
 
International Journal of Web and Grid Services
 
ISSN online: 1741-1114 - ISSN print: 1741-1106
https://www.inderscience.com/ijwgs

 
Simplified swarm optimisation for CNN hyperparameters: a
sound classification approach
 
Zhenyao Liu, Wei-Chang Yeh
 
DOI: 10.1504/IJWGS.2024.10062236
 
Article History:
Received: 20 September 2023
Last revised: 31 October 2023
Accepted: 13 December 2023
Published online: 25 March 2024

Powered by TCPDF (www.tcpdf.org)

Copyright © 2024 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijwgs
https://dx.doi.org/10.1504/IJWGS.2024.10062236
http://www.tcpdf.org


   

  

   

   
 

   

   

 

   

   Int. J. Web and Grid Services, Vol. 20, No. 1, 2024 93    
 

   Copyright © 2024 Inderscience Enterprises Ltd. 
 
 

   

   
 

   

   

 

   

       
 

Simplified swarm optimisation for CNN 
hyperparameters: a sound classification approach 

Zhenyao Liu* and Wei-Chang Yeh 
Integration and Collaboration Laboratory, 
Department of Industrial Engineering and Management Engineering, 
National Tsing Hua University, 
Hsinchu, Taiwan 
Email: liuzhenyao49@gmail.com 
Email: yeh@ieee.org 
*Corresponding author 

Abstract: The pervasive integration of environmental sounds into diverse 
aspects of daily life – ranging from smart city management, accurate location 
pinpointing, surveillance mechanisms, auditory machine functionalities, to 
environmental monitoring – is evident. Central to this is environmental sound 
classification, gaining academic traction. However, sound classifications 
present challenges due to the variables causing noise. This research aimed to 
discern the convolutional neural network (CNN) model with optimal accuracy 
in ESC tasks via hyperparameter optimisation. Simplified swarm optimisation 
(SSO) algorithm was harnessed to encapsulate the CNN architecture, providing 
an untransformed representation of CNN hyperparameters during optimisation. 
Utilising the prominent datasets and applying data augmentation techniques, 
the CNN model designed via SSO achieved accuracies of 99.01%, 97.42%, and 
98.96% respectively. Compared to prior studies, this denotes the highest 
accuracy from a pure CNN model, advancing automated CNN design for urban 
sound classification. 
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1 Introduction 

In contrast to visual data, auditory data encapsulates a higher degree of semantic 
information (Thwe and War, 2017). Specifically, the significance of sound data has 
augmented in terms of garnering environmental insights. Implementations in everyday 
applications necessitate the utilisation of environmental sounds, as opposed to speech and 
musical sounds. Consequently, there has been an ascending trend in urban sound 
classification research. Environmental sound classification (ESC), recognised as a pivotal 
task in non-speech sound classification (Mu et al., 2021), plays an integral role in 
numerous applications including noise pollution analyses (Maisonneuve et al., 2010; 
Adapa, 2019), monitoring system (Arslan and Canbolat, 2018; Greco et al., 2019; 
Chandrakala and Jayalakshmi, 2019), situational awareness applications (Qu et al., 2022; 
Khan et al., 2020; Adidarma, 2023), machine sound testing (Lyon et al., 2010) and smart 
cities (Viveros-Muñoz et al., 2023). A wide array of statistical and machine learning 
methodologies (Park and Yoo, 2020; Madhu and Suresh, 2022; Peng et al., 2023; İnik, 
2023) have been explored in the ESC literature. However, compared to deep  
learning-based research (Jahangir et al., 2023), these methods have exhibited relatively 
lower rates of success. The high success rates have stimulated extensive utilisation of 
deep learning models in recent ESC tasks (Nicholls, 2019; Abayomi-Alli et al., 2022; 
Tripathi and Paul, 2022; Presannakumar and Mohamed, 2023). Subsequent sections will 
delve into these studies in more detail. 

2 Related work 

A variety of datasets have been crafted to facilitate the ESC tasks. Piczak developed 
ESC-10/50 datasets in 2015 (Piczak, 2015). Ribeiro (2017) deployed a convolutional 
neural network (CNN) model to classify three distinct datasets. Research findings suggest 
that, when compared to alternative existing methodologies, the CNN model demonstrates 
a much better performance. In a subsequent study conducted by Davis and others (Davis 
and Suresh, 2018), a CNN was employed for ESC classification. Additionally, data 
augmentation methods were implemented during CNN training phase, resulting in getting 
a better result of the model with augmented data. 

