training cost over the other
networks. However, the design of such a reservoir in the
control application would depend highly on the type of
objective plant and the property of the training data.

4 Conclusions

This study explored the application of an ESN to a
servo-level controller. A feedforward feedback controller,
which ensured that the plant output matched the reference
output, was designed using the ESN. Further, the ESN
was trained offline in advance of using the ridge
regression against the predetermined input-output datasets
of the objective plant. The ESN was additionally trained
in real time using the feedback error learning during

the control task. Subsequently, computational experiments
using nonlinear discrete-time systems, such as the ARMA
model using a nonlinear term, the Hammerstein model and
the bilinear model as the objective plant, were conducted
to assess the characteristics of the ESN-based feedforward
feedback controller. Simulation results confirmed the
feasibility of applying the proposed controller and clarified
the effectiveness of the feedback error learning in
compensating for the control error associated with the ESN
in the controller. Although the control performance of
the ESN was not always better than those of the other
networks, such as RNN, FNN and RBFN, the experimental
result showed that the ESN-based controller exhibited good
control accuracy.
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Lukǒsevǐcius, M. (2012) ‘A practical guide to applying echo state
networks’, Neural Networks: Tricks of the Trade, pp.659–686,
Springer, Berlin, Heidelberg.



An echo state network-based feedforward feedback controller for application in dynamic systems control 49
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