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Abstract: Efficient naming of inspection photos of transmission line towers is vital in the
maintenance of power grid equipment. Current inspection photo naming methods are mainly
manual, which is neither rapid nor effective. Research on inspection photo naming is limited
due to a shortage of inspection image datasets and low image resolution. Hence, we gathered
inspection photos of real tangent towers using drones and created an inspection photo dataset
TTower-345 for automatic naming model training purposes. We proposed an automatic naming
model, IELC (improved EfficientNet network and LBP classification model), based on this
dataset. IELC comprises a dual-branch structure that integrates a jointly improved EfficientNet
model and an local binary patterns (LBP) classification model. Experimental results indicated
that the proposed dataset contains more diverse inspection image features, which in turn helped
the model learn more features. In our experiments, our proposed automatic naming method
achieved a classification accuracy of over 95% and demonstrated reliability by exhibiting good
generalisability in practical scenarios.

Keywords: transmission lines; tangent towers; benchmark; inspection photo naming;
EfficientNet model; local binary pattern; LBP classification.
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1 Introduction

Efficient and precise naming of inspection photos is crucial
for the detection of defects in transmission lines. These
named photos serve multiple purposes, such as detecting
insulators, spotting equipment defects, and facilitating
autonomous navigation and inspection with drones (Tang
et al., 2021). The process of naming inspection photos
can be viewed as an image classification task, wherein the
goal is to categorise inspection photos according to their
associated tower locations.

High-voltage transmission lines traverse diverse
geographical environments, including mountainous terrains,
basins, and reservoir areas. Factors related to both structural
aspects and the environment contribute to an increased
likelihood of defects, encompassing issues such as insulator
defects, shock absorber malfunctions, broken lighting
poles, as well as the breakage and corrosion of towers,
among other concerns. These faults have the potential to
seriously jeopardise the safe operation of the power system,

underscoring the need for meticulously devised inspection
strategies aimed at their identification and rectification.
Currently, the predominant method employed by electric
power grids for inspections is the use of unmanned aerial
vehicle (UAV) patrols (Xiren et al., 2020). Nevertheless,
the development of intelligent processing techniques for
power grid image data remains in a nascent stage, primarily
owing to the ensuing challenges and limitations:

• Systematic inspection of photo datasets related to
transmission lines is notably deficient. In the realm of
inspection datasets, the predominant offerings include
those focused on distribution network power
equipment (Kehui et al., 2019) and tower insulators
(Panigrahy and Karmakar, 2022), while
comprehensive, publicly accessible transmission line
datasets are notably scarce due to cost constraints and
privacy considerations.

• There exists a deficiency in algorithms capable of
automatically assigning names to tower inspection



TTower-345 13

photos. Maintenance personnel continue to rely on
manual analysis and interpretation of grid inspection
photos to ascertain the operational status and health
of the line. This process is pivotal in shaping
subsequent control measures and inspection strategies
(Mn et al., 2022). Furthermore, the precision of
manually assigned names varies from individual to
individual, posing challenges in guaranteeing the
accuracy of the naming process.

In this paper, we introduce a multi-location inspection
photo dataset named TTower-345, which is derived from
the aforementioned context. We have taken measures to
ensure that the image capture process for this dataset
strictly complies with the technical standards and inspection
criteria governing transmission line equipment inspection.
Furthermore, it is essential to note that all images contained
in this dataset were acquired in real-world settings through
the use of UAVs. This dataset exhibits two core attributes:

• The dataset comprises a wide array of diverse
inspection images from 13 UAV inspection sites
located on tangent towers. These images encompass a
range of perspectives, including high-to-low and
left-to-right angles.

• The dataset encompasses a total of 345 tangent
towers and 7,516 inspection photos. Due to the
existence of multiple identical photos taken at the
same location, each tangent tower contains an average
of approximately 13.96 images after initial screening.
Detailed information about this dataset will be
presented in Section 3 of this paper. It is worth noting
that this dataset holds significant potential for training
automatic naming models tailored to inspection
photos.

In our work, we conducted a series of experiments
involving training and testing of various deep learning
networks using the TTower-345 dataset. To enhance the
efficiency of the baseline model for this inspection photo
dataset, we introduced selective convolutional descriptor
aggregation (SCDA) technology, which is aimed at
improving the structure of EfficientNet. Subsequently, we
parallelised the enhanced EfficientNet network with LBP
classification branches to achieve the optimal baseline
model. The effectiveness of this model was validated by
ablation experiments, and its performance was compared
with transfer learning models.

