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Abstract: Friction stir welding (FSW) and its variants are important welding 
processes in many industries, including aerospace, railway, robotics and 
computers. Since welding plays a vital role in enhancing production and 
productivity, the effect of tool shoulder geometry on weld quality must be 
investigated. The weld quality is affected by tool geometry, welding speed, tool 
traverse speed, tool inclination angle, and so on. Consequently, the interaction 
of such parameters influences the weld quality, which becomes difficult  
to predict. In this research, welding was performed on Al 6082 T6 alloy  
using two separate shoulder geometries (raised and recessed shoulder) at  
three different welding rates and tool transverse speeds. Further, the ultimate 
tensile strength (UTS) and the microhardness of the material were used in weld 
quality evaluation. Two adaptive network-based fuzzy inference systems 
(ANFIS) were used to train and evaluate the UTS and microhardness, 
respectively. The Takagi-Sugeno fuzzy inference system was used to find the 
effect of tool shoulder geometry on the weld quality. 
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1 Overview 

In a global economic civilisation, the need for electricity is increasing every day 
(Threadgill et al., 2009). Integrating low-weight, super-strength metals such as 
aluminium, magnesium, and titanium in cars utilised in aero, overland, and marine 
transportation is one of the most successful methods to achieve this goal (Salloomi et al., 
2020; Dorbane et al., 2016; Câmara et al., 2012). These metals are particularly difficult  
to join using standard welding techniques. To get the most out of this lightweight,  
high-strength alloy, they will need special treatment (Mironov et al., 2018; Nagaraj et al., 
2020). The difficulty of generating high-strength, fatigue, and fracture-resistant welds for 
commercial uses has long restricted structural welding (Mishra and Ma, 2005; Murr, 
2015). Furthermore, there is a significant drop in mechanical properties when compared 
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to the basic material. Traditional welding procedures are inappropriate for joining these 
metals because of these characteristics. To overcome these roadblocks, industries have 
focused on innovative manufacturing processes. 

Friction stir welding (FSW) has gained popularity in recent years, enabling businesses 
to employ it in a wide range of industries and on a wide range of metal alloys (Nagaraj  
et al., 2020; Cho, 2008; Günen et al., 2018). This approach, which allowed the effective 
mixing of several metal sets, was used to combine low melting point metals that are 
difficult to join using traditional welding procedures. FSW was created in 1991 by  
The Welding Institute (TWI) of the UK as a solid-state joining procedure for aluminium 
alloys (Mishra and Ma, 2005; Murr, 2015). Between the contacting perimeters of the 
sheets or plates to be coupled and pushed via the union line, a non-consumable rotating 
tool with a specifically shaped pin and shoulder are positioned. Tool material, base metal 
material, thickness, tool speed in revolutions per minute (RPM), pin design, pin length, 
tool travel speed, heat input, and tool head angle are all factors that influence the weld 
quality in the FSW process. Each of these aspects is separate, yet they all interact 
(Cipriani et al., 2004). The most suitable processing factors should be selected while 
keeping the conflicting circumstances of this factor in mind to generate items with the 
best mechanical qualities while keeping costs low (D’Souza et al., 2020; Yoon et al., 
2016; Kim et al., 2014). Because of recent breakthroughs in artificial intelligence (AI) 
systems, the usage of AI techniques in a variety of engineering fields has exploded 
(Ankarali et al., 2004; Yavuz, 2004). Because of their high accuracy, simplicity of 
application, and adaptability to any field, AI is rapidly being used in many areas. In the 
FSW cycle, AI processes are used to optimise and analyse a variety of factors to achieve 
top quality at an optimal cost. Different factors include tool metal, base metal, base metal 
thickness, welding speed in RPM, welding feed, pin shape, pin length, heat input 
information and tool head angle (Dinaharan and Murugan, 2012; Mondal et al., 2017; 
Karimnejad et al., 2021). Artificial neural networks (ANNs), fuzzy logic meta-heuristic 
algorithms, wavelet, machine learning, hybrid systems, adaptive network-based fuzzy 
inference system (ANFIS), heuristic-ANN, genetic algorithm (GA), and heuristic-fuzzy 
are the most common AI approaches which may be employed in predicting the weld 
quality. 

