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Abstract: This research investigates the impact of preprocessing strategies, 
namely feature selection (utilising correlation and recursive feature elimination 
with cross-validation) and class imbalance handling (employing synthetic 
minority oversampling technique), on the performance of prediction models 
using ensemble-learning techniques (random forest, AdaBoost, gradient 
boosting decision tree, extreme gradient boosting, bagging, LightGBM and 
extra tree classifier). The study focuses on the Polish bankruptcy dataset to 
assess the effectiveness of these preprocessing approaches. Experimental 
results demonstrate that adopting class imbalance handling significantly 
influences classifier performance compared to feature selection alone. 
Interestingly, hyperparameter tuning and feature selection exhibit limited 
impact on classifier performance. Among the ensemble-learning techniques 
tested, the adaptive boosting classifier shows consistently poor performance 
throughout the study period, followed by the bagging classifier with statistical 
significance. These findings shed light on the importance of selecting 
appropriate preprocessing strategies to improve the performance of  
ensemble-based prediction models in bankruptcy prediction tasks. 
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1 Introduction 

Researchers and academicians have used several definitions of ‘corporate bankruptcy’ in 
their work. A company’s inability to generate enough profits to pay off its debtors in 
terms of interest and the principal sum is known as corporate bankruptcy (Gordon, 1971). 
Numerous examples of these occurrences we have occasionally seen are Enron’s 
bankruptcy in 2001, WorldCom’s in 2002, and Lehman Brothers’ in 2008. The topic has 
attracted the research community because of the significant consequences it could have 
for business and society at large. Corporate bankruptcy research falls into two categories: 

1 predicting bankruptcy (Altman et al., 2017) 

2 probing the determinants of bankruptcy (Lukason and Laitinen, 2019). 

Financial institutions, investors, and rating agencies have long made bankruptcy 
prediction a priority research subject, and many statistical and machine-learning models 
have been developed for predicting the event of bankruptcy. 

When it comes to using statistics to foresee business failure, Beaver (1966) was the 
pioneer. Altman (1968), Wilcox (1973), Altman and Bettina (1976), Deakin (1972) and 
Laitinen (1991) all followed Beaver (1966). On Beaver’s recommendation, Altman 
(1968) harnessed multiple discriminant analysis (MDA), the gold standard in statistical 
analysis, to create a bankruptcy prediction problem (BPP, also known as the Z model). 
Machine learning (ML) has come a long way in insolvency forecasting since the 1990s. 
Regardless of the approach to their creation, prediction models must be as efficient as 
possible. Hence, the main research goal when making a prediction model has been to find 
the model that makes the most accurate predictions or has the slightest prediction error 
(Tsai et al., 2021). A standard formulation of the BPP asks, “given a set of financial 
variables that describe the situation of a company over a given period, and a set of 
companies that have been labelled bankrupt or healthy, predict the likelihood that the 
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company may become bankrupt during the following years” (Chen et al., 2020). BPP is 
typically solved using a binary classification task. 

Several essential variables impact the ultimate efficacy of prediction models. Feature 
selection is critical among the many variables contributing to a model’s overall predictive 
efficacy. Improving a model’s prediction accuracy often requires performing feature 
selection to evaluate the feature representativeness of the gathered datasets. An example 
is the research conducted by Lin et al. (2019), which examined the relative merits of 
several feature selection and ensemble categorisation strategies for bankruptcy 
forecasting. Class imbalance handling is another critical consideration while making a 
real-world application of the insolvency prediction problem. In a case of class inequality, 
the number of prosperous businesses vastly outnumbers the number of unsuccessful ones. 
The ability of a model to predict bankruptcy is disturbed when it uses a skewed or 
imbalanced dataset (Zelenkov and Volodarskiy, 2021). Many classification algorithms 
used in machine learning presume symmetry between class distributions as part of their 
objective function, significantly contributing to the performance degradation caused by 
data imbalance problems (Kim et al., 2016). 