Our research findings demonstrate that the TTower-345
inspection photo dataset effectively facilitates the learning
of high-level transmission line features by deep network
models, even when they exhibit different foregrounds but
share the same background. By integrating the improved
EfficientNet baseline model with the LBP classification
branch, we achieved significantly higher performance
indicators, resulting in a precise and efficient automatic
naming model for inspection photos.

Our work makes the following primary contributions:

• We construct a novel inspection photo dataset,
TTower-345, which showcases various perspectives of
tangent towers. These images were captured through
UAV photography during actual inspections of
transmission lines, offering a diverse range of scenes
and heights. Importantly, the dataset reflects
real-world conditions, including lighting variations
and terrain obstacles, ensuring its authenticity and
practicality.

• In this paper, we introduce a lightweight EfficientNet
baseline model for the classification of inspection
photos. Building upon the comprehensive evaluation
results of the inspection photo dataset, we develop the
improved EfficientNet network and LBP classification
model (IELC). The IELC model leverages the SCDA
structure to enhance the EfficientNet b0 model and
employs a dual-branch architecture to connect the
improved EfficientNet model with the LBP
classification model. The innovative intelligent
classification model proposed in this paper offers
electric utility companies an automated solution for
the inspection photo naming process.

2 Related work

2.1 Naming techniques for inspection photos

The field of power transmission line management has
traditionally relied on manual naming patterns for photos,
a process that consumes significant time and labor in
image organisation and analysis. This manual approach
is often hindered by variations in judgment standards
among inspection and maintenance personnel, resulting in
inconsistent analysis outcomes.

The emergence and widespread adoption of deep
learning models in power transmission lines, as noted
in prior research (Tianjiao et al., 2020; Gao et al.,
2022), have paved the way for increased automation.
Nevertheless, the domain of tower inspection photo
naming has seen limited exploration. Most current research
has focused on semi-automatic naming systems. For
instance, Su’s (2020) work introduced an efficient image
standardisation and organisation tool for power transmission
line photos, replacing manual typing with mouse clicks
or dedicated console operations. Similarly, Guowei
et al. (2020) proposed an automatic or semi-automatic
approach to collect information related to the relationship
between position of service (POS) data and tower spatial
information to enhance post-data processing efficiency
for machine inspection photos. Furthermore, Du et al.
(2022) suggested a preprocessing approach rooted in
drone inspection techniques and their applications, utilising
human diagnostic technology to assist in assessing the
inspection image location. However, these methods rely
heavily on pre-training comparison models and exhibit
large subjectivity, limiting their practical applicability.

In light of these challenges and the presence of specific
inspection photos for each inspection position in our
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dataset, we devised a foundational model based on the
EfficientNet network to classify these images. During the
testing phase, our trained model categorises the inspection
photos and autonomously assigns a name to each one.
This novel approach significantly enhances data processing
efficiency.

2.2 Dataset related to power transmission line

The majority of inspection photos primarily focus on
capturing key sites of power transmission lines, primarily
for defect detection purposes (Zhang et al., 2022) and image
generation tasks. These photos serve as the foundation for
creating various datasets, such as InsuGenSet (Zhao, 2021b)
and Insulator Dataset (ID) (Xia et al., 2022). These datasets
were developed in response to the limited image resolution
of datasets like ImageNet or PascalVOC. They have been
instrumental in training deep learning models with high
accuracy and strong generalisation capabilities.

Furthermore, a recent initiative, the Key Component
Image Generation Dataset (KCIGD), was launched to train
an insulator image generation network. This effort aimed
to address the challenge of plain backgrounds in images
from the China Power Line Insulator Dataset (CPLID) (Tao
et al., 2018). However, it is worth noting that the KCIGD
(Wang et al., 2023) does not comprehensively represent
the intricate backgrounds and authentic environments found
in power transmission line inspection photos. The primary
distinction between the former two datasets and the latter
two lies in their objectives. The former datasets focus
primarily on enhancing the resolution and authenticity of
insulator images, while the latter ones aim to tackle the
issue of plain backgrounds in the CPLID dataset and
combine insulator images into photos. However, they do not
fully capture the actual surroundings.

Consequently, existing datasets are typically limited
to single inspection sites and lack the multi-perspective,
multi-part characteristic information needed for full
representation. Our proposed dataset addresses this
limitation by including multiple inspection sites of the
tower. It not only comprises insulator images but also
provides diverse, real background information. This
comprehensive dataset is instrumental in the development
of automatic naming methods and defect detection networks
for inspection photos.

