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Abstract: Recently, the importance of few-shot learning has tremendously 
grown due to its widespread applicability. Via few-shot learning, users can 
train their models with few data and maintain high generalisation ability.  
Meta-learning and continual learning models have demonstrated elegant 
performance in model development. However, unstable performance and 
catastrophic forgetting are still two fatal issues with regard to retaining the 
memory of knowledge about previous tasks when facing new tasks. In this 
paper, a novel method, enhanced model-agnostic meta-learning (EN-MAML), 
is proposed for blending the flexible adaptation characteristics of meta-learning 
and the stable performance of continual learning to tackle the above problems. 
Based on the proposed learning method, users can efficiently and effectively 
train the model in a stable manner with few data. Experiments show that when 
following the N-way K-shot experimental protocol, EN-MAML has higher 
accuracy, more stable performance and faster convergence than other  
state-of-the-art models on several real datasets. 
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1 Introduction 

Although modern deep neural networks present outstanding performance in different 
applications and domains, such as social network, computer vision, speech, Industrial 4.0 
and natural language processing, to name a few. However, most of them require a large 
amount of data, a long training time and many computing resources to achieve a  
state-of-the-art level. For example, Om et al. (2020) show both LSTM and RNN can 
achieve high accuracy for large datasets in social network derived from e-mail. This also 
means that current deep neural networks have difficulty learning a new concept quickly 
with only a few available samples. In contrast, human intelligence is able to recognise 
new objects or learn new tasks well with only a small amount of data and practice to 
become familiar with novel concepts. 

Neural networks usually do not perform as well as expected in training networks with 
very few samples, not to mention generalisation to novel tasks. Transfer learning 
(Yosinski et al., 2014), which takes models that were previously trained on one or more 
tasks and uses them as starting points in training a model on a similar target task, was 
expected to use previous task knowledge to learn new tasks quickly with few data. 
Nevertheless, this approach also does not perform well when the target task distribution is 
not similar to the distribution of the training task, and it has the risk of overfitting on the 
target task. 

To meet the challenge of training neural networks with few data and adapting to new 
tasks well, growing importance is being placed on research in few-shot learning, which 
pursues the goal of training neural networks to acquire new concepts with only a few 
sampled data points. Usually, few-shot learning approaches have a specific dataset format 
that consists of a variety of tasks, and each of them is divided into a support set and query 
set that contain several samples from different classes. Under this dataset structure,  
few-shot learning networks were expected to learn a new task quickly with few samples 
in the support set and then precisely recognise the other samples in the query set. 

Among the various learning approaches designed to solve few-shot learning 
problems, meta-learning and continual learning both demonstrate outstanding 
performance in different benchmark datasets. In recent years, meta-learning has become 
well known for its powerful generalisation ability when performing few-shot learning 
tasks. One of the approaches is model-agnostic meta-learning (MAML) (Finn et al., 
2017), which is surprising not only in its simplicity but also in its effectiveness. On the 
other hand, continual learning also performs well on few-shot learning tasks with its 
principle of learning new tasks without forgetting previous tasks. Gradient episodic 
memory (GEM) for continual learning (Lopez-Paz and Ranzato, 2017) utilises quadratic 
programming to address the issue of catastrophic forgetting and even achieves positive 
forward transfer (FWT), meaning that the model learns new tasks better by using 
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previous task knowledge, and positive backward transfer (BWT), meaning that the 
learning of current tasks benefits previous tasks. 

Even though MAML manifests outstanding progress on few-shot learning and 
generalisation, it also suffers from being prone to overfitting (Rusu et al., 2019) and 
having unstable training performance (Antoniou et al., 2018) during the training process, 
as shown in Figure 1. From our viewpoint, high learning plasticity is the critical factor in 
acquiring excellent generalisation ability, but it also means that neural networks may bear 
the risk of generating unstable performance. In addition, we noted the importance of the 
gradient produced during the MAML outer loop, which we call the ‘meta-gradient’ in this 
paper. Therefore, we propose our enhanced model-agnostic meta-learning (EN-MAML) 
approach to enhance the stability of MAML with the characteristics of meta-gradients 
and the features of continual learning. In this paper, our method combines MAML with 
GEM to resolve the instability problem of MAML mentioned in Antoniou et al. (2018). 
We use a GEM quadratic program, which was originally used to avoid catastrophic 
forgetting in Lopez-Paz and Ranzato (2017), to memorise the meta-gradient and adjust 
the updating direction to promote the learning of previous episodes. Thus, EN-MAML 
could be expected to achieve a similar effect to that of FWT and BWT and make the 
models converge faster. 

Figure 1 Unstable performance of MAML (see online version for colours) 

 

Notes: This figure illustrates the training accuracy of MAML with three different seeds. 
The accuracy curves illustrate the unstable performance of MAML during the 
training time. 

Furthermore, we take the stability-plasticity dilemma (Abraham and Robins, 2005) into 
consideration and rethink the features of meta-learning (Plaat, 2022) and continual 
learning in the few-shot learning field. Therefore, we design our method to appropriately 
combine the learning process for current tasks and previous tasks. Consequently, our 
model can both acquire good adaptability to novel tasks and become more stable. 