Numerous machine learning and computational intelligence techniques, including 
artificial neural networks (ANN), support vector machines (SVM), decision trees (DT), 
and many others, have recently been recommended to address BPP (Adisa et al., 2019). 
This paper focuses on BPP because, regardless of substantial research efforts, 
sophisticated predictive models are rarely used in practice (Bellovary et al., 2007). 
According to recent studies, ensemble frameworks which combine multiple classifiers (or 
prediction models) are a promising method for predicting bankruptcy that can help 
traditional models overcome flaws like multivariate normality, multicollinearity, and 
worsened correct classification rates while also giving banks and other financial 
institutions a reliable model for predicting business failure. For instance, extreme 
gradient boosting (XGB) was posited by Ziȩba et al. (2016) to resolve the issue of BPP. 
They found that the XGB classifier is noticeably more accurate than any previous 
reference methods to identify the businesses’ financial state. 

This study seeks to explain whether or not preprocessing the data with  
ensemble-learning techniques, including feature selection and class imbalance handling, 
yields superior results to either using just one of these methods or combining any of these 
methods. Hence, we compared the performance of the seven most common ensemble 
classifiers – bagging, adaptive boosting (AdaBoost), random forest (RF), gradient 
boosting decision tree (GBDT), extreme gradient boosting (XGBoost), extra tree 
classifier (ETC), and light gradient boosting (LightGBM) – in the current study in  
three distinct ways: 

a with feature selection and class imbalance handling 

b without class imbalance handling and with feature selection 

c with class imbalance handling and without feature selection. 

We used synthetic minority oversampling technique (SMOTE) as a class imbalance 
handling strategy and correlation and recursive feature elimination with cross-validation 
(RFECV) for feature selection. To the author’s knowledge, the ETC and LightGBM are 
applied for the first time to bankruptcy prediction using a real-world Polish dataset. 
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The rest of the research is structured as follows: The literature review is discussed in 
Section 2, and a broad overview of the study methods is provided in Section 3. In  
Section 4, we looked at the results and talked about what we learned. The significant 
findings and caveats of the research are presented in Section 5. 

2 Literature review 

2.1 Traditional ML algorithms for BPP 

In this section, we give a literature review on BPP, emphasising the application of 
machine learning. Numerous papers have been written over the past few decades to 
resolve the issue of bankruptcy prediction. Much recent work investigates the BPP 
through supervised learning, such as K-nearest neighbour (KNN), DT, SVM, and NN 
(Ocal et al., 2015; Hosaka, 2019). The classification methods used by Bateni and Asghari 
(2020) included logit analysis and the genetic algorithm (GA). Their research on Tehran 
Stock Exchange-listed Iranian businesses discovered that the GA model was supercilious 
to the logit classifier. To create a robust bankruptcy prediction model that takes into 
account the feature extraction process, Smiti and Soui (2020) combined the borderline 
synthetic minority (BSM) oversampling method with the stacked auto encoder (SAE) 
formulated on the softmax classifier. According to their experimental findings, the  
BSM-SAES is superior to the other methods regarding area under the curve (AUC). 

Ocal et al. (2015) suggested chi-square automatic interaction detector (CHAID) and 
C5.0 decision tree algorithms to predict business failure. The findings obtained 
demonstrate the proposed models’ sufficient prediction accuracy. Santoso and Wibowo 
(2018) used linear discriminant analysis (LDA) and SVM with a dimension reduction 
method to determine how likely Indonesian financial companies would go bankrupt. The 
results showed that, compared to other classifiers, the hybrid stepwise-SVM model gave 
an improved performance on the accuracy metric. Using a real-world dataset of Polish 
companies, Fan et al. (2017) proposed and appraised the performance of one-class SVM, 
isolation forest, and multivariate Gaussian distribution algorithms for predicting 
insolvency. When comparing different classifiers based on the AUC measure, isolation 
forest outperformed the remaining classifiers. Positive results show that the isolation 
forest can effectively mitigate imbalanced learning issues. 