3 TTower-345 dataset

3.1 Collection of datasets

Presently, many studies on inspection photos of
transmission line towers rely on datasets like CPLID,
InsuGenSet, ID, and others for insulator defect detection.
However, these datasets are primarily suitable for specific
inspection equipment classification and target detection,
often lacking representation of a genuine environment.
Therefore, in our work, we constructed a custom dataset
using inspection photos. This dataset comprises a total of

7,516 images, each with dimensions of 5,472 × 3,078
pixels.

These images were acquired by a company during
aerial patrolling of multiple 500 kV overhead transmission
lines using drones. Notably, images captured from various
inspection positions exhibit distinct shooting perspectives,
and the image backgrounds are characterised by complexity,
encompassing a variety of scenes such as mountains,
forests, farmland, farms, and urban areas. Moreover,
the shooting process occurred under diverse weather
conditions, including sunlight, clouds, fog, rain, and more,
reflecting substantial variations in light intensity within
the images. Additionally, due to inherent randomness in
shooting angles and other characteristics, the inspection
target often resides at the edge of the image, further
complicating the classification of these inspection images.
This dataset’s unique characteristics offer a valuable
resource for developing and testing robust models in
real-world settings, addressing the challenges posed by
diverse environmental conditions and image compositions.

3.2 Dataset description

This article introduces a self-constructed inspection photo
dataset, encompassing a total of 538,500 kV overhead
transmission line towers. Each of these towers is composed
of 13 distinct inspection parts, each captured by one or
more inspection photos. In aggregate, the dataset comprises
7,516 inspection photos, after screening with an average
of approximately 13.96 photos associated with each tower.
Notably, the photos depicting tower inspection sites in this
dataset adhere to grid inspection shooting standards and
are captured from multiple angles to ensure comprehensive
coverage. To facilitate organisation, inspection parts of the
same class are systematically sorted into numbered folders.
In contrast to other existing datasets, our inspection photo
dataset exhibits several distinctive characteristics, including:

• Increased categories: The inspection photo dataset
encompasses all inspection parts of tangent towers,
spanning from the tower base to the towering peak. It
places explicit emphasis on 500 kV transmission line
towers. To our knowledge, this dataset represents a
pioneering effort as it is the first to comprehensively
capture every inspection part of tangent towers, and
notably, it is entirely constructed using drone-view
images.

• Wide range of perspectives: Our inspection photo
dataset offers a diverse array of inspection photos
captured from a multitude of dissimilar shooting
angles. These photos encompass various shooting
angles, encompass different target objects, and feature
backgrounds that faithfully depict realistic settings.
This diversity ensures that the dataset covers a broad
spectrum of real-world scenarios and perspectives.
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Figure 1 Sample images from TTower-345 (see online version for colours)

Table 1 The type of inspection parts

Label Inspection parts

1 Overall appearance
2 Tower foundation
3 Tower head
4 Earthwire
5 Upper cross arm hanging point
6 Upper insulator string
7 Upper conductor hanging point
8 Middle cross arm hanging point
9 Middle insulator string
10 Middle conductor hanging point
11 Lower cross arm hanging poin
12 Lower insulator string
13 Lower conductor hanging point

In this paper, a subset of image samples from the
TTower-345 dataset is showcased in Figure 1 and Table 1
provides an overview of the various types of inspection
parts that are captured within the dataset.

3.3 Training and testing dataset

The training and test sets are partitioned in a ratio of
6.4:4.6. Specifically, the training set comprises 268 towers,
encompassing 4,818 inspection images, each containing 13
distinct inspection parts. Conversely, the test set consists

of 153 towers, encompassing 2,698 inspection images, also
spanning 13 types of inspection parts. The configuration of
the training and test sets is outlined in Table 2.

Table 2 The type of inspection parts

Category Training set Test set
Total Total

Overall appearance 268 151
Tower foundation 267 142
Tower head 535 291
Earthwire 536 290
Upper cross arm hanging point 267 153
Upper insulator string 268 153
Upper conductor hanging point 536 303
Middle cross arm hanging point 262 152
Middle insulator string 267 153
Middle conductor hanging point 541 304
Lower cross arm hanging point 262 152
Lower insulator string 268 151
Lower conductor hanging point 541 303