The main objective of this research is to predict the FSW weld quality of Al 6082 T6 
alloy. The welding is carried out in different combinations of distinct FSW tools and 
shoulder shapes. In addition, the welding is carried out using a variety of process 
conditions. During this study, two different AI systems were used. 

2 Friction welding technology 

FSW is a method of joining metals without the need for fillers or fusion materials. 
Furthermore, when welding, the temperature does not surpass the base metals’ melting 
point. As a consequence, it is known as a solid-state welding procedure. This welding 
method is most often used on non-ferrous alloys with low melting points. Even though 
aluminium is the most commonly used material, however, titanium, magnesium, copper, 
steel, polyethylene, and polycarbonate are also often utilised. Because there is no heat 
production before melting, there is no structural modification in the welded zone or the 
base metal following welding. FSW may be used to join metals that are not compatible. 
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The underlying principle of FSW is deceptively simple. A non-consumable rotating 
tool with a specifically designed pin and shoulder is positioned between the contacting 
perimeter of the plate material to be connected and moved along the joint line (refer to 
Figure 1). The tool’s primary function is to warm the base metal and to provide material 
mobility for the forming of the union. Heat is created at the connecting side of the 
material due to friction between the tool and the top surface of the base metal, and the 
base metal deformed plastically. Localised heating softens the material around the pin, 
and unique combinations of tool rotation, tool translation, and shoulder geometry cause 
material displacement from the front to the back of the pin. During the first stage of 
welding, the revolving pin is touched to the union line with a length that does not exceed 
the thickness of the base metal. Heat is created when the spinning pin contacts the plates, 
and the material begins to soften. 

Figure 1 Principal of FSW 

 

Source: Eren et al. (2021) 

During welding, the oxide that has formed along the combination line is destroyed. With 
advancing movement, the heat-sensitive materials are combined and merged, and the 
remaining joined component cools to form the solid state (Mishra and Ma, 2005; Murr, 
2015). FSW is an environmentally friendly and sustainable welding process that 
consumes less energy than traditional welding procedures and can fuse a variety of 
materials. 

Several researchers have worked in the FSW domain. Ouyang et al. (2006) 
investigated the temperature distribution and microstructure of a weld made with  
Al (6061-T6) and 99.8% copper using this method. Intermetallic complexes including 
CuAl2, CuAl, and Cu9Al4 were discovered in the joint field. Dey et al. (2009) studied 
the FSW procedure for stainless steel and titanium. They concluded that composite 
carbides, which are made up of reinforced particles, may be used as a tool material. They 
identified the chemicals as tungsten and cobalt carbides. The Al (6061-T6) alloy is often 
used in FSW (Rajakumar et al., 2010). This alloy, they believe, creates a lightweight joint 
with strong mechanical properties, such as high strength and corrosion resistance. They 



   

 

   

   
 

   

   

 

   

    Using fuzzy logic to predict the influence of the tool shoulder geometry 5    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

discovered that the strength of the nugget zone and the grain size affected the joint 
strength. To estimate the tensile strength and grain size of the joining material, they 
constructed an empirical connection between input and output parameters for the FSW of 
Al (6061-T6). The FSW characteristics of AA6061 aluminium alloy and Al-Mg2Si 
composite materials were tested (Sharghi and Farzadi, 2018). The goal is to use a 
computational fluid dynamic (CFD) model to investigate the strain rate, nugget form, and 
viscoelastic material movement in the FSW process (Sharghi and Farzadi, 2018). Aali 
(2020) used a novel titanium alloy, Ti4Al2V, and experimented with spindle rotation to 
see how it influenced the quality of the weld. He noticed that the toughness of the weld 
increased as the rotating speed increased. He also observed that to minimise flaws like 
pitting, exact synchronisation between the tool’s rotary and transversal speeds is essential 
(Aali, 2020). Zhou et al. (2019) employed FSW to compare the tool wear, internal 
structure, and mechanical properties of AA6061 and Ti6Al4V alloys after welding. Aside 
from that, there are a variety of FSW uses and research on different Al alloys. 