The main contributions of this paper are listed as follows: 

• A novel learning model, EN-MAML, is proposed to cross the border between  
meta-learning and continual learning to overcome their shortcomings by combining 
their advantages, providing a possible way to combine these two powerful learning 
methods. 
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• We propose a method not only to address the instability of MAML but also to 
achieve faster convergence on the Omniglot dataset and higher accuracy on the 
Mini-ImageNet dataset. 

• Our method could work on other gradient-based meta-learning algorithms with the 
same manipulation of the meta-gradient in EN-MAML. 

• We also analyse the effect of the meta-gradient buffer setting, such as the mechanism 
of meta-gradient memory replacement and the size of the meta-gradient buffer, 
which affect whether EN-MAML achieves a balance in the stability-plasticity 
dilemma. 

The organisation of the paper is as follows. Section 2 discusses the literature review and 
Section 3 presents the proposed EN-MAML in details. We provide the experimental 
results in a performance study in Section 4, and conclude the paper in Section 5. 

2 Literature review 

Our work combines both meta-learning and continual learning, which have become 
increasingly important in the few-shot learning field in recent years. In this section, we 
introduce our related works in three parts: meta-learning, continual learning and hybrid 
methods. 

2.1 Meta-learning 

Meta-learning mainly focuses on solving the problem of few-shot learning and has also 
been proven to be effective in the field. By computing the distance of a prototype 
representation, the model can classify different classes with a small amount of data (Snell 
et al., 2017). Recent studies based on this concept have become more complicated and 
delicate in the embedding process (Gidaris and Komodakis, 2018; Dhillon et al., 2020) 
and even utilise data-dependent initialisations to adapt well in a low-dimensional latent 
space. By designing an object detection network with a weight generator based on an 
attention mechanism, the method of Gidaris and Komodakis (2018) also uses a 
representation space to acquire different task knowledge. With a metric space that is 
based on metric scaling and metric task conditioning, the model can learn novel concepts 
well under task-dependent scaled metrics (Oreshkin et al., 2018). 

Several approaches present powerful generalisation ability in adapting to unseen 
tasks. Most of these approaches design networks to acquire a learning ability to replace 
some artificial neural network settings. Using a long short-term memory (LSTM)-based 
high-level model to learn how to update the base-level model (Ravi and Larochelle, 
2016), the method can automatically produce different optimisation algorithms (Finn  
et al., 2017; Kuo et al., 2021) and train the network to determine appropriate initialisation 
parameters that perform well on different task distributions. The method proposed in Finn 
et al. (2017) can be applied to different kinds of model structures to promote their 
generalisation ability. To explore a set of appropriate initial parameters, the approach 
proposed in Nichol and Schulman (2018) reduces the cost of calculating in the 
differentiating process. Moreover, Antoniou et al. (2018), presents various modifications 
of Finn et al. (2017) and analyses the framework of MAML. It also notes potential 
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problems in training MAML. Recently, Dhillon et al. (2020), proposed a metric for 
different few-shot benchmark datasets to evaluate their hardness so that different  
meta-learning models could compare their performances in a more convincing way. For 
few-shot image classification, Chen et al. (2021) proposed a meta-learning system to 
achieve time and resource efficiency and to generalise unknown feedback datasets. Kuo 
et al. (2021) alleviated catastrophic forgetting, prevented base learners from inducing 
overfitting, and achieved strong robustness. 

2.2 Continual learning 

It is difficult to train a model to generalise well with little data, Aljundi et al. (2017) 
focused on how to make networks absorb new knowledge without forgetting the 
knowledge from previous tasks that the networks have learned. 

Incremental learning aims to gradually learn via continuous training. Incremental 
learning is divided into task-based incremental learning (Davidson and Mozer, 2020; 
Riemer et al., 2019; Zhao et al., 2020) and class-based incremental learning (Hu et al., 
2021; Liu et al., 2020; Zhang et al., 2021). 

Regarding class-based incremental learning, called class-incremental learning (CIL), 
Liu et al. (2021) proposed a novel network architecture to solve the stability and 
plasticity dilemma between the old and new classes of learning. This approach can adjust 
the specific level and weight of a specific stage in an existing CIL method to improve its 
performance. Hu et al. (2021) found that data replay is a reliable technology. Using the 
causal effect of introducing old data in an end-to-end manner, old data can be stored in a 
CIL network to prevent forgetting without actually storing them. The authors showed that 
the proposed causal effect distillation technique could greatly improve the state-of-the-art 
CIL methods. 

Many continual learning approaches use extra memory to store data for the purpose 
of alleviating catastrophic forgetting (Rebuffi et al., 2017). In addition to storing data to 
ensure that networks remember these previous tasks, there is a network designed to 
generate data to review the knowledge that has been learned previously (Shaheen et al., 
2022). Kirkpatrick et al. (2017) utilised the importance of each model parameter to avoid 
tuning the sensible weights that are more likely to lead to catastrophic forgetting. Rather 
than determining the important parameters, Lopez-Paz and Ranzato (2017) focused on 
modifying the angle of the model’s gradient and even proposed the metrics of FWT and 
BWT to evaluate the performance of continual learning approaches. 