In a research endeavour by Su et al. (2020) a strategy was put forth to combine two 
distinct attributes within the ESC framework, aiming for a more holistic portrayal. The 
Urbansound8k was developed in 2014 (Salamon et al., 2014), and the outcome was the 
development of a specialised four-layer CNN architecture, denoted as TSCNN-DS, 
meticulously designed for effective classification. Impressively, this network yielded a 
remarkable accuracy of 97.2% when applied to the US8K dataset. Turning attention to 
the intricacies posed by sound overlapping, Mushtaq and Su (2020) addressed the 
complexities that arise when considering multiple sound sources in relation to 
microphone placement. Their solution involved the utilisation of a deep-CNN in 
conjunction with the ESC dataset. To improve feature extraction, an examination of three 
techniques was conducted that resulting in significant accuracy scores of 94.94% for 
ESC-10, 89.28% for ECS-50, and 95.37% for the US8K. They also utilised seven/ 
nine-layer CNN models in conjunction with the ESC-10/50 and US8K datasets, this 
approach underscored the effectiveness of meaningful data augmentation in enhancing 
acoustic information processing. Notably, the application of this technique yielded 
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remarkable results, with ResNet-52 achieving accuracy of 99.04% for ESC-10, and the 
US8K reached the accuracy of 99.49%, and the dataset ESC-50 attaining 97.57% with 
DenseNet-161. Yazgaç and Kırcı (2022) introduced two fractional-order calculus-based 
data augmentation techniques for audio signals, demonstrating their effectiveness in 
enhancing classification accuracy by increasing the dataset size six-fold and 
outperforming non-augmented datasets, thus pioneering the use of fractional-order 
calculus in audio data augmentation. 

Takahashi et al. (2018) put forth a CNN model for the detection of acoustic events, 
drawing inspiration from the VggNet framework. They also suggested a novel approach 
for augmenting the data utilised during the training process. In the sphere of deep 
learning models’ training phase, Tokozume et al. (2018) introduced a unique strategy for 
data input into the model. Termed as between-class learning, this method generates 
sounds intermediate between classes by blending two sounds from distinct classes at 
random proportions. Based on the report, this cross-class learning approach exhibits 
strong performance in both speech recognition networks and data augmentation. 
Furthermore, the report delineates an ESC classification network that has been trained 
utilising the suggested methodology, with reported results indicating error rates in speech 
recognition lower than those achieved by human performance. Peng et al. (2020) detail 
the critical endangerment of the Chinese white dolphin population, highlighting the 
urgent need for conservation actions informed by reliable data. It critiques the traditional 
man-on-boat-watch method for dolphin observation as inefficient, proposing an internet 
of things (IoT) based mechanism involving hydrophones, UAVs, and a command control 
system. A Monte Carlo simulation demonstrates the IoT method’s superior effectiveness 
over the traditional approach, emphasising the innovative contribution of the study while 
acknowledging its limitation of using off-the-shelf rather than high-end products (Peng  
et al., 2020). 

The ESC challenge was addressed comprehensively by Roy et al. (2022) through the 
deployment of an extended CNN architecture, a notable departure from the customary 
max-pooling approach adopted post-convolution. In parallel, an exploration into the 
influence of diverse expansion ratios and convolution layer quantities was undertaken to 
dissect their impact on the obtained outcomes. Their findings showcased the superiority 
of the extended CNN over its max-pooling counterpart when applied to the ESC problem. 
However, it was noteworthy that an undue augmentation in filter quantities and ratios 
negatively impacted the classification accuracy. Turning to the realm of one-dimensional 
(1D) CNN networks, Abdoli (2021) tackled ESC classification with a unique perspective. 
Their approach involved the extraction of frames from audio signals to serve as input data 
for the network. Thorough experimentation yielded noteworthy outcomes, evident in an 
average rate of 89% on the US8K. Crucially, opting for raw input data has surfaced as the 
prime selection among end-to-end techniques, yielding unparalleled performance. 
Remarkably, the proposed methodology not only outperformed several existing models in 
the literature but also exhibited a parsimonious parameter count, further bolstering its 
appeal. 