4 Automatic naming of inspection photos

4.1 Basic knowledge of EfficientNet model

EfficientNet, developed by Google Brain and introduced
in the paper titled ‘EfficientNet: rethinking model scaling
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for convolutional neural networks’, presents an innovative
approach to scaling convolutional neural networks (CNNs).
It introduces the concept of compound coefficient,
which efficiently scales network dimensions, including
width, depth, and resolution. By leveraging this unique
scaling method in conjunction with AutoML technology,
EfficientNet achieves a remarkable tenfold improvement
in computational efficiency compared to traditional CNN
(Farag, 2017) models. EfficientNet aims to establish
a standardised framework for expanding convolutional
networks, achieving both high accuracy and resource
conservation. Optimisation of resolution, depth, and width
is carefully balanced to strike an ideal equilibrium
between efficiency and accuracy (Tan and Le, 2019).
Incorporating elements from other successful network
architectures, EfficientNet utilises MBCConv as the primary
network structure, drawing inspiration from MobileNet V2.
Furthermore, it incorporates the squeeze and excitation (SE)
method from squeeze and excitation networks (SENet) (Jie
et al., 2018). The SE module plays a crucial role by
enabling attention or focus operations within the channel
dimension. This allows the model to prioritise channels
with higher information content while suppressing less
critical ones, contributing to improved performance and
representation learning.

4.2 SCDA

SCDA is an image retrieval technique rooted in deep
learning. It operates by taking fine-grained images as
input and passing them through a pre-trained CNN model
to extract convolutional or fully connected features. This
algorithm is mainly adapted for fine-grained image retrieval
tasks, where its objective is to pinpoint and emphasise
the primary subjects within an image while suppressing
background noise and irrelevant details. Notably, SCDA is
an unsupervised method, meaning that its image features
depend solely on the choice of the pre-trained model,
making the selection of an appropriate pre-trained model a
critical factor for SCDA effectiveness (Zhu et al., 2019).

In this paper, the EfficientNet b0 model, a member of
the EfficientNet series, serves as the designated pre-training
model for extracting SCDA foreground features from
inspection photos. The application of the SCDA technique
serves the purpose of removing complex background
information from inspection photos, allowing for a more
precise focus on the salient foreground features within these
images. The process involves feeding inspection photos into
the EfficientNet b0 network to perform feature extraction,
resulting in primary feature maps. These feature maps then
undergo an SCDA operation to generate feature vectors that
emphasise the foreground of the inspection photos. Unlike
some other retrieval methods, SCDA has the capability to
extract deep convolutional features using only pre-trained
models, enabling effective identification of the primary
subjects within the images. Finally, the aggregation map is
obtained by summing up all the channels within the SCDA,
a process expressed by equation (1).

A =
a∑

n=1

Sn (1)

Next, calculating the mean value of A can obtain Mi,j . The
formula is shown in equation (2):

Mi,j =

{
1 if Ai,j > ā

0 otherwise
(2)

To effectively eliminate noise and background information,
SCDA employs a multi-layer aggregation interface method.
In the context of this paper, this method involves the
aggregation of feature maps from the EfficientNet b0
MConv6 layer with those from the top layer to derive
the foreground feature vectors of the image. The precise
procedure for implementing this method is detailed in
formula (3), with α typically set to 0.5.

SCDA+ ← [SCDAMConv6, α× SCDATop] (3)

The structure for feature extraction in SCDA is depicted in
Figure 2.

4.3 Local binary pattern

The local binary pattern (LBP) operator is a commonly
employed technique for describing the texture of a local
region within an image (Cheng et al., 2023). Its notable
advantage lies in its invariance to both rotational and
greyscale variations. The LBP operator was initially
introduced by T. Ojala, M. Pietikäinen, and D. Harwood
in 1994 as a means of extracting texture features from
images. This feature extraction technique identifies local
texture characteristics present in the image.

In the original definition of the LBP operator, an image
is divided into a 3 × 3 window, with the central pixel
as the threshold (Zhao, 2021a). The greyscale values of
the surrounding eight pixels are then compared to this
central pixel’s greyscale value. If the greyscale value of
a surrounding pixel exceeds that of the central pixel, the
corresponding bit in the resulting eight-bit binary code is
set to 1; otherwise, it is set to 0. Consequently, a sequence
of eight binary digits is generated for each pixel within the
3 × 3 window, yielding an eight-bit binary code, commonly
referred to as the LBP code. In total, there are 256 possible
LBP codes, each reflecting texture information within the
region surrounding the central pixel.

The formula for calculating LBP values is expressed as
follows:

LBP (xc, yc) =

p−1∑
p=0

2ps(ip − ic) (4)

where (xc, yc) refers to the center pixel, ip represents
the greyscale value of the center pixel, ic signifies the
greyscale value of the surrounding pixel, and s denotes a
sign function.