From our observation, and as noted in Riemer et al. (2019), the classic  
stability-plasticity dilemma (Abraham and Robins, 2005) concept seems to match the 
characteristics of meta-learning and continual learning. The main concept of Riemer et al. 
(2019) is easing the interference between transfer and retention with gradient alignment, 
which was proposed in Lopez-Paz and Ranzato (2017). The stability-plasticity dilemma 
mentioned in Abraham and Robins (2005) means that there is a regulated balance 
between synaptic stability and synaptic plasticity. Meta-learning presents great adaptation 
to non-stationary task distribution. However, the problems of training instability and 
overfitting occurred in Finn et al. (2017). In the research of Rusu et al. (2019) mentioned 
that it is difficult for gradient-based meta-learning methods to perform few-shot learning 
in a high-dimensional latent environment. This evidence suggests that meta-learning 
might implicitly correspond to the plasticity of the stability-plasticity dilemma. On the 
other hand, most continual learning approaches enhance network stability, such as by 
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adding more constraints when updating parameters (Lopez-Paz and Ranzato, 2017; 
Kirkpatrick et al., 2017) or using a buffer to store data (Rebuffi et al., 2017). For the 
parameters that are influential on previous tasks, the approach presented in Kirkpatrick  
et al. (2017) updates them carefully and slowly. The features of these approaches allow 
continual learning to correspond to the stability of the stability-plasticity dilemma. To 
maintain the information of previous tasks, Lopez-Paz and Ranzato (2017) compare the 
gradients of different tasks to confirm that updating the direction will not lead to serious 
forgetting. 

2.3 Hybrid methods 

In recent years, some approaches have crossed the border between meta-learning and 
continual learning and leveraged the advantages of each to overcome their shortcomings. 
Gai et al. (2021) use meta continual learning to mitigate forgetting with GEM. De Lange 
et al. (2022) contribute comprehensive experimental comparison of 11 state-of-the-art 
continual learning methods and four baselines. Riemer et al. (2019) combines  
meta-learning with GEM (Lopez-Paz and Ranzato, 2017) so that networks become 
generable based on past and future task distributions. Our approach focuses on addressing 
the problem of MAML pointed out by Antoniou et al. (2018) with GEM. In our work, we 
migrate the GEM quadratic program into the MAML framework to make MAML more 
stable and to fit it with other gradient-based meta-learning approaches to enhance their 
performance. 

3 Methodology 

First, we introduce the framework of MAML, which achieves state-of-the-art few-shot 
learning by training the network to determine a set of adaptive initialisation parameters 
that can generalise to various tasks composed of different classes in the dataset. With the 
specific initialisation parameters, the network can adapt well to different tasks through 
only a few update steps. 

According to the concept of meta-learning, there are two kinds of knowledge 
networks acquired during the training phase. As a result, we define the base learner as a 
network fθ with task-level knowledge θ. When the network encounters the support set St 
from a task t, it will update only a few times to adapt to new tasks with step size α. This 
process is inner-loop updating; i is the time step of the updates, and there are I updates in 
total. The process can be expressed as: 

( )11 ,tt i
t t

θ S θi i fθ θ L
−−= − ∇α  (1) 

Normally, a batch in a few-shot learning setting contains many tasks that are made 
according to the N-way K-shot setting. We assume the batch size is T, and then the 
performance of the initialisation parameters θ0 can be evaluated by the following: 

( ) ( )0

1

tt I

T

Q θθ
t

fL Lf
=

=  (2) 
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The loss accumulates as the base learners learn the Qt query sets of each task from a 
whole batch, and the total loss is used as a criterion to measure how adaptive the set of 
initialisation parameters would be. With that, the network cannot only explore the 
direction in which to adjust θ0 but also promotes the model’s generalisation ability on the 
next batch of tasks. The process by which the network updates its θ0 to acquire  
cross-task-level knowledge to fit better on the next batch is called outer-loop updating, 
which can be expressed as: 

( )0 0 1
( ) ,Nt t

T
S St

f θθ θ L
=

′ = − ∇β  (3) 

As a result, MAML repeats the process of the inner loop and outer loop and determines 
an excellent set of initialisation parameters. Hence, the problem could be defined as 
follows, 

(Problem definition) For a batch of tasks B ∈ p(T), the support set of a batch 
1 1 2 2( , ), ( , ), ..., ( , )t t t t t tn nt S S S S S SS X Y X Y X Y=    is utilised to produce fast weights and to 

adapt to a new task; the query set of a batch 1 1 2 2( , ), ( , ), ...,t t t tt Q Q Q QQ X Y X Y=   
( , )t tn nQ QX Y   is given to evaluate the generalisation of networks to tasks. 

Although MAML has shown powerful adaptation ability in the field of few-shot learning, 
it also has some potential problems, for example, training instability and being prone to 
overfitting. In our study, we proposed our EN-MAML method to overcome these 
problems and to improve the performance of the original MAML. 

3.1 EN-MAML architecture 

From Figure 2, the entire EN-MAML framework can be segmented into two parts. On the 
left side, EN-MAML produces fast weights to adapt to a new batch of tasks and produces 
a meta-gradient for the current batch. We see this process as ‘learning’ because  
EN-MAML acquires novel knowledge from new tasks that consist of unseen categories 
of images. When EN-MAML completes the learning process, it produces the meta-
gradient according to the loss from the current batch. On the left side, EN-MAML 
computes the batch of tasks stored in the meta-gradient buffer to generate the meta-
gradient for the previous batch. We see this process as ‘reviewing’ because the model 
performs previous tasks again with its current parameter state. In the next step, the meta-
gradient from the current batch will be modified by the process of continual learning, 
which integrates the gradient from the previous batch in computation to migrate the 
knowledge the model learned previously. Finally, EN-MAML can reduce the conflict 
updating caused by the non-stationary environment and update its parameters in a more 
stable way. 