In a parallel study by Ashurov et al. (2022) attention was drawn to the convolutional 
layer’s filter sizes and activation functions within CNNs, dissecting their impact on ESC 
tasks. This exploration led to the formulation of a model, which demonstrated remarkable 
prowess across three distinct sound datasets, particularly excelling with fewer errors on 
the US8K dataset, setting it apart from alternative approaches. In a different vein, Lim  
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et al. (2017) presented a CNN-centric methodology tailored for sound event 
classification. Their approach effectively categorised 30 different sound events across a 
diverse array of datasets, culminating in an impressive accuracy rate of 81.5%. Shifting 
focus to spatial aspects, Tuncer et al. (2020) embarked on ESC classification using 
innovative spiral patterns and a unique 2D-4M pooling approach. Kuang et al. (2021) 
introduced an innovative web of things (WoT) concept aimed at enhancing police  
anti-terrorism operations, validated through Monte Carlo simulations comparing the 
traditional and WoT-based police rescue squad forces (RSF). The findings demonstrate 
that the WoT-based RSF significantly outperforms the current approach, offering 
commanders a more effective, less risky, and cost-efficient method for executing  
anti-terrorist and hostage rescue missions (Kuang et al., 2021). The impact of their 
method was assessed across the ESC-10 and ESC-50 datasets, revealing elevated levels. 
Concurrently, Dogan et al.’s (2020) work offered a robust feature extraction strategy 
targeting the identification of activity locations within environmental sounds. This  
multi-stage method encompassed feature creation, selection, and classification. Deployed 
on the ESC-10 dataset, this approach achieved a commendable accuracy rate of 90.25%. 
Venturing into noise-affected domains, Gontier et al. (2021) conducted an intricate 
exploration to mitigate the distortive effects of noise on high-accuracy deep learning 
models. Their study encompassed analyses of attacks on CNN-classified ESC data and 
led to the creation of benchmark datasets tailored for such investigations. Lastly, İnik’s 
contribution introduced a PSO-based CNN hyperparameter optimisation method 
applicable to ESC and US8K datasets. Impressively, this technique yielded accuracy rates 
of 98.64%, 93.71%, and 98.45% respectively, showcasing its efficacy across diverse 
datasets (İnik, 2016). Sangaiah et al. (2023) introduce an intelligent method for dynamic 
resource allocation in cloud computing using Takagi-Sugeno-Kang (TSK) neural-fuzzy 
systems and ant colony optimisation (ACO) to enhance efficiency and reduce energy 
consumption. The method optimises virtual machine migration and resource allocation, 
demonstrating improved performance in various criteria, including energy efficiency and 
request handling, compared to existing approaches (Sangaiah et al., 2023). Khanduzi and 
Sangaiah (2023) introduce a recurrent neural network (RNN) to effectively solve the 
continuous defensive location problem (CDLP), a complex bilevel mathematical model 
for placing defence facilities. The RNN outperforms existing methods like tabu search 
and imperialist competitive algorithm in terms of execution time, precision, and keeping 
attackers further from critical points, particularly in smaller-sized problems where it 
matches the results of exact methods with less runtime (Khanduzi and Sangaiah, 2023). 
Sakamoto et al. (2019) discusses the evolution of networks, particularly the emergence of 
wireless mesh networks (WMNs) which, despite their robustness and ease of 
maintenance, face challenges like the NP-hard node placement problem. The work 
introduces WMN-PSOSA, an intelligent hybrid simulation system combining particle 
swarm optimisation (PSO) and simulated annealing (SA), and demonstrates its 
effectiveness, particularly for Weibull distributions, through performance evaluations 
involving different mesh client distributions (Sakamoto et al., 2019). 

Mkrtchian and Furletov (2022) explored the application of AlexNet and GoogLeNet 
architectures for the classification tasks involving the ESC and US8K datasets. Their 
methodology involved the transformation of audio signals within these datasets into 
image representations through the utilisation of spectrogram, MFCC, and CRP 
techniques. These transformed images then underwent classification processes using deep 
learning models. In a distinct vein, Ahmed et al. (2020) introduced an inventive stacked 
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CNN model that leveraged a unique approach. Their model incorporated multiple 
convolutional layers with reduced filter numbers, forming a distinctive network structure. 
Notably, their method entailed training two separate CNN networks using the original 
raw audio signal data. The integration of these networks culminating in the creation of a 
novel CNN model termed DS-CNN. This innovative model exhibited remarkable 
performance improvements in contrast to other CNN-based architectures across the ESC 
and US8K datasets. 