2.2 Ensemble learning algorithms for BPP 

The study of BPP has lately benefited from applying a wide variety of ensemble methods, 
all of which aim to improve BPP performance by pooling the knowledge of many 
individual learners into a more formidable whole. In order to address the BPP on 
monetary variables, Jabeur et al. (2021) created a brand new advanced ML algorithm 
(CatBoost) and compared its performance to that of eight other commonly used 
algorithms. The findings demonstrate that by using the CatBoost method, the prediction 
performance was greatly enhanced. Based on experimental findings, Matin et al. (2019) 
concluded that XGBoost is the best BPP model among ensemble-based BPP approaches 
for processing unstructured data like audit and management reports of firms. According 
to the findings of Le et al. (2018), RF coupled with a two-phase preliminary processing 
method consisting of an oversampling technique (SMOTE) and an information-cleansing 
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approach (edited nearest neighbour) produces the best results on a highly skewed dataset 
of Korean companies. 

Using a dataset with 449 bankrupt and 449 solvent North American businesses, 
(Barboza et al., 2017) implemented and evaluated several classification models for 
bankruptcy prediction. These models included SVM with linear and radial basis 
functions, ANN, logistic regression, boosting, RF, and bagging. Experiments in this study 
demonstrate that boosting, bagging, and RF are superior classifiers for bankruptcy 
prediction. Ziȩba et al. (2016) proposed XGB to forecast financial distress using a  
real-world dataset of Polish businesses. The research shows that XGB has accurately 
predicted corporate insolvency compared to other current methodologies. Further, Wang 
et al. (2018) examined the attribute bagging (random subspace) method, an ensemble 
approach to extracting sentiment and textual information to predict the failure of 
businesses. Using AdaBoost within the context of the boosting framework, Alfaro et al. 
(2008) predicted the corporate bankruptcy risk of European companies. They 
demonstrated that, compared to ANN-based BPP models, the generalisation error could 
be reduced by around 30% using the proposed boosting ensemble method. 

2.3 Class imbalance and BPP 

A simple definition of the class imbalance problem in binary classification would be that 
there is a discrepancy between the distributions of the data from the positive and negative 
classes. In cases of business failure, the group of bankrupt firms (positive class) is much 
more prominent in number than the group of non-bankrupt firms (negative class). Since it 
is more costly to categorise a bankrupt business than a non-bankrupt one incorrectly, BPP 
tasks are of more significant concern to the minority (positive) class. Sampling 
techniques and cost-sensitive solutions are two ways to accomplish unbalanced BPP (Zou 
et al., 2022). The former is a data-level approach, and the latter is an algorithmic 
approach. 

Sun et al. (2020) utilised SMOTE in conjunction with an ensemble framework to 
achieve an imbalanced BPP. Le et al. (2018) offered reference values for fraud detection 
and other areas by combining a clustering-based under-sampling strategy with a boosting 
ensemble framework for BPP. To address the class imbalance issue, Zou et al. (2022) 
modified XGBoost into a weighted variant called XGBoost-W. This change turned 
XGBoost’s error-minimisation-based pattern into a cost-sensitive one. According to 
experimental findings, compared to traditional balanced BPP approaches such as LDA 
and LR, GBDT, LightGBM and XGBoost, cost-sensitive BPP models substantially 
lowered the erroneous classification rate of insolvent firms. 