In the original MAML, the outer-loop updating generates the gradient, which comes 
from the loss of an entire batch. These gradients contain information about cross-task 
knowledge, which is the key to allowing networks to acquire the ability to continue 
promoting adaptation to different tasks. In our work, we called this kind of gradient a 
‘meta-gradient’, and it has a significant impact on the directing network in exploring 
more adaptive initialisation parameters. 

However, the task distribution of few-shot learning can be seen as a non-stationary 
environment (Yosinski et al., 2014). Therefore, networks trained on few-shot learning 
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usually have to face difficulty in dealing with conflicts between gradients’ directions. 
Accordingly, we assume that this issue causes the problem of MAML training instability. 
In our observation of other learning methods for handling this issue, we found that GEM, 
an approach proposed for continual learning, focuses on adjusting the updating gradient 
angle to make the network learn the new task without forgetting previous tasks, and 
Riemer et al. (2019) also proved its effectiveness. Conflicts between gradients will occur 
in the following situation: 

( )( ) ( )( ),,
0,

jθ jθ ii xL f yL f yx
θ θ

∂∂
⋅ <

∂ ∂
 (4) 

(Xi, yi) and (Xj, yj) are different sampled data points from different tasks. When the inner 
product of the gradients is negative, it means that the network loses knowledge of the 
previous task if the parameters are updated for the current task. To avoid forgetting, GEM 
updates the parameter only if the following constraint is satisfied: 

( ) ( )( ),( ),
0,θ Mθ ML f yL f x y x

θ θ
∂∂

⋅ ≥
∂ ∂

 (5) 

M is the buffer used to store the data from the observed task. xM, yM indicate the images 
and labels stored in M. GEM uses a quadratic program to modify the updating gradients 
that originally violated this constraint. Most recent approaches utilise task memory 
buffers to store task-level data or gradients. However, we pay attention to the meta-
gradient produced after the network learns all batch tasks. In other words, the information 
of the meta-gradient is at the batch level, which contains more varied and general task 
knowledge, and this property could be more likely to make MAML avoid overfitting. 
This is the reason why we store the meta-gradient in the buffer instead of the task-level 
gradient. In addition, the buffer replaces the oldest meta-gradient with the newest one. 
Thus, the network can prevent overfitting on certain tasks and can learn from the 
distribution. 

Figure 2 The architecture of EN-MAML (see online version for colours) 
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3.2 Meta-learning with the meta-gradient algorithm 

We assume that there are n batches of tasks sampled from task distribution p(T) in a 
training epoch. EN-MAML learns a new batch by performing inner updates and 
computes the meta-gradient of the current batch gc. The current meta-gradient is modified 
by using (5) and the GEM quadratic program to compare it with other meta-gradients 
from the previous batch. After the gradient tuning process, we acquire the modified  
meta-gradient cg ′  that EN-MAML applies to outer-loop updates. More details of EN-
MAML are described in the following algorithm: 

Algorithm EN-MAML for supervised few-shot learning 
Require p(T), distribution of tasks 
Procedure (fθ, α, β, M) 
 while not done: 
 Sample a batch of tasks B0, B1…Bn from p(T) 
 for each B0, B1…Bn do 
  if M not full: 
   Store B1 to M 
  else: 
   Replace the oldest B with the next B 
  for each t0, t1…tn in the current B do 
   for each step from i to I: 
    ( )11 tt i

t t
θi θ Si fθ θ l

−−= − ∇α  

   compute ( )tt IQ θfL  

   end For 
  end For 
  ( ) ( )0 1

i tt I

T
B

Q θ
t

fL Lθ
=

=  

  Compute the gradient of the current batch gc 
  Compute nBg  for all Bn in M 

  Get cg′  by quadratic programming 

  1
0 0

i iB B
cθ θ g− ′= − β  

 end For 

3.3 The loss function of EN-MAML 

To enhance training stability, EN-MAML calculates the loss not only from the tasks of 
the current batch but also from the tasks of the previous batch stored in the buffer. With 
the loss from learning and reviewing, we design EN-MAML to automatically decide how 
important the parts are, so there are trainable weights before the two losses. Therefore, 
EN-MAML can balance the stability-plasticity dilemma in different learning 
environments and training stages because it can adjust the attention that it gives to 
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learning and reviewing. We use the cross-entropy loss function to calculate the loss of 
image classification, which is expressed by (6). The loss function of EN-MAML is 
expressed by (7). 

( )
, ~

log ( ),( , )c θθ
x y T

l y f xf x y= =   (6) 

( ) ( )( )
1 1

,( , ) ,
T T

total c c p p θθ M M
t t

L w l w l ff x y x y
= =

= +   (7) 

wc is the weight used to represent how important EN-MAML considers the current batch 
of tasks to be, and wp is the weight that represents how much attention EN-MAML gives 
to reviewing the previous batch of tasks. lc is the loss from a task in the current batch, and 
lp is the loss from a task in the previous batch. Mem is the meta-gradient memory buffer, 
where we store previous data to compute the previous meta-gradient. 