In general, deep learning models have demonstrated superior performance in 
achieving successful results for ESC compared to other artificial intelligence approaches. 
This is primarily attributed to the innate capacity of DL models to autonomously uncover 
pertinent features from the input data. However, the design of these models requires the 
adjustment of numerous parameters, which can be divided into two parts: optimisation 
parameters and model design parameters. On the positive side, this parameter 
adjustability allows different researchers to design diverse models tailored to address 
specific problems. Conversely, it also presents a challenge in finding the optimal model 
configuration for a given problem. To address this, efforts have been made to enhance 
CNN models for ESC by employing various algorithms for CNN parameter optimisation. 
Notably, simplified swarm optimisation (SSO), GA and PSO have all proven effective in 
fine-tuning CNN model parameters, yielding highly satisfactory results (İnik, 2023; Yeh 
et al., 2023; Sun et al., 2020). While CNN models have garnered popularity for  
ESC tasks, there is a notable dearth of studies investigating the optimal parameter 
configurations and layers configurations for CNNs in the realm of ESC 
(Mohaimenuzzaman et al., 2023; Bahmei et al., 2022; Fang et al., 2022; Zhang et al., 
2017, 2021; Mushtaq et al., 2021; Li et al., 2019). As a result, the primary goal of this 
research is to optimise the CNN hyperparameter s to achieve the highest accuracy for 
urban sound classification. In this paper, the primary objective is to compare with İnik’s 
method proposed in 2023 and take reference from it for the audio transformation 
methodology and CNN hyperparameter configuration. 

Beyond the utilisation of signal processing approaches, traditional machine learning 
methods in urban ESC, this study presents the following noteworthy contributions: 

1 This research is the first one to employ SSO to optimise hyperparameters of CNN 
applied in classification of urban sound. 

2 The SSO algorithm is demonstrated to be suitable for CNN parameter optimisation. 
SSO has been proven to be more effective and simpler than PSO in many fields (Yeh 
et al., 2023). 

3 By optimising the parameters in this research, we have developed an automatic CNN 
model capable of classifying environmental sound data presented in various image 
formats. 

This research is organised as follows. Section 3 offers insights into CNN, SSO, and 
details about the datasets. Section 4 outlines the proposed method, elucidating the 
application of SSO of optimisation of the CNN model. This section also highlights our 
approach’s achievement of the highest classification accuracy for each dataset. Section 5 
shows the results of the experiments. Last, Section 6 provides an explanation of the 
conclusion. 
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3 Overview of CNN, SSO and datasets 

3.1 Convolutional neural networks 

CNNs are fundamental to deep learning, celebrated for their ability to uncover unique 
features in unprocessed data during the learning phase. They excel in a spectrum of tasks 
encompassing classification, recognition, and segmentation, making them indispensable 
across various domains, including engineering, medicine, and defence industries. The 
ascendancy of CNNs has surged, particularly in the era of big data, where their innate 
ability for automatic feature discovery has proven invaluable. CNNs constitute deep 
networks characterised by a cascade of layers that progressively extract feature maps 
during network training. Moreover, researchers enjoy the flexibility to tailor the number 
of layers and model parameters, granting them extensive experimental avenues to 
optimise model performance. The fundamental CNN structure is shown in Figure 1. 
Within the CNN architecture, the input, convolutional and pooling layer are dedicated to 
extract the features, while the fully connected layers are responsible for classification. 
Within the operational framework of a CNN, the input traverses through segments 
composed of convolutional and pooling layers before ultimately arriving at the fully 
connected layer. After that, output is produced, which is subsequently contrasted with the 
anticipated results, with deviations being interpreted as errors. Weight updates are 
iteratively executed via a gradient-based backpropagation algorithm to mitigate these 
discrepancies. Network training persists until the predefined epoch value is attained. 

Figure 1 Basic CNN architectures (see online version for colours) 

 

3.2 Simplified swarm optimisation 

The CNN model can bring significant improvements in many image classification tasks. 
To achieve the best model performance, a substantial number of hyperparameters within 
the CNN architecture need to be adjusted and optimised (Tuba et al., 2021). The 
optimisation of these hyperparameters is an NP-hard problem, and in the past, it was 
often tackled through guessing and estimating methods or empirical rules. However, 
these approaches are typically complex and do not guarantee finding the optimal solution. 
By utilising heuristic algorithms from swarm intelligence, it is possible to find 
approximate optimal solutions within reasonable time. 
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SSO (Yeh, 2009) is a heuristic algorithm proposed by scholar Yeh in 2009. It builds 
upon the concept of PSO introduced by Poli et al. (2007). The main goal of SSO is to 
overcome the limitations of PSO in solving problems with discrete variables and improve 
its issue of premature convergence. 

Each particle in SSO is encoded with positive integers and possesses a feasible 
system structure. For different problems, different solution update mechanisms can be 
generated through step functions, as shown in equation (1). In the equation, Cg, Cp, Cw are 
hyperparameters, and their relationship is 0 < Cg < Cp < Cw < 1. Additionally, ρ 
represents a uniformly distributed random variable between 0 and 1, while +1t

ijx  
represents the jth variable of the ith solution in the (t + 1)th iteration. 