2.4 Feature selection and BPP 

Since there is no universally accepted collection of financial ratios to use as input features 
for model building, feature selection has become the topic of multiple data mining studies 
preceding the development of models (Liang et al., 2015). On the contrary, using an 
excessive number of features to analyse the dataset can lead to problems with high 
dimensionality. Feature selection or dimensionality reduction can be used in data mining 
to eliminate irrelevant or duplicate features (Powell, 2009). Several methods for choosing 
which features to use have been suggested. These methods have three classifications: 
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filter, wrapper and embedded (Lin et al., 2019). Tsai (2009) surveyed and found that BPP 
literature needs more attention to feature selection pre-processing. Many studies focus on 
making prediction models that are more accurate and can make better predictions. Some 
do not even consider how to choose features before building their models. In contrast, 
Zelenkov et al. (2017) combined GA (genetic algorithm) as a tool for feature selection 
with different classical and ensemble classifiers, while Yu et al. (2014) used LDA to 
choose the best attributes while modelling ensemble algorithms. 

Comparing the efficacy of classifiers based on machine learning and statistical 
approaches is a popular topic of scientific study. Nevertheless, more research directly 
comparing multiple ensemble classifiers is needed. To the author’s understanding, efforts 
have yet to be made to compare the efficacy of different ensemble classifiers using a  
two-stage pre-processing approach that takes care of class imbalance and selects features. 
In order to address this research gap, this paper analyses the seven ensemble classifiers 
mentioned above in conjunction with a two-stage pre-processing approach comprising an 
over-sampling technique (SMOTE) and a feature selection technique (correlation, 
RFECV). 

3 Research methodology and dataset 

3.1 Dataset 

We conducted our experiments with real data taken from the public domain.  
Five real-world datasets from Polish companies are included in the dataset (Ziȩba et al., 
2016). These datasets were found at the University of California, Irvine (UCI) Machine 
Learning Archive1. In Table 1, summaries of the dataset are displayed2. There are  
43,405 samples in the study, 2,091 of which are insolvent businesses and 41,314 are not 
bankrupt. From 2000 to 2012, the defunct companies were analysed, and the operating 
companies were studied between 2007 and 2013. Each observation contains 64 financial 
ratios (Ziȩba et al., 2016). 
Table 1 The distribution of the dataset used in the experiment 

Dataset 
Bankrupt  Non-bankrupt 

Total 
Number Percentage  Number Percentage 

Year 1 271 3.86  6,756 96.14 7,027 
Year 2 400 3.94  9,773 96.06 10,173 
Year 3 495 4.71  10,008 95.29 10,503 
Year 4 515 5.26  9,277 94.74 9,792 
Year 5 410 6.94  5,500 93.06 5,910 

3.2 Modelling methods 

In this study, we use the most popular ML ensemble models to compare the efficacy of 
seven different approaches to the problem of bankruptcy prediction for Polish companies: 
bagging, RF, AdaBoost, GBDT, LightGBM, XGBoost and ETC. 
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3.2.1 Bagging 
Bagging, also known as bootstrap aggregation, is a meta-algorithm for ensemble learning 
that combines multiple classifiers to increase stability and accuracy while reducing the 
likelihood of over-fitting (Chen et al., 2020). The differences between the classifiers are 
minimised in the composite model, making it more accurate than its separate components 
(Han et al., 2012). Using a method dubbed ‘row sampling with replacement’, multiple 
classifiers can be trained in parallel using a random subset of the entire training dataset. 
Bootstrapping is the proper term for this method. Each model created in the 
‘bootstrapping’ procedure predicts a different category of observations. At last, a ‘voting 
classifier’ combines all the individual model predictions into a single, accurate forecast. 
Each primary classifier in the model has its own unique training set. However, some 
items may overlap in the different training datasets generated for the different classifiers 
(Breiman, 1996). 

3.2.2 Adaptive boosting 
AdaBoost is a recursive ML ensemble algorithm that sequentially combines its baseline 
algorithms via boosting, a technique that incorporates various ‘weak’ learners into a 
single ‘strong’ learner (Freund and Schapire, 1996). Weights are initially uniform across 
samples in the first iteration of the model. However, they are subsequently adjusted to be 
higher for incorrectly classified instances and lower for rightly classified instances as the 
model iterates toward optimal performance. The end outcomes are a tally of all the 
predictions made by the ensemble classifiers (Kim and Kang, 2010). 