4 Performance evaluation 

In this section, we follow the experimental protocol of classification in the MAML paper 
(Antoniou et al., 2018) and evaluate the performance of EN-MAML. To fairly compare 
the performance, we also compare with MAML. In addition, we use Torchmeta (Deleu  
et al., 2019), a powerful tool package built by PyTorch, to reproduce and design our 
model architecture. Although it is difficult to replicate the same results as in the MAML 
paper (Antoniou et al., 2018), we use the relative performance from our implementation 
to compare the two models. 
Table 1 Dataset description 

 Omniglot Mini-ImageNet 
Number of classes 1,623 100 
Number of images 32,460 60,000 
Training classes 1,028 64 
Validation classes 172 16 
Testing classes 423 20 

In our experiments, the datasets that we use to evaluate our model are Omniglot (Lake  
et al., 2015) and Mini-ImageNet (Vinyals et al., 2016), which are the benchmarks in the 
few-shot learning field. There are 1,623 handwritten characters classified as  
50 different letters in the Omniglot dataset. Each of the classes contains 20 instances of 
handwritten symbols. In Torchmeta, the Omniglot dataset is split into a training set that 
contains 1,028 classes, a validation set that contains 172 classes and a testing set that 
contains 423 classes. The majority of few-shot learning methods use the first 1,200 
classes in Omniglot for training (Antoniou et al., 2018). Other research has mentioned 
that preserving a few classes to perform validation is important (Antoniou et al., 2018). 
Therefore, we also use validation to perform our experiments. In Torchmeta, the  
Mini-ImageNet dataset, which contains 600 instances in each class, consists of 64 classes 
in the training set, 16 classes in the validation set and 20 classes in the testing set. For 
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both datasets, we augment them by rotating the images 90 degrees and decreasing the 
image sizes to 28 × 28 in Omniglot and 84 × 84 in Mini-ImageNet. Dataset information is 
shown in Table 1. 

4.1 Performance comparison 

We compare the performance of different few-shot learning models under N-way K-shot 
experiments, which means that a task has images from N kinds of classes and that each 
class has K examples. As well as MAML, we demonstrate the performance of  
EN-MAML with other famous few-shot learning models proposed in recent years: 

• Siamese nets (Koch et al., 2015): Siamese nets utilise the similarity between the 
inputs to effectively perform image classification. 

• Matching nets (Vinyals et al., 2016): Based on the metric learning concept, matching 
nets design their model with external memory and an attention mechanism to make 
the model learn the important image feature representation rapidly. 

• Neural statistician (Edwards and Storkey, 2017): The model is efficiently trained 
from a statistical viewpoint. By observing the statistics of a dataset, the model can 
use parameters and data to perform few-shot learning. 

• Memory mod (Kaiser et al., 2017): With a lifelong memory module and fast  
nearest-neighbor algorithm, this method enables the network to perform lifelong 
few-shot learning 

• MAML (Finn et al., 2017; Antoniou et al., 2018): This approach presents fast 
adaptation with few-shot learning to learn metalevel knowledge by modifying the 
inductive bias. 

• Reptile (Nichol and Schulman, 2018): Reptile is a gradient-based meta-learning 
method that trains the model to find a set of excellent initialisation parameters 
through an efficient updating process. 

We evaluate EN-MAML by performing N-way K-shot experiments on the Omniglot and 
Mini-ImageNet datasets. First, the results of 5-way few-shot classification on Omniglot 
show that EN-MAML reaches state-of-the-art performance and improves accuracy 
compared to MAML, as shown in Table 2. Second, we perform 20-way few-shot 
classification on Omniglot. EN-MAML can also achieve better performance than  
state-of-the-art models, as shown in Table 3. Compared to the performance of MAML, 
EN-MAML improves the accuracy by approximately 0.12%, as shown in Table 3. We 
can also enhance the accuracy by approximately 0.52% in the Omniglot 5-way 1-shot 
setting, as shown in Table 2. 

For the Omniglot 5-way 5-shot setting, EN-MAML also improves accuracy by 
approximately 6.09% compared to our MAML replication in the Omniglot 20-way 1-shot 
setting. For the Omniglot 20-way 5-shot setting, EN-MAML improves accuracy by 
approximately 0.07% compared to MAML, as shown in Table 3. For the Mini-ImageNet 
datasets, EN-MAML also demonstrated dramatically higher performance on 5-way 
classification experiments, as shown in Table 4. EN-MAML improves the accuracy by 
approximately 5.17% compared to the MAML performance from our replication in terms 
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of accuracy in the Mini-ImageNet 5-way 1-shot setting. For the Mini-ImageNet 5-way 5-
shot setting, EN-MAML is approximately 5.45% more accurate than MAML. 
Table 2 Accuracy of Omniglot for 5-way classification 

Accuracy 
Model 

1-SHOT 5-SHOT 
Siamese nets (Koch et al., 2015) 97.3% 98.4% 
Matching nets (Vinyals et al., 2016) 98.1% 98.9% 
Neural statistician (Edwards and Storkey, 2017) 98.1% 99.5% 
Memory mod. (Kaiser et al., 2017) 98.4% 99.6% 
MAML (Finn et al., 2017; Antoniou et al., 2018) 98.25% 98.85% 
Reptile (Nichol and Schulman, 2018) 95.30% 98.80% 
EN-MAML 98.77% 99.67% 