[ )
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[ )
[ )
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g pi jt
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x if ρ C
p if ρ C C

x
g if ρ C C
x if ρ C

 ∈
 ∈=  ∈
 ∈

 (1) 

The updating mechanism of SSO encompasses four scenarios: when ρ falls in the range 
[0, Cw), the value of +1t

ijx  remains the same as ,t
ijx  which represents the value of the jth 

variable in the ith solution during the tth iteration. When ρ falls in the range [ ) +1, , t
w p ijC C x  

takes the value of , ,t
i jp  denoting the personal best (pbest) solution for the jth variable 

within the current ith solution. When ρ falls in the range [ ) +1, , t
p g ijC C x  is set to gi, 

representing the global best (gbest) solution for the jth variable across all solutions. 
Lastly, when ρ falls in the range [ ) +1, 1 , t

g ijC x  is assigned a randomly generated value x, 
aiming to enhance the diversity of solutions and allow them to move towards the global 
best solution. 

By selecting different values of the hyperparameters Cw, Cp and Cg distinct updating 
outcomes can be generated, leading to diverse optimisation solutions. Considering the 
significance of parameter selection in determining solution quality, SSO often employs 
orthogonal arrays (OA) to select the optimal parameter combinations (Yeh, 2014; 
Dusberger and Raidl, 2015; Chen et al., 2016). SSO has found various applications in 
different fields, such as breast cancer feature classification problems (Yeh et al., 2009), 
training of neural network models (Yeh, 2013; Yeh et al., 2021), quantum computing  
(Su et al., 2022), reliability redundancy allocation problems (Jiang et al., 2023) and  
close-loop supply chain network, etc. (Liu et al., 2023; Yeh et al., 2023). These studies 
have demonstrated that is effective in handling discrete variable problems and possesses 
the ability to generate high-quality solutions. 

3.3 Datasets 

In recent years, the classification of environmental sounds has extensively relied on three 
distinct datasets, namely ESC10, ESC50, and UrbanSound8K. Below, we provide 
detailed information about each of these datasets: 

• UrbanSound8K (US8K): curated by Salamon et al. (2014) comprising 8,732 labelled 
sound samples. Each audio recording within this dataset spans approximately 4 
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seconds. US8K encompasses ten distinct sound classes, including gunshot, police 
siren, car horn, jackhammer, drilling, engine idling, air conditioner, dog barking, 
playing children, and street music. 

• ESC-10: developed by Piczak (2015) comprises ten classes of environmental sounds. 
On average, each entry in this dataset has a duration of 5 seconds, with an average of 
40 entries per category. It’s important to highlight that the ESC-10 is the subset of 
the ESC-50. 

• ESC-50: an expanded version of ESC-10, offering a more diverse soundscape for 
classification. It encompasses 50 distinct sound classes, each with 40 recordings, 
each lasting 5 seconds. This result in a total of 2,000 sound segments sampled from 
various urban environments. These categories provide a comprehensive and diverse 
set of sound data for research and analysis. 

4 Proposed approach 

The structure of the method we propose is illustrated in Figure 2. In our approach, we 
initiate the process by transforming the audio data into image representation using the 
Scalogram technique (Peng and Chu, 2004). Elaboration on the fine-tuning of 
hyperparameters within the CNN model can be found in Section 4.2. 

Figure 2 Architecture of the proposed method (see online version for colours) 

 

4.1 Dataset pre-processing 

Within the investigation, sound data underwent transformation from a signal to an image 
configuration utilising the scalogram approach. Scalogram, which portrays the absolute 
magnitude of a signal’s continuous wavelet transform in relation to both time and 
frequency, was harnessed for this purpose. The conversion procedure was facilitated 
through the application of the wavelet toolbox software suite. To illustrate, Figure 3 
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showcases instances of sound recordings from the US8K dataset that have been 
transformed into the image domain (İnik, 2023). Since the models obtained from 
comparative literature’s experimental studies have the increased depth, a similar need for 
more data for training these models has arisen. As a result, the models in this article have 
been trained not only using the original dataset but also employing augmented datasets. 
Data augmentation techniques of translation and flipping were applied. By utilising these 
techniques in both vertical, horizontal, and vertical-horizontal directions, each approach 
led to a threefold increase in the dataset, resulting in an overall six-fold increase. 