3.2.3 Random forest 
Breiman (2001) initially demonstrated RF, a robust supervised ML algorithm for 
classification and regression. RF combines multiple decision tree classifiers to classify an 
input vector, each casting a single vote for the most prevalent class. Each tree is built 
from a random vector drawn independently from the source vector (Breiman, 2001). 
They are an up-and-coming ensemble technique that combines random subset bagging of 
predictor variables with trees generated from bootstrap data samples (Breiman, 2001). 
Low-bias trees are obtained when each tree grows to full maturity without being trimmed. 
When variables are selected for each tree using a bagging or randomisation procedure, 
there is little to no correlation between the trees (Chen and Howard, 2015). In order to 
provide a valuable index of independent variables, random forests can use precise 
calculations and the Gini index to select features randomly. When variables are randomly 
assigned weights, the importance index can also reveal their interplay (Vatolkin et al., 
2012). 

3.2.4 Gradient boosting decision tree 

GBDT is a collection of categorisation and regression trees (CART) widely touted as a 
powerful tool for machine learning (Friedman, 2001). The concept behind GBDT is to 
combine the outputs from multiple trees into one. As the number of iterations increases, 
GBDT fits a fresh regression tree in the direction of the gradient of the most recent 
residual decrease. GB differs from other statistical learning algorithms because it makes 
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conclusions that can be understood with fewer data preprocessing and parameter 
tweaking (e.g., ANN and SVM). The method works well with skewed data and can solve 
classification and regression problems with various distributions (Gaussian, Bernoulli, 
Poisson and Laplace). Feature selection and the treatment of missing values in predictors 
contribute to the technique (Guelman, 2012). 

3.2.5 Extreme gradient boosting 
XGBoost was developed by Chen and Guestrin (2016) to be an enhanced version of 
Friedman’s (2001) GBDT for use in classification and regression. While the GBDT 
algorithm uses a first-order Taylor expansion of the loss function, XGBoost uses a 
second-order Taylor expansion, significantly shortening the time required to find the best 
solution. In addition, the model is improved to avoid the overfitting problem by including 
standard terms in the objective function and penalising the complexity of each regression 
tree. In contrast, XGBoost uses a precise greedy algorithm that must iteratively explore 
the entire training dataset. The technique can find the suitable division condition, but it is 
time-consuming, requires much memory, and can easily be overfitting (Qian et al., 2022). 

3.2.6 Light gradient boosting machine 
Microsoft suggested the LightGBM in 2017 to resolve the obstacles of XGBoost (Ke  
et al., 2017). LightGBM employs a decision tree algorithm based on histograms, a  
leaf-wise leaf growth strategy with depth constraints, and histogram difference 
acceleration, among other methods. LightGBM employs a sampling technique called 
gradient-based one-side sampling (GOSS) to improve training. Its main goal is to ignore 
data samples with smaller gradients instead of larger ones. GOSS recommended 
discarding the less-informative data points and using the remaining data to compute the 
information obtained when deciding optimal splits (Alzamzami et al., 2020). 
Additionally, LightGBM employs the exclusive feature bundling algorithm to deal with 
dataset sparsity. It reduces the number of features while retaining the most informative 
ones by combining mutually exclusive features nearly losslessly. 

3.2.7 Extra tree classifier 
This ensemble technique uses a base classifier that is either a decision tree or a regression 
tree that has not been pruned. Compared to other ensembles, this one grows trees using 
all of the training data and splits nodes at random cut points. In contrast to the RF model, 
this one employs a random subset for splitting rather than the best split when constructing 
a DT and does not resample the observation when doing so. The majority vote method 
combines predictions from multiple trees in classification issues, while the arithmetic 
means are applied in regression (Geurts et al., 2006). 