FSW’s idea and approach may be used for a variety of metals and non-metals, 
resulting in substantial progress and development in the industrial sectors. The most 
crucial and difficult job for new material is determining the most influential production 
factor. AI has emerged as one of the most effective methods for finding the influential 
factor. Figure 2 depicts the use of FSW technology in conjunction with the fuzzy 
interface. 

Figure 2 Flowchart of integration of FSW technology and fuzzy interface (see online version  
for colours) 

FSW 
experiment 

Experimental 
result 

Train the fuzzy system 
using experimental data 

Predication of 
outcome 

 

3 Adaptive network-based fuzzy inference system 

An ANFIS is a sort of ANN based on the Takagi-Sugeno fuzzy inference system. 
Because it combines neural networks with fuzzy logic concepts, it can make use of both 
in a single framework (Barath et al., 2018). Its inference system consists of a set of fuzzy 
if-then rules that may be approximated to nonlinear functions using artificial learning. As 
a consequence, ANFIS has earned the reputation of being a universal estimator. The  
GA-based best parameters may be utilised to apply the ANFIS more efficiently and 
optimally (Paschen et al., 2020). A fuzzy algorithm provides an ability to learn and adapt 
a system based on earlier data, as well as make judgments. The interaction of fuzzy-based 
systems with intelligence, adaptability, and intentionality in its proposed algorithms is 
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continually expanding fuzzy value (Allam and Dhunny, 2019). Fuzzy systems have been 
utilised for a variety of optimisation, classification, analysis, and prediction applications 
in almost all interdisciplinary disciplines. Fuzzy technologies are commonly employed 
with experimental design approaches such as Taguchi optimisation method, response 
surface methodology (RSM), and others to enhance the reliability of optimal solution 
prediction. 

Figure 3 Different types of fuzzy interface (see online version for colours) 

Fu
zz

y 
in

te
rfa

ce

Quasi-fuzzy membership

Triangular-fuzzy membership

Trapezoidal-fuzzy membership

Mamdani fuzzy interface system

Sugeno fuzzy interface system

 

Source: Alam et al. (2022) 

AI helps in a variety of manufacturing processes to gain productivity and efficiency by 
automating processes and procedures that would normally need the involvement of 
humans. Additionally, AI can grasp enormous volumes of data, something that no human 
being is capable of Eren et al. (2021). As a direct result of these benefits, the number of 
businesses that make use of fuzzy interface techniques to solve problems in the industrial 
sector is continually growing. Figure 3 illustrates some of the many different fuzzy 
interface techniques. Fuzzy inference is a method that interprets the values in the input 
vector and, based on some sets of rules, assigns values to the output vector. In fuzzy 
logic, the truth of any statement becomes a matter of a degree. Fuzzy inference is the 
process of formulating the mapping from a given input to an output using fuzzy logic. 
The mapping then provides a basis from which decisions can be made or patterns 
discerned (Alam et al., 2022). The process of fuzzy inference involves all of the pieces 
described so far, i.e., membership functions, fuzzy logic operators, and if-then rules.  
Two main types of fuzzy inference systems Mamdani-type and Sugeno-type can be 
implemented. These two types of inference systems vary somewhat in the way outputs 
are determined. Optimising FSW variables was accomplished by Dewan et al. (2016) 
abusage of an ANN model in combinations with a model of an ANFIS, which was 
developed specifically for this project. The researchers found that the ANFIS model 
performed much better than the ANN model (Dewan et al., 2016). Using ANN, 
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simulation is carried out in MATLAB (Katherasan et al., 2014), they employed the PSO 
technique to optimise a set of L25 Taguchi orthogonal array of flux-cored arc welding 
operation variables. As a direct consequence of this, a wide array of AI algorithms is now 
available (Tansel et al., 2010; Kannan et al., 2014, 2017). In contrast to it, ANN and GA 
have been used in this investigation. ANNs are particularly effective when used for linear 
and nonlinear systems, as well as circumstances in which the system knowledge is 
imprecise. 