Table 3 Accuracy of Omniglot for 20-way classification 

Accuracy 
Model 

1-SHOT 5-SHOT 
Siamese nets (Koch et al., 2015) 88.2% 97.0% 
Matching nets (Vinyals et al., 2016) 93.8% 98.5% 
Neural statistician (Edwards and Storkey, 2017) 93.2% 98.1% 
Memory mod. (Kaiser et al., 2017) 95.0% 98.6% 
MAML (Finn et al., 2017; Antoniou et al., 2018) 93.58% 97.81% 
Reptile (Nichol and Schulman, 2018) 87.99% 96.32% 
EN-MAML 93.70% 97.88% 

Table 4 Accuracy of Mini-ImageNet 5-way classification 

Accuracy 
Model 

1-SHOT 5-SHOT 
Siamese nets (Koch et al., 2015) 47.8% 63.66% 
Matching nets (Vinyals et al., 2016) 43.56% 55.31% 
Neural statistician (Edwards and Storkey, 2017) 48.60% 63.09% 
Memory mod. (Kaiser et al., 2017) 49.21% 65.42% 
MAML (Finn et al., 2017; Antoniou et al., 2018) 49.38% 66.55% 
Reptile (Nichol and Schulman, 2018) 46.81% 62.37% 
EN-MAML 54.55% 72% 

4.2 Stability and accuracy comparison with MAML 

To fully compare and analyse the performance of EN-MAML and MAML, we 
demonstrate how the models’ testing performance improves as the number of epochs 
increases. We show all performance curves from the experiments mentioned in the above 
sections. First, we perform 5-way and 20-way classification, both with 1 shot and 5 shots 
in the Omniglot dataset. Additionally, we perform 5-way classification with 1 shot and  
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5 shots in Mini-ImageNet. Moreover, we reproduce MAML with the above experimental 
protocol setting. Second, we perform model training stability experiments to examine 
whether our method alleviates the unstable training problem proposed in Antoniou et al. 
(2018). 

We can observe that the testing accuracy of EN-MAML starts to surpass that of 
MAML when the model has been trained for approximately 40 epochs, as shown in 
Figure 3(a). Moreover, the gap in testing accuracy between EN-MAML and MAML 
gradually increases as the number of epochs increases. Additionally, our method provides 
more stable validation accuracy, which is one of our method’s objectives. In Figure 3(b), 
we can see that EN-MAML maintains higher validation accuracy at all times. Therefore, 
the combination of meta-learning and continual learning is actually positive in terms of 
enhancing the stability of MAML. Figure 4 shows that EN-MAML cannot only improve 
the accuracy of the original MAML but also enhance the training stability. EN-MAML 
obtains higher accuracy from earlier epochs to the end of the testing experiment in Figure 
4(a), and this result can also be observed in the validation experiment in Figure 4(b). 

Figure 3 Comparison of EN-MAML and MAML in the 5-way 1-shot setting on the Omniglot 
dataset, (a) validation accuracy (b) testing accuracy (see online version for colours) 

 
(a)     (b) 

Figure 4 Comparison of EN-MAML and MAML in the 5-way 5-shot setting on the Omniglot 
dataset, (a) validation accuracy (b) testing accuracy (see online version for colours) 

 
(a)     (b) 

In the Omniglot 20-way 1-shot experimental setting, EN-MAML obtains the highest 
testing accuracy in Figure 5(a), and EN-MAML obviously outperforms MAML in the 
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validation accuracy experiment in Figure 5(b). Although the testing accuracy improves 
slightly, EN-MAML proves that it can effectively promote training stability. In  
Figure 6(a), EN-MAML shows little improvement in testing accuracy in the 20-way  
5-shot setting on Omniglot. However, EN-MAML has quite a large improvement in the 
validation accuracy performance. We also note that EN-MAML has greater stability 
improvement in the 20-way experimental setting than in the 5-way experimental setting 
when both EN-MAML and MAML have converged. 

Figure 5 Comparison of EN-MAML and MAML in the 20-way 1-shot setting on the Omniglot 
dataset, (a) validation accuracy (b) testing accuracy (see online version for colours) 

 
(a)     (b) 

Figure 6 Comparison of EN-MAML and MAML in the 20-way 5-shot setting on the Omniglot 
dataset, (a) validation accuracy (b) testing accuracy (see online version for colours) 

 
(a)     (b) 

For the Mini-ImageNet experiments, we can observe that the performances of both  
EN-MAML and MAML become more unstable than in the tests on the Omniglot dataset. 
Both testing accuracy and validation accuracy fluctuate dramatically because the 
difficulty of the dataset and the few-shot setting makes the models unable to capture 
general features easily. 

However, EN-MAML still reaches the highest accuracy in the 5-way 1-shot setting in 
Figure 7(a) and maintains an equivalent level of validation accuracy in Figure 7(b). 
Additionally, EN-MAML outperforms MAML most of the time in the 5-way 5-shot 
setting on Mini-ImageNet in Figure 8(a). EN-MAML starts to surpass it and obtains 
higher accuracy in the middle epochs. In contrast, MAML shows more stable 
performance in validation accuracy in this setting. We analysed the results, and we will 
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discuss this phenomenon in the next section. To summarise all the experimental results 
on Omniglot and Mini-ImageNet, our observation is that EN-MAML either improves the 
testing accuracy or promotes validation accuracy. EN-MAML progresses on at least one 
metric and keeps the other metric at an equivalent level. On the Omniglot dataset,  
EN-MAML demonstrates dramatic improvement in validation accuracy. In contrast,  
EN-MAML shows greater enhancement in testing accuracy in all Mini-ImageNet 
experiments. 