Since the introduction of the original LBP operator,
researchers have continuously proposed various
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enhancements and optimisations, including variants like
the circular LBP operator, LBP rotation invariant pattern,
and LBP uniform pattern. The LBP operator generates an
LBP ‘code’ for each pixel, and the original LBP feature
extracted from an image, which records the greyscale
values of each pixel, can be represented as an LBP ‘texture
map’ where each pixel records its LBP value. In many
applications of LBP, rather than using the LBP texture
map directly, the focus shifts to using the histogram of
LBP feature spectrum statistics as a feature vector for
classification and recognition purposes (Garg and Dhiman,
2021). Specific steps for extracting the LBP feature vector
are as follows:

1 The detection window is divided into small 16 × 16
pixel regions (cells).

2 For every pixel within each cell, a comparison is
made between the greyscale values of the surrounding
eight pixels and the greyscale value of the center
pixel. If the greyscale value of a surrounding pixel
exceeds that of the center pixel, the position of that
pixel is assigned the value 1; otherwise, it is assigned
the value 0. Consequently, this comparison among the
eight neighboring pixels results in an eight-bit binary
code, which represents the LBP value of the center
pixel within the window.

3 Calculate the histogram for each cell based on the
decimal equivalent of the LBP values. Normalise the
histogram.

4 In the final step, the statistical histograms of each cell
are aggregated and connected to form a feature vector.
This feature vector effectively represents the LBP
texture feature of the entire image.

The support vector classification (SVC) machine learning
algorithm can be effectively employed for the classification
of inspection photos. Leveraging LBP technology in this
context offers robustness to variations in illumination,
thereby mitigating interference from complex backgrounds
within inspection photos. This leads to improved accuracy
in the classification of inspection components. The
architecture of the LBP classification branch is visually
depicted in Figure 3.

4.4 Automatically named model for inspection photos

The proposed model enhancement entails the integration of
the SCDA module before the original classifier located at
the end of the EfficientNet b0 architecture. Additionally, a
residual connection is introduced to combine the output of
MBConv6 4 with the top layer. Following the pooling layer,
a fully connected layer with 13 dimensions is incorporated
into the architecture. A comprehensive description of the
modified model is presented in Figure 4.

The quality of the foreground feature vectors extracted
by SCDA is heavily reliant on the quality of the feature
maps produced by the pre-trained model. Although the

SCDA algorithm employs the maximum-connected region
selection technique to identify the model’s primary region
of interest, this process may inadvertently exclude other
pertinent classification information that may be distributed
throughout the model, potentially diminishing classification
accuracy. To address potential information gaps resulting
from SCDA, a machine learning model centered on
LBP feature classification was incorporated in parallel
with EfficientNet. This approach involves comparing the
classification results obtained from both models and
selecting the result with greater confidence, thereby
enhancing the overall robustness of the classification model.
After a comprehensive evaluation, the IELC model was
chosen as the baseline model for the automatic naming of
inspection photos. The complete architectural representation
of IELC is presented in Figure 5.

Since auto-naming of inspection photos is a
multi-classification problem, the cross-entropy loss function
is used to compute the similarity between predicted
and actual values. Minimising the cross-entropy loss
between the network output and the corresponding labels
is indicative of improved network classification. One
advantage of using the cross-entropy loss function is to
avoid learning rate decay experienced by the mean square
error loss function due to the influence of the sigmoid
function during gradient descent (Sun et al., 2020). The
mathematical representation of the crossentropy function is:

Loss = − 1

N

N∑
i=1

M∑
c=1

yi,c × log pi,c (5)

where M represents the number of classes, N refers to the
number of samples, yi,c is a binary function that returns a
value of 1 if the true label of sample i is c (belonging to
class c); otherwise, it assigns a value of 0, indicating that
the sample does not belong to class c. The probability of
sample i belonging to category c is denoted by pi,c.

The LBP classification network in this context employs
the classical hinge loss function (Lin et al., 2017). Hinge
loss is a well-established loss function frequently used in
machine learning. It is a non-convex function commonly
applied during the training of support vector machine
models. This loss function operates in a nonlinear manner
and enhances the model’s accuracy by guaranteeing that
‘positive’ and ‘negative’ samples are positioned on opposite
sides of a hyperspace, ultimately contributing to the
classifier’s accuracy.