3.3 Choice of tuning parameters 

Python was used to execute every computational method. Using a randomised parameter 
optimisation method, also known as RandomnisedSearchCV, we adjusted the optimal 
parameters algorithms to enhance the performance of ensemble classifiers and prevent 
overfitting issues. By sampling each setting from a distribution of possible parameter 
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values, RandomisedSearchCV performs a random search over parameters. When training 
takes a long time and there are many parameters to test, RandomisedSearchCV is handy. 
Appendix A displays the hyper-parameters used in our analysis. 

3.4 Class imbalance handling with SMOTE 

SMOTE is a powerful resampling technique utilised to rebalance the sample space for an 
asymmetrical dataset in order to reduce the impact of the skewed class distribution on the 
learning process. Chawla et al. (2002) introduced SMOTE as an oversampling technique 
that generates arbitrary synthetic instances of the minority class in the feature space 
rather than duplicating the minority sample’s existing instances. The SMOTE algorithm 
utilises KNN to generate these synthetic minority examples. Random neighbours are 
selected from the KNNs based on the required quantity of oversampling. It is an 
improved algorithm based on random sampling prone to over-fitting (Ye et al., 2019). 

3.5 Feature selection with RFECV and correlation 

There are two broad categories of feature selection techniques: 

1 supervised or unsupervised 

2 wrapper or filter techniques. 

RFECV is a wrapper feature selection tool used in the current research. The backward 
elimination technique used by RFECV begins with a complete set of all features and 
eliminates the most pointless ones one at a time based on the validation scores (Wang  
et al., 2019). By removing the features that have no bearing on the accuracy, this process 
seeks to obtain the ideal number of features to produce the best model accuracy. Before 
applying RFECV, we analysed correlations and removed variables with high correlations. 
This step was essential to avoid redundancy in the data caused by specific ratios 
providing similar information due to their strong correlations. 

3.6 Evaluation metrics 

We used five evaluation measures to assess the predictive ability of the various ensemble 
classifiers: accuracy, the area under the ROC curve (AUC), precision, recall, and F-score. 
A frequently used indicator of classification performance is accuracy, which is defined as 
follows: 

( )TP TNAccuracy
P N

+=
+

 

where P denotes the total number of bankrupt businesses, N is the total number of  
non-bankrupt businesses, true negative (TN) is the total number of non-bankrupt 
businesses categorised as non-bankrupt, and true positive (TP) is the total number of 
bankrupt businesses classified as bankrupt. Recall computes the ratio of predicted to total 
positive labels, which is defined as: 

TPRecall or sensitivity
TP FN

=
+
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Precision represents the proportion of accurate positive predictions to the total number of 
positive predictions. 

TPPrecision
TP FP

=
+

 

The F-score combines sensitivity and precision and assesses how accurately and robustly 
the models categorise bankrupt instances. Finally, the area under the ROC curve (AUC) 
is a common evaluation measure for classification problems. 

“For a two-class problem, a ROC curve allows us to visualize the trade-off 
between the rate at which the model can accurately recognize positive cases 
versus the rate at which it mistakenly identifies negative cases as positive for 
different portions of the test set. Any increase in the TP rate occurs at the cost 
of an increase in the FP (false positive) rate. The area under the ROC curve 
measures the accuracy of the model.” [Han et al., (2012), p.374] 

The accuracy with which a model can differentiate between insolvent and solvent 
examples is quantified by their AUC. The AUC increases as the model become more 
accurate at separating insolvent from solvent cases. The AUC is preferred for accuracy in 
skewed datasets (Purda and Skillicorn, 2015) and was also used in this research because 
it is robust to imbalanced class distributions. 

3.7 Result validation 

We ran a t-test with a 5% significance threshold to determine if the top performer’s AUC 
and accuracy were significantly higher than the rest of the classifiers. 