Figure 7 Comparison of EN-MAML and MAML in the 5-way 1-shot setting on the  
Mini-ImageNet dataset, (a) validation accuracy (b) testing accuracy  
(see online version for colours) 

 
(a)     (b) 

Figure 8 Comparison of EN-MAML and MAML in the 5-way 5-shot setting on the  
Mini-ImageNet dataset, (a) validation accuracy (b) testing accuracy  
(see online version for colours) 

 
(a)     (b) 

4.3 The effectiveness of combining meta-learning with continual learning 

Initially, we expected the addition of quadratic programming, which is the mechanism 
used in GEM to alleviate catastrophic forgetting, to only promote the stability of MAML. 
As per our expectation, EN-MAML can truly improve the stability of the validation 
accuracy, which means a more reliable and stable training process in all of the Omniglot 
experimental settings, as shown in Figures 3–6. However, the positive effect of 
combining meta-learning with continual learning is not only stability promotion but also 
enhancement of the model in terms of reaching higher testing accuracy, which is shown 



   

 

   

   
 

   

   

 

   

   18 L. Hui and Y-C. Chen    
 

    
 
 

   

   
 

   

   

 

   

       
 

more clearly in Figures 4, 7 and 8. From our experimental observation, the modified 
meta-gradient, which is generated from quadratic programming to maintain the  
meta-gradient information from previous batches, can have approximately the same 
effect as the FWT proposed in Lopez-Paz and Ranzato (2017). Operating with our 
algorithm, the meta-gradient stored in the buffer will migrate new metalevel information 
from different batches of tasks. As the training continues, the meta-gradient in our buffer 
accumulates more sufficient information about the distribution of the experimental 
dataset, and then the model can update its parameters in a more correct and stable 
direction. Therefore, our learning algorithm can be separated into learning from current 
knowledge and learning from previous knowledge. Continual learning excels in 
maintaining previous task knowledge, so it can demonstrate excellent stability. MAML 
has flexible learning ability, but it is difficult to promote stability and plasticity 
concurrently, which is a difficult issue to overcome. 

Figure 9 Comparison of EN-MAML and EN-MAML without the previous-current vector in the 
5-way 1-shot setting on the Mini-ImageNet dataset, (a) validation accuracy (b) testing 
accuracy (see online version for colours) 

 
(a)     (b) 

Figure 10 Comparison of EN-MAML and EN-MAML without the previous-current vector in the 
5-way 5-shot setting on the Mini-ImageNet dataset, (a) validation accuracy (b) testing 
accuracy (see online version for colours) 

 
(a)     (b) 

To evaluate the effectiveness of weighted current knowledge and previous knowledge, 
we test the performance of the original EN-MAML and EN-MAML without considering 
dynamic weights. From Figures 9 and 10, we can observe that there is an obvious 
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performance gap between the original EN-MAML and EN-MAML without considering 
dynamic weights. Particularly in the 5-way 1-shot setting, the original EN-MAML can 
improve both its testing accuracy and validation accuracy with fewer data provided. With 
the mechanism of weighted current knowledge and weighted knowledge, we find a 
possible solution to overcome the stability-plasticity dilemma. 

Originally, we expected that the model would focus on current task knowledge at first 
and gradually shift the importance from current tasks to previous tasks. However, we 
observe that not only the time but also different experimental settings influence the 
importance of the two kinds of knowledge in Figure 11. In our experiment, we set the 
initial values of the importance of current tasks and previous tasks to 0.9 and 0.1, 
respectively. As the epoch increases, we can see that the network gradually pays more 
attention to both the current task and previous tasks under the 5-way 1-shot setting on 
Mini-ImageNet in Figure 11(a). In contrast, the network pays less attention to both the 
current task and previous tasks under the 5-way 5-shot setting on Mini-ImageNet in 
Figure 11(b). 

Figure 11 The weight change in the current-past vector, (a) current and past vector change under 
the 5-way 1-shot setting on Mini-ImageNet(b) current and past vector change under the 
5-way 5-shot setting on Mini-ImageNet (see online version for colours) 

 
(a)     (b) 

From our observation and analysis, the reason why EN-MAML can maintain higher 
stability and accuracy concurrently is that it increases the attention to previous and 
current knowledge to overcome the limitation of the few training data. On the other hand, 
when EN-MAML learns the task knowledge with relatively more data for training, it 
gradually decreases the attention on the coming tasks to overcome the unstable 
environment of few-shot learning. In other words, EN-MAML can determine the current 
learning problem that is the most influential in the experimental setting and dynamically 
adjust the importance of different kinds of learning knowledge. 