Figure 3 Example of sound (top) and transformed image (bottom) from the US8K dataset 
categories (see online version for colours) 

 

Source: İnik (2023) 

4.2 CNN hyperparameter optimisation 

The aim of optimising CNN parameters is to identify the most appropriate settings, 
ultimately leading to the best attainable accuracy that suitable for a specific task. 
Nonetheless, this endeavour poses significant challenges owing to the vast array of 
parameters necessitating fine-tuning, as well as the computational intensity associated 
with the process. Consequently, it becomes imperative to adopt optimisation algorithms 
that can minimise the number of iterations. In this research, SSO algorithm is employed 
to identify the optimal CNN model that achieves peak accuracy in urban sound 
classification. 

Through SSO, the six hyperparameters to be optimised can be represented as a set of 
solutions, where each solution consists of seven variables, each representing a different 
hyperparameter. The research’s solution encoding is illustrated in Figure 4. During the 
SSO iteration and solution updating process, Nsol sets of solutions will be generated. Each 
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set of solutions comprises six variables, resulting in a 6-dimensional solution space. 
Furthermore, different variables have defined upper and lower bounds. x1 represents the 
number of layers, and their variable range is [3, 15]. x2 represents the number of filters in 
a convolutional layer, and the variable range is [16, 256]. x3 represents the size of the 
kernel in a convolutional layer, and the variable range is [2, 11]. x4 represents the size of 
the kernel in a pooling layer, and the variable range is [2, 7]. x5 represents the size of the 
stride in a pooling layer, and the variable range is [2, 7]. Randomly deactivating neurons 
and input connections in the fully connected layers helps to avoid overfitting. x6 is a 
value between 10 and 1,024 used to determine the neuron number in fully-connected 
layers, a higher number of neurons allows the model to represent a larger function space, 
leading to better data fitting. However, increasing the number of neurons also comes with 
higher computational costs and overfitting risks. Specifically, a broad range of 
parameters has been employed to explore CNN models extensively, aiming to identify 
the optimal architecture. The model architecture includes a maximum of 15 layers, with a 
minimum requirement of three layers, including an obligatory fully connected layer. 
Notably, the final position in the layer sequence is always reserved for the fully 
connected layer. The layers encompass convolutional, pooling, and fully connected 
elements. Complementary ReLu layers follow the convolutional stages, while dropout 
layers are automatically integrated after the fully connected layers. The purpose of 
dropout layers is to prevent overfitting. The probability in this layer indicates the ratio of 
deactivated neurons in the fully connected layers. The hyperparameters and ranges are 
shown in Table 1. 

Figure 4 Encoding of SSO 

 

Table 1 Hyperparameters and ranges represented by SSO solution variables 

Variables Hyperparameters Range 
x1 Number of layers [3, 15] 
x2 Filter numbers in the convolutional layers [16, 256] 
x3 Size of the kernels in the convolutional layers [2, 11] 
x4 Size of the kernels in the pooling layers [2, 7] 
x5 Size of the strides in the pooling layers [2, 7] 
X6 Number of the neurons in the fully connected layers [10, 1024] 

Fitness value for SSO is computed by the formula presented in equations (2)–(3). Based 
on the design of its fitness function, it belongs to a maximisation problem. Initially, the 
seven variables are randomly initialised, and the fitness function value of the initial 
solution is computed to obtain the initial global best solution, denoted as ‘gbest’. 
Subsequently, the SSO iteratively updates and searches for the optimal solution. To 
enhance the efficiency of the classification of sound, the maximum number of iterations, 
denoted as Ngen, will be used as the termination condition for updating in SSO. When the 
number of iterations exceeds the predefined maximum number of iterations, SSO will be 
terminated. 
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aFitness function Accuracy
N=

= =  (2) 

where 
th1 if the sample predicted correctly

0 otherwisei
i

a


= 


 (3) 

And Ntest represent the size of the testing data. 
This study employs the global best (gbest) and personal best (pbest) mechanisms with 

SSO to update all variables in each iteration for every solution. Following the update of 
all variables, the fitness function value is computed. Subsequently, a comparison is made 
with gbest and pbest, and finally, gbest and pbest are updated. The notations and 
flowchart of SSO are presented in Table 2 and Figure 5. 
Table 2 SSO notations 

Notations Definition 
Nvar The number of variables 
Nsol The number of solutions 
Ngen The number of generations 
Nrun The number of experiments 
t Denotes Ngen, t = 0, 1, 2 …, Ngen 
i Denotes Nsol, I =1, 2 … Nsol 
j Denotes Nvar, j = 1, 2 … Nvar 

,
t
i jx  The jth variable of Xi in the tth generation. 

t
ix  ( )1 2, , ...t t t t

i iNvari ix x x x=  denotes the variables of the ith solution in the tth generation. 