L =
1

N

N∑
i=1

∑
j ̸=yi

max(0, sj − syi +∆) (6)

The equation includes yi, which represents the true class
label, syi , indicating the score for the true class label, and
sj , denoting the score for all other non-true class labels.
These scores are associated with predicting an incorrect
label. Typically, ∆ is assigned a value of 1.
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Figure 2 The structure of SCDA (see online version for colours)

Figure 3 The structure of the LBP classification branch (see online version for colours)

Figure 4 The structure of the improved EfficientNet framework (see online version for colours)
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Figure 5 Automatic naming framework IELC
(see online version for colours)

5 Experimental results and discussion

5.1 Experimental environment and parameter settings

In our work, we utilised the pre-trained EfficientNet b0
network, which had previously been trained on the
ImageNet dataset, as the foundational model for our study.
During the training phase, we applied a consistent set of
data augmentation techniques. We also performed random
cropping and resizing of all input images to a size of 224
× 224 using bilinear interpolation.

Table 3 The hardware configuration and software development
environment

Hardware Version Software development Version
configuation or value environment

Operating Windows Pycharm 2021.3
system 11-64 bit Community

Edition
Graphics NVIDIA GeForce Anaconda3 5.3.1
card RTX 3060 Laptop

GPU
Processor AMD Ryzen 7 Python 3.7.0

5800H with
Radeon Graphics

Operating 6 GB Cuda 11.1.134
memory

Our initial training involved fine-tuning the base
EfficientNet b0 network on the TTower-345 dataset. In this
process, we employed the SCDA operation to merge the
feature map from the last Conv layer of the EfficientNet b0
network with the feature map from MConv6 4. This
integration allowed us to extract feature vectors
representing foreground targets in inspection images. These
extracted vectors were utilised for classification through the
introduction of a new 13-dimensional classification layer in
our paper.

To ensure that the feature map area was correctly
selected during this extraction process, we introduced an
LBP feature-based classification branch. This branch was
designed to balance the impact of SCDA on classification
results. Specifically, the LBP feature-based classification
branch utilised the LBP histogram derived from the
inspection image as input and employed a trained support
vector machine (SVM) for classification, with the SVM
(Furukawa and Deng, 2022) model obtained from the
Sklearn.SVM library. During the test phase, we relied on
the EfficientNet b0 branch to extract features. The linear
classifier outputs classification scores. Simultaneously, the

LBP branch constructed a histogram by extracting LBP
features and produced classification scores via the SVM
classifier. We then compared the two types of scores and
selected the score with higher classification confidence
as the final output result. This approach ensured robust
classification performance.

The hardware configuration of the experimental
equipment and the development environment are presented
in Table 3.

Table 4 shows the training parameters for the improved
EfficientNet model.

Table 4 The parameters settings for network training.

Parameters Value Parameters Value

Input shape 224 × 224 Learning rate 0.1
Optimiser Stochastic Final learning 0.01

gradient rate
descent

Epochs 100 Lr Lambda Cosine
Batch size 4 Loss Function CrossEntropyLoss

In our training process, we implemented a training
freeze method to expedite the training of the enhanced
EfficientNet model. During the freezing phase, the
backbone feature extraction network remained fixed,
meaning its weights and parameters were not updated.
Conversely, layers of the network linked to the
classification head were not frozen and were iteratively
adjusted during training iterations.

This approach offers several advantages. Firstly, it
reduces the demand for hardware resources as fewer
parameter updates are required during the freezing phase.
Secondly, it mitigates the effects of random weight
initialisation, which can be problematic when working
with datasets that have limited sample numbers. As
a result, this method significantly enhances training
efficiency, accelerates model convergence, and shortens
overall training duration.

5.2 Data augmentation

To mitigate the risk of underfitting during model training
with the inspection photo dataset, we applied data
augmentation to each training image before training
the enhanced EfficientNet model. The data augmentation
techniques we used included random cropping, resizing,
flipping, and normalisation. Additionally, we introduced
random reductions in the image size. Here are specific
examples of data augmentation techniques employed, as
illustrated in Figures 6(a) and 6(c).

5.3 Model evaluation

In this paper, the performance of both the improved
EfficientNet and LBP models is assessed using accuracy
as the primary metric. Accuracy is a crucial evaluation
metric that takes into account several variables derived
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from the confusion matrix. The confusion matrix offers
an approximate assessment of the prediction results and
demonstrates the overall relationship between the original
data and the predicted outcomes.