4 Material and methodology 

It is difficult to fuse Al 6082 T6 alloy using traditional welding techniques since it is built 
on the elements magnesium, silicon and manganese. Its chemical composition and 
mechanical properties are shown in Table 1. It contains magnesium, and aluminium alloy 
hence becoming exceedingly malleable while maintaining its strength. Because of these 
characteristics, it has swiftly replaced older aluminium alloys of the 6XXX family. 
Further, the plate was cut into pieces of 300 × 150 × 4 millimetres, thus a total length of 
300 millimetres was obtained. 
Table 1 Chemical composition and mechanical properties of Al 6082 T6 alloy 

Material Al Si Mg Mn Fe Cr Zn Cu + Ag 
% composition Bal. 0.90 1.1 0.70 0.50 0.25 0.20 0.10 

Mechanical properties 
Property Tensile strength Yield strength Elongation Hardness 
Value 280 MPa 240 MPa 10 % 95 HV 

Source: Sameer and Birru (2019) 

Since the FSW tool was made of H13, the tool wear was considerably low. Figure 4 
depicts two distinct FSW tools, each of which has a circular pin profile with different 
shoulder geometry. During the process of developing the FSW tool, the ratio of the tool 
shoulder diameter to the pin diameter was maintained at 3 (Rajakumar et al., 2011;  
Rao and Naik, 2018; Elangovan and Balasubramanian, 2008; Malarvizhi and 
Balasubramanian, 2012). This has further prevented the FSW tool from coming into 
direct contact with the workpiece. The length of the FSW tool’s pin is designed to be  
2 millimetres shorter than the workpiece plate thickness (Mishra and Ma, 2005; Murr, 
2015; Aali, 2020). 

In the present research, the Taguchi technique of design of experiments was used as a 
statistical tool to optimise and plan the experiments. The FSW process variables and their 
respective levels are obtained and listed in Table 2. The experiment was designed using a 
mixed-level Taguchi design since the tool rotation speed, welding speed, and shoulder 
design each have three levels whereas the design of the experiment only has two levels. 
The mixed-level Taguchi approach is executed using the Minitab 18 software, which 
produces a total of 36 experiment variations for both tool-raised and recessed geometries 
according to the L36 orthogonal array. On the computer numerically controlled milling 
machine, a total of 36 different welding tests were carried out in the order specified by 
the experimental design (HASS, USA). The setup for the FSW process is shown in 
Figure 5. 
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Figure 4 Tool dimension and tool design (tool design 1 and tool design 2) (see online version  
for colours) 

 

Note: All the dimensions are in mm. 

Table 2 Levels of FSW process parameters 

Parameter 
Tool design level 

1 2 
 Raised Recessed 
 1 2 3 
Tool rotation speed in RPM 2,300 2,500 2,700 
Welding speed in mm/min 20 30 40 

Figure 5 FSW welding setup (see online version for colours) 
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Table 3 Experimental result 

Sr. 
no. 

Shoulder 
design 

Tool rotation 
speed (RPM) 

Tool travel 
speed (mm/min) 

Average UTS 
(N/mm2) 

Microhardness 
(HV0.1) 

1 1 2,300 20 168 57 
2 1 2,500 30 168 56 
3 1 2,700 40 172 61 
4 1 2,300 20 168 54 
5 1 2,500 30 171 55 
6 1 2,700 40 168 60 
7 1 2,300 20 159 56 
8 1 2,500 30 171 57 
9 1 2,700 40 176 58 
10 1 2,300 20 159 57 
11 1 2,500 30 165 59 
12 1 2,700 40 171 61 
13 1 2,300 30 168 47 
14 1 2,500 40 164 49 
15 1 2,700 20 159 44 
16 1 2,300 30 165 45 
17 1 2,500 40 171 50 
18 1 2,700 20 159 48 
19 2 2,300 30 162 57 
20 2 2,500 40 164 61 
21 2 2,700 20 115 51 
22 2 2,300 30 159 58 
23 2 2,500 40 151 59 
24 2 2,700 20 116 50 
25 2 2,300 40 135 49 
26 2 2,500 20 147 50 
27 2 2,700 30 145 42 
28 2 2,300 40 138 50 
29 2 2,500 20 144 51 
30 2 2,700 30 146 41 
31 2 2,300 40 137 49 
32 2 2,500 20 144 48 
33 2 2,700 30 147 41 
34 2 2,300 40 133 50 
35 2 2,500 20 142 47 
36 2 2,700 30 144 40 
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Table 3 presents the different combinations of input parameters that are obtained through 
the Taguchi L36 orthogonal array. In this experiment, the elements that were taken into 
consideration were the rotation speed, the travel speed, and the shoulder design of the 
FSW tool. After the welding, three tensile and one microhardness specimens are 
extracted, as shown in Figure 6 from each experimental weld run and the average of those 
three ultimate tensile strengths (UTSs) and microhardness are measured and listed in 
Table 3. The microhardness of the weld nugget portion as shown in Figure 6, was 
measured at three different positions near the centre of the nugget, which is lateral to the 
weld joint. 