( )t
iF x  A fitness function is used to calculate the fitness value of each solution. 

gbest Denotes the value of the global best solution. 
t
ipbest  Denotes the value of the best ith solution in the tth generation. 

G ( )1 2, , ...t t t
iNvari iG x x x=  denotes the variables of the global best solution in its 

evolutionary history. 
Pi Pi = (pi,1, pi,2, …, pi,Nvar) denotes the variables of the best ith solution in its 

evolutionary history. 
t
iρ  ( )1 2, , ... ,t t t t

i iNvari iρ ρ ρ ρ=  which t
iNvarρ  means a random number generated within  

[0, 1] uniformly. 
Cg, Cp, Cw The predefined hyperparameters. 
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Figure 5 SSO flowchart 
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5 Experiment results and comparisons 

Section 5 provides details regarding the training of CNN models using SSO and presents 
the corresponding test results achieved by these models. The experimental investigations 
were conducted on a computer equipped with Windows 11, an Intel® Core™  
i7-11700KF processor operating at 3.60 GHz with 16 cores, 64 GB of RAM, and GPU is 
an NVDIA GeForce RTX3060Ti. The software platform employed for the experiments 
was MATLAB R2023a 64-bit (win64). 

5.1 Parameters configuration in the proposed approach 

The best hyperparameters of SSO, Cg, Cp and Cw will be set to 0.4, 0.6, and 0.9, 
respectively. And the other settings are presented in Table 3. 
Table 3 Training configuration 

Parameter Values 
Optimiser SGD with momentum 
Epoch 10 
Dropout 0.5 
Batch size 256 
Learning rate 1 × 10–3 
Loss function Cross entropy 
(Cg, Cp, Cw) (0.4, 0.6, 0.9) 
Nsol 50 
Ngen 20 
Nrun 30 

Figure 6 Convergence graph of SSOC-ESC10 training model (see online version for colours) 
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5.2 Experiment training and results 

The CNN models underwent a training regimen utilising a 10-fold cross-validation 
method. Figures 6, 7, and 8 illustrate the convergence trajectories for SSOC-ESC10, 
SSOC-ESC 50, and SSOC-US8K, respectively, during this training phase. A comparative 
analysis of these figures reveals a striking proximity between the accuracy/validation and 
error/validation error curves, suggesting that the models exhibit minimal overfitting 
throughout the training process. Notably, the CNN-ESC10 model demonstrated a more 
rapid convergence compared to its counterparts. 

Figure 7 Convergence graph of SSOC-ESC50 training model (see online version for colours) 

 

Figure 8 Convergence graph of SSOC-US8K training model (see online version for colours) 

 

Table 4 presents comparison of results before and after data augmentation of the models 
tested on various datasets. It details results both with and without data augmentation for 
each dataset. For ESC and US8K datasets, the averages without data augmentation stood 
at 89.61%, 77.82%, and 93.03% respectively. However, with data augmentation, these 
values rose to 99.37%, 97.69%, and 99.23%. Notably, data augmentation led to 
significantly improved outcomes, with the most pronounced improvement observed in 
the ESC-50 dataset. This can be attributed to its 50 classes and limited training data, 
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restricting the model’s ability to optimally update its weights. As the data volume 
increased, the performance for the 50 classes notably improved. 
Table 4 Comparison of results before and after data augmentation 

Proposed 
model 

Data 
augmentation 

Mean 
accuracy 

Max 
accuracy 

Min 
accuracy 

Standard 
deviation 

SSOC-ESC10 No 89.61 96.33 81.23 3.98 
SSOC-ESC10 Yes 99.01 99.21 98.88 0.38 
SSOC-ESC50 No 77.82 84.12 73.54 2.76 
SSOC-ESC50 Yes 97.42 98.03 97.29 0.29 
SSOC-US8K No 93.03 94.96 90.11 1.12 
SSOC-US8K Yes 98.96 99.27 98.43 0.12 

5.3 Comparison with other researches 

Several deep learning studies have been undertaken using the ESC dataset. A comparison 
of the average accuracy from our proposed method against other researches is showcased 
in Table 5. In this table, the symbol ‘/’ indicates that a particular method was not applied 
to the corresponding dataset. Our observations reveal that the proposed CNN models 
outshine the baseline models referenced across all datasets (Piczak, 2015; Salamon et al., 
2014). The use of transfer learning in our study likely contributes to this elevated 
accuracy. In this technique, models trained on a separate dataset with millions of entries 
are subsequently applied to urban sounds, boosting their performance. 
Table 5 Experimental results comparison table 