Figure 6 Examples of training image data augmentation,
(a) original image (b) random cropping (c) random
flipping (see online version for colours)

(a)

(b)

(c)

Table 5 Ablation experiments of the improved EfficientNet on the
inspection photos dataset

Module Experiment 1 Experiment 2 Experiment 3
result (%) result (%) result (%)

EfficientNet b0
√ √ √

backbone
SCDA classifier

√ √

LBP branch
√

Accuracy 95.84 97.83 98.43

The mathematical representation of accuracy, used for
evaluating classification models, is as follows:

Accuracy =
Tp + TN

Tp + TN + Fp + FN
(7)

Figure 7 illustrates the training loss curve of the enhanced
EfficientNet model. During the frozen training stage, the
training loss experienced a swift decline, facilitating rapid
model convergence. As the number of iterations increased,
the training loss values steadily decreased. Eventually, the
loss curve leveled off, reaching a satisfactory convergence
state. This observation indicates that the model underwent
effective training and achieved the desired performance.

Figure 7 The training loss curve of the improved EfficientNet
model (see online version for colours)

5.4 Ablation experiment and discussion

5.4.1 The effect of improved EfficientNet model on
classification results

This section delves into the outcomes of the experimental
ablation tests conducted on the TTower-345 dataset, aimed
at assessing the effectiveness of the SCDA module and LBP
classification branch. The results of these tests are presented
in Table 5.

The data in Table 5 reveal that the utilisation of the
SCDA module in conjunction with the EfficientNet b0
network led to a noteworthy 1.99% increase in classification
accuracy compared to employing the EfficientNet b0
module in isolation. These findings indicate that the SCDA
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module can effectively identify foreground objects of
interest to the network while concurrently filtering out
background image interference.

Table 6 Ablation study of different input sizes on the inspection
photos dataset

EfficientNet model Image Accuracy FLOPs Params
size (%) (M) (M)

EfficientNet b0 224 95.84 411.57 4.02
EfficientNet b0 240 94.99 492.67 4.02
EfficientNet b0 260 92.32 613.18 4.02
EfficientNet b0 300 91.22 778.09 4.02
EfficientNet b0 scda 224 97.83 696.81 7.72
EfficientNet b0 scda 240 96.21 839.74 7.72
EfficientNet b0 scda 260 93.35 1,047.55 7.72
EfficientNet b0 scda 300 92.43 1,325.95 7.72

Furthermore, by integrating the LBP classification branch,
it is possible to recover edge detail information that might
have been lost during the SCDA foreground extraction
process. This resulted in an enhanced classification
accuracy of 2.59% over that of the EfficientNet b0 network
used independently. It is important to note that the SCDA
method, despite its design to select class-relevant pixels
within the maximum connected region, can potentially lead
to information loss. Therefore, the texture features and
weight allocation module extracted by LBP can compensate
for such losses by gathering global information that may
have been lost, thereby further improving classification
accuracy.

5.4.2 The effect of image resolution

In our experiments, we explored the impact of varying input
image sizes on the classification accuracy of inspection
images. We applied the corresponding EfficientNet model
configurations listed in Table 6 for different input sizes.
Based on the experimental findings, increasing the input
size of the EfficientNet benchmark model to 240 results
in improved classification accuracy for inspection images.
However, when the input size is further increased to 300,
a performance decline is observed. We hypothesise that
the decreased performance with a larger input size is due
to a substantial deviation from the pretrained weight size
(224 × 224) on ImageNet. This disparity in input size
could potentially impact the model’s generalisation ability,
leading to a degradation in performance. Furthermore, the
experimental results demonstrated that despite the increase
in model computation and parameter count following the
incorporation of the SCDA module, for instance, at a
resolution of 224 × 224, where the model parameter
count increased by 1.7 times compared to the original, the
accuracy exhibited a notable improvement of 1.99. This
provides additional evidence supporting the efficacy of the
SCDA module in enhancing the classification of inspection
images.

5.4.3 The effect of different backbone models

To assess the performance of the model employed in this
paper on the TTower-345 dataset, we trained a range of
backbone network models, including VGGNet16 (Simonyan
and Zisserman, 2014), GoogLeNet (Szegedy et al., 2014),
DenseNet21 (Huang et al., 2016), ShuffleNet (Zhang et al.,
2017), ConvNeXt (Liu et al., 2022), etc. The results of these
experiments are documented in Table 7.

Table 7 Comparison of results based on different models

Model Result (%)

VGGNet16 80.31
GoogLeNet (InceptionV1) 90.38
DenseNet21 94.76
ShuffleNet V2 95.10
EfficientNet b0 95.84
EfficientNet V2 s 78.04
ConvNeXt Tiny 94.61
Ours 97.83

The training process of different backbone network models
is illustrated in Figure 10.