In addition, different classes in our experiment can be sampled repeatedly, so a 
gradually better-trained EN-MAML can learn the seen classes better after it acquires 
metalevel knowledge from other batches of tasks. We take this effect to be nearly the 
same as that of the BWT proposed in Lopez-Paz and Ranzato (2017) EN-MAML absorbs 
new metalevel knowledge with the MAML framework, digests new information with the 
FWT effect, and then acquires a better understanding of previously learned knowledge. 
This is the reason why EN-MAML can concurrently promote stability and testing 
accuracy, which is demonstrated in most of our experimental settings. 
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Notably, even under Mini-ImageNet, a more difficult dataset, and a smaller batch size 
setting, which means the meta-gradient will be generated from fewer tasks, EN-MAML 
can outperform MAML in most of the experiments in Figures 7 and 8. We also observe 
that EN-MAML still shows FWT and BWT effects, even under a harder learning 
environment. As the epoch grows, higher performance also appears more frequently. As 
we mentioned in the above paragraphs, EN-MAML needs time to accumulate powerful 
meta-gradient memory, and the phenomenon illustrated in Figures 7 and 8 is 
demonstrated more clearly. In these figures, we find that EN-MAML outperforms 
MAML more dramatically and reaches the highest accuracy in later epochs. 

Finally, we discuss the design of our meta-gradient buffer. First, the size of the 
gradient buffer is vital to EN-MAML. An oversized meta-gradient buffer will lead to 
learning much more slowly or even crashing. The appropriate batch size can be 
determined by the difficulty of the dataset and the batch size of the tasks. In a relatively 
easy experimental environment, we suggest that the model should be trained for small 
meta-gradient batch sizes. Conversely, it should be increased in a more difficult setting. 
In our implementation, the meta-gradient batch size is 1 in Omniglot and 2 in  
Mini-ImageNet. Compared to other few-shot learning methods with external memory, 
our buffer size can be adjusted with different settings and environments. Moreover, we 
use a relatively small memory size to reduce the computation and storage space because 
the meta-gradient stored in our buffer can be continually updated to become more 
adaptive. This is why we only need a little memory for storage. Regarding the 
computation in migrating each meta-gradient, we also consider applying weights to each 
meta-gradient before performing quadratic programming. Additionally, how frequently 
the old memory is replaced is an important setting. In our method, we replace old 
memory when the new meta-gradient is generated. 

4.4 Hyperparameter settings 

To evaluate our model, we followed the experimental protocol proposed in Riemer et al. 
(2019), which is also followed by MAML. The N-way K-shot protocol is often used to 
evaluate a model’s classification ability in few-shot learning. In the N-way K-shot 
experimental protocol, N classes are randomly selected, and each of them has K samples. 

To determine more appropriate hyperparameter settings, we not only study the 
experimental results from previous meta-learning methods but also train EN-MAML with 
different epochs and learning rates to search for better hyperparameter settings. From the 
experimental results in Figure 12, we find that EN-MAML demonstrates better 
performance under 100 epochs and a 0.3 learning rate. Additionally, we train EN-MAML 
with 600 epochs and a 0.4 learning rate according to the experimental results 
demonstrated in Figure 12. 

According to the experimental results in Figures 12 and 13, we train the models for 
100 epochs, and each epoch contains 100 iterations with a step size of 0.4 in all Omniglot 
experiments. For all Mini-ImageNet experiments, we train the models for 600 epochs, 
and each epoch consists of 100 iterations with a step size of 0.1. Each classification 
experiment trains for 600 epochs, and each epoch consists of 100 iterations. Every 
classification task in a batch is randomly generated and shuffled. In the stability 
experiment, we show the validation accuracy curve tendency in the first 100 epochs. In 
both the 5-way and 20-way Omniglot experiments, we set the meta-batch size to 32 tasks. 
For Mini-ImageNet, we train our model with a step size of 0.01. We set the meta-batch 
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size to 2 tasks in the 5-shot experiment and set the meta-batch size to 2 tasks in the 1-shot 
experiment. In addition, we train the models with one gradient step and test the models 
with 5 gradient steps in all experiments. 

Figure 12 The performance of EN-MAML under different hyperparameter settings on the 
Omniglot dataset, (a) different numbers of epoch settings under the 5-way 1-shot 
setting (b) different learning rate settings under the 5-way 1-shot setting (see online 
version for colours) 

 
(a)     (b) 

Figure 13 The performance of EN-MAML under different hyperparameter settings on the  
Mini-ImageNet dataset, (a) different numbers of epoch settings under the 5-way 1-shot 
setting (b) different learning rate settings under the 5-way 1-shot setting (see online 
version for colours) 

 
(a)     (b) 

The performance of EN-MAML is analysed above, proving that it prevails over the other 
frequent-used few-shot learning models, such as MAML, Siamese nets, matching nets, 
neural statistician, memory mod, and reptile, in terms of stability and accuracy. In 
addition, the meta-gradient stored in the buffer can be continuously updated, making the 
proposed approach more adaptive than other models. Model training stability 
experiments are carried to examine our method, showing that it can alleviate the unstable 
training condition problem proposed in Antoniou et al. (2018). 
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5 Conclusions 

In this paper, we introduce a novel method, EN-MAML, which combines meta-learning 
with continual learning by leveraging the meta-gradient property with quadratic 
programming. We provide higher stability in model training and better testing accuracy 
than MAML in most experimental settings. The experimental results indicate that the 
combination of meta-learning and continual learning can have the potential to increase 
flexibility and stability concurrently. In the future, few-shot learning research can explore 
more possible ways to leverage the features of meta-learning and continual learning to 
overcome the shortcomings of both to address the stability-plasticity dilemma. 
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