Figure 6 Test specimens (see online version for colours) 

 

5 Results and discussion 

On a plate of Al 6082 T6 alloy with a thickness of 4 millimetres, FSW experiments were 
carried out. Experiments are performed using two different FSW tools, each having a 
circular pin pro-file that has either a raised or recessed shoulder shape. During the whole 
welding process, there was no variation in the setting of the tool. The surface appearance 
of one of the welded samples is shown in Figure 7. The spindle rotation speed was  
2,700 rpm, and the feed rate was 40 mm/min. The raised shoulder feature tool was used 
to create the sample. Table 3 provides a summary of the UTS and microhardness of each 
sample, which were evaluated by a UTM machine and a Vickers hardness tester machine, 
respectively, for each of the 36 weld tests. The UTS and microhardness values are 
presented in the same format. 

Figure 7 Surface appearance (see online version for colours) 
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Figure 8 Fuzzy interface for (a) UTS and (b) microhardness 

   
(a)     (b) 

Figure 9 Membership functions for (a) tool design, (b) RPM and (c) feed (see online version  
for colours) 

  
(a)     (b) 

 
(c) 
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Figure 10 Fuzzy interface for rules (see online version for colours) 
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As shown in Figure 8, first training of data is carried out considering the three inputs of 
tool design, RPM, feed, and predicted UTS value subsequently followed by data training 
to predict microhardness (Shivakoti et al., 2019). 

As shown in Figure 9, membership functions for three inputs arguments of tool 
design, RPM and feed were considered. The tool design has two designs (Threadgill et 
al., 2009; Salloomi et al., 2020) whereas the range of RPM is between [2,300–2,700] and 
feed is between [20–40]. 

As shown in Figure 10, three input variables of tool design, RPM, and feed were used 
to form the 64 rules. Each combination of tool design number, RPM, and feed was used 
to form rules for UTS and microhardness. 

As shown in Figure 11, two fuzzy models were prepared to predict the UTS and 
microhardness and compared with actual values. The root mean square error (RMSE) 
was observed as 2.83 for UTS and 1.15 for microhardness. 

Figure 11 Actual vs. predicted for (a) UTS and (b) microhardness (see online version for colours) 

  
(a)     (b) 

Figure 12 Surface plot of (a) tool design number, RPM, feed with UTS and (b) tool design 
number, RPM, feed with microhardness (see online version for colours) 

  
(a)     (b) 
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Figure 12 shows the surface plots of tool design number, RPM, and feed to represent 
UTS and tool design number, RPM, and feed to represent microhardness. Thus, the 
relationship between two inputs was utilised for the output of UTS and microhardness. 
As per the surface plot of tool design number, RPM, feed with UTS and microhardness, it 
is seen that at higher RPM and feed, higher UTS and microhardness also increase. 

6 Conclusions 

For the purpose of this investigation, a total of 36 FSW tests were carried out using a  
pre-defined set of information parameters. The results of these experiments were 
analysed for the tensile strength and hardness of FSW welds on Al 6082 T6 alloy 
combinations. The following are some inevitable inferences that might be drawn from 
this: The results of the experiment demonstrate that there is a correlation between the 
welding speed, feed and UTS. The surface plot derived through ANFIS architecture 
shows that at higher RPM and feed, higher UTS with a good microhardness of the weld 
zone may be obtained. 

At a tool rotation speed of 2,700 rpm and a welding speed of 40 mm/min, the greatest 
tensile strength of 176 N/mm2 was attained. This was made possible by the use of higher 
tool shoulder geometry. The fuzzy model makes an autonomous prediction of the UTS 
and microhardness values based on the three inputs tool number, RPM, and feed. RMSE 
for the UTS and the microhardness are, respectively, 2.83 and 1.15. 
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