Ref Approach US8K ESC10 ESC50 
Salamon et al. (2014) Support vector machine (baseline) 68.00 / / 
Piczak (2015) RFE (Baseline) / 72.70 44.30 
Piczak (2015) HP / 95.70 81.30 
Boddapati et al. (2017) AlexNet, GoogLeNet, CRNN 93.00 91.00 73.00 
Zhang et al. (2017) d-CNN(LeakyReLU) 81.90 / 68.10 
Salamon and Bello (2017) DCNN + data augmentation 79.00 / / 
Mushtaq et al. (2021) ResNet-152, DenseNet-161 99.49 99.04 97.57 
Li et al. (2019) MS CNN / 93.70 83.50 
Luz et al. (2021) Handcrafted + Deep 96.80 / 86.20 
Zhang et al. (2021) RNN / 93.70 86.10 
Medhat et al. (2020) MCNN 74.22 85.25 66.60 
İnik (2023) CNN-PSO 98.45 98.64 96.77 
This paper (SSO) CNN-SSO 93.03 89.61 77.82 
SSO with data augmentation CNN-SSO 98.96 99.01 97.42 
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6 Discussion and conclusions 

6.1 Discussion 

Lately, the utilisation of AI techniques for urban sound classification has gained 
momentum. The effectiveness of models across diverse data scenarios has prompted their 
frequent adoption within this field. While there’s an ongoing exploration into crafting 
more efficient CNN models for urban sound classification, a significant limitation has 
been the manual design of these models. The sheer number of parameters in a CNN, from 
layer order permutations that could number in the millions to individual layer parameters, 
makes manual optimisation a Herculean task. The vastness of this solution space suggests 
the necessity of optimisation algorithms. 

In this research, we leveraged SSO algorithm to identify the most efficient CNN 
model for urban sound classification. A key challenge in the optimisation of CNN 
parameters is how to formulate a representative model. In this regard, we employed the 
SSO algorithm for hyperparameter optimisation of CNNs. In the context of urban sound 
classification, we compared the SSO-enhanced CNN model with a pure CNN model, as 
outlined in related studies (İnik, 2023; Zhang et al., 2017; Salamon and Bello, 2017; 
Chen et al., 2019). The results indicate the superiority of our CNN model over these 
alternatives. It is noteworthy that these models exhibit greater depth, suggesting a 
demand for more training data to optimise their weights. This insight prompted us to 
generate synthetic data, particularly for datasets like ESC-50, which possess numerous 
categories but limited training samples per category. For instance, upon augmenting the 
dataset for the enhanced SSOC-ESC50 model, accuracy escalated from 77.82% to 
97.42%. This trend implies that larger training datasets can further enhance the accuracy 
of CNN models tailored for ESC classification. However, if exclusively trained on ESC 
sounds, our model lags others, notably those leveraging transfer learning. Interestingly, as 
observed in studies (Luz et al., 2021), ensemble strategies that incorporate diverse 
features outperform our proposed model in the absence of data augmentation. This 
commendable performance might be attributed to their integration of traditional machine 
learning and handcrafted features with CNN-derived features. Looking ahead, we 
anticipate forthcoming research to delve into more effective transfer learning techniques. 
This will aid in deploying our SSO-optimised CNN model on larger datasets, while 
minimising computational expenses during the training process. 

6.2 Conclusions 

In this study, SSO algorithm was leveraged to achieve optimal models for ESC and 
Urbansound8k, both of which are universally recognised as premier benchmarks in urban 
sound classification. The methodology introduced a customised adaptation of the SSO 
algorithm to intricately adjust CNN parameters. Remarkably, the highest performing 
models were identified as SSOC-ESC10, SSOC-ESC50, and SSOC-US8K, registering 
accuracy rates of 89.61%, 77.82%, and 93.03% for their respective datasets. It is 
significant to mention that these figures were obtained using raw data. To enhance the 
robustness of the results, a meticulous sevenfold augmentation process was applied to the 
datasets, after which the models were retrained. This resulted in a marked improvement 
in performance, with accuracy rates climbing to 99.01%, 97.42%, and 98.96% for the 
ESC-10/50 and US8k datasets, respectively. When juxtaposed with contemporary 
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research efforts, the CNN models achieved in this study for urban sound classification 
emerge as singularly outstanding. 
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