Based on the outcomes presented in Table 7, it is
evident that the improved EfficientNet model introduced
in this paper outperformed other models (He et al.,
2022). Specifically, compared to the DenseNet21 model,
our proposed model achieved a superior performance
improvement of 3.07%. Additionally, it outperformed the
ConvNeXt tiny model by a notable margin of 3.22%, and
it also surpassed the EfficientNet b0 model by 1.99% in
the task of normal inspection image classification. These
impressive results affirm the suitability of the proposed
EfficientNet architecture for image classification tasks on
the given dataset. Furthermore, the proposed improved
model demonstrated its capability to enhance the accuracy
of inspection image classification, showcasing its potential
as an effective solution for this task.

5.4.4 The classification results of inspection images in
different scenarios

To provide further evidence of the efficacy of the
proposed improved EfficientNet model, we conducted tests
using inspection images captured in various background
environments. The results of these tests are depicted in
Figure 8. These results highlight the model’s impressive
capability to accurately classify the location categories of
inspection images, irrespective of variations in background
brightness, weather conditions, and the presence of building
structures or terrain features in the background. This
demonstrates the robustness and versatility of the proposed
model in handling diverse environmental conditions.
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Figure 8 Comparison of classification results in different background environments (see online version for colours)

Figure 9 Classification results of different categories (see online version for colours)
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Figure 10 The training curve of different models
(see online version for colours)

5.4.5 Classification results of inspection photos with
different categories

The identification of inspection features from images
taken at different positions (upper, middle, and lower) on
dual-circuit transmission towers can be challenging due to

the small visual differences between these positions. In
response to this challenge, the improved EfficientNet model
proposed in this paper was applied to classify inspection
images from these different sections of transmission towers.

The results demonstrate the model’s high
generalisability and granularity in classification, allowing
it to accurately classify multiple categories of inspection
images corresponding to these different positions. Specific
results are visualised in Figure 9. This showcases the
model’s effectiveness in handling classification tasks with
varying levels of granularity and complexity.

5.4.6 Visualisation of target feature activation in
classification

The inherent opacity of deep learning networks’ training
and testing processes has spurred the development of
visualisation tools like class activation mapping (CAM)
by researchers such as Zhou et al. CAM is designed
to shed light on the learning process of CNNs by
generating heat maps of input images using CNNs. These
heatmaps highlight regions with higher response levels,
indicating areas with significant impact on classification
and localisation results, and whether they are situated at the
core of the target.

Figure 11 Comparison of classification results in different background environments (see online version for colours)
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In the context of this paper, the reliability of the models was
assessed by identifying the largest active area in the image
and comparing it with the position of cable endpoints in
inspection photos. Specifically, the study focused on images
of cable terminal attachment points, which were input into
both the EfficientNet and VGGNet16 models. Utilising
the CAM tool, decision regions with higher response
levels from both models were visualised, as illustrated in
Figure 11.

The results revealed that the improved EfficientNet
model demonstrated more accurate identification of
inspection sites compared to the VGGNet16 model.
Additionally, the decision region of the improved model
exhibited a higher level of response. These findings
underscore the improved model’s superior performance in
extracting foreground target features from inspection sites,
further validating its effectiveness.

6 Conclusions

This paper introduces the TTower-345 dataset, a
multi-category and multi-view inspection photo dataset
comprising images captured by an UAV platform during
tangent tower inspections. The dataset is designed for tasks
such as inspection photo naming and defect detection in
power grid maintenance processes. The primary focus of
this study is on the image classification task for inspection
photo naming.

To address this task, the paper proposes an improved
EfficientNet network model that incorporates the SCDA
module. This model utilises the SCDA module to extract
foreground target features, building on the lightweight
EfficientNet b0 model. Several techniques are employed
to enhance the model’s classification accuracy, including
data augmentation and increased input image resolution.
Furthermore, the model’s robustness is reinforced by adding
an LBP classification branch, resulting in the creation
of the IELC automatic naming framework for inspection
photos. Experimental results, including comparisons with
the backbone network and the use of the CAM visualisation
tool, demonstrate that the proposed improved EfficientNet
model can effectively learn competitive features from
inspection photos. The IELC framework, in conjunction
with the integrated LBP classification model, achieves
a high overall classification accuracy, currently reaching
an impressive rate of 98.43%. This level of accuracy
satisfies the naming requirements for inspection photos of
tangent towers in the power grid sector. However, it is
noted that the use of multiple parallel models can lead
to longer naming times. In future work, there should be
a consideration for developing more lightweight naming
structures to enhance practical application efficiency.
Researchers can leverage the TTower-345 dataset to
create faster and more accurate models for automatic
photo inspection naming and defect detection, thereby
contributing to the development of intelligent information
management platforms for the power grid to address
real-world needs.
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