Figure 1 Size of bankrupt and non-bankrupt (normal) class in the original dataset (see online 
version for colours) 

   

  

3.8 Experimental setup 

As mentioned, we used five real-world datasets from Polish companies to perform our 
experiments. The datasets were discovered at the University of California, Irvine (UCI) 
Machine Learning Archive. We first conducted an exploratory data analysis to 
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understand the dataset thoroughly. We started by using simple imputer to impute missing 
values from the dataset used in our investigation. We then normalised the dataset using 
the min-max scaler because the attributes in our dataset are on different scales. The 
frequency and ratio of bankrupt and non-bankrupt companies in our dataset over the  
five years under review are shown in Table 1. Our dataset displays a class imbalance for 
each year (Figure 1), so we used SMOTE to equalise the size of the samples for the 
positive and negative classes. 

Figure 2 Schematic diagram of the experiment conducted in the present study (see online version 
for colours) 
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To prevent data leakage, we partitioned the dataset into a set for training and a test set in 
a proportion of 70:30 before performing a correlation coefficient analysis. Both the 
training and testing datasets have highly correlated attributes identified and eliminated to 
control the issue of data leakage. After that, we used RFECV to choose the best set of 
features for the classifier to achieve the best result. The optimal hyperparameters of each 
classifier were estimated with a RandomnisedSearchCV. Each classifier is trained and 
validated with 10-fold cross-validation to produce the most accurate results. The model’s 
accuracy, precision, recall, F1-measure, and AUC performances were then evaluated. The 
investigation is performed independently on five distinct datasets (years 1, 2, 3, 4, and 5). 
A t-test with a significance level of 5% was conducted to determine the statistical 
significance of classifier performance. Figure 2 depicts the schematic diagram of the 
experiment conducted in the present study. 

4 Result analysis and discussion 

This study aims to determine if using feature selection (correlation and RFECV) and 
class imbalance handling (SMOTE) to preprocess the data and building prediction 
models using ensemble-learning techniques (RF, AdaBoost, GBDT, XGBoost, bagging, 
LightGBM and ETC) is superior to using just one of these methods. In order to answer 
this research question, we conducted an experiment using five real-world datasets on 
Polish firms in three distinct ways: 

a with feature selection and class imbalance handling 

b without class imbalance handling and with feature selection 

c with class imbalance handling and without feature selection, as depicted in Figure 2. 

Figure 3 Balanced dataset after the implementation of SMOTE (see online version for colours) 

   

  

In the first set of experiments, we aimed to determine the effect of feature selection 
(correlation and RFECV) and class imbalance handling (SMOTE) on the performance of 
ensemble-learning classification models (RF, AdaBoost, GBDT, XGBoost, bagging, 
LightGBM, ETC). Hence, we performed feature selection and class imbalance handling 
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strategies during the preprocessing stage and evaluated the performance of classifiers 
under consideration regarding accuracy, recall, precision, F-score, and area under the 
curve (AUC). We addressed the class imbalance issue with SMOTE, and the transformed 
dataset after SMOTE application is shown in Figure 3. A comparison of the distribution 
of the original and resampled datasets with SMOTE is given in Table 2. 
Table 2 The distribution of the dataset before and after SMOTE implementation 

Dataset 
Original dataset  After SMOTE 

Bankrupt  Non-bankrupt 
Total  

Bankrupt  Non-bankrupt 
Total 

No %  No % No %  No % 
Year 1 271 3.86  6,756 96.14 7,027  6,756 100  6,756 100 13,512 
Year 2 400 3.94  9,773 96.06 10,173  9,773 100  9,773 100 19,546 
Year 3 495 4.71  10,008 95.29 10,503  10,008 100  10,008 100 20,016 
Year 4 515 5.26  9,277 94.74 9,792  9,277 100  9,277 100 18,554 
Year 5 410 6.94  5,500 93.06 5,910  5,500 100  5,500 100 12,000 

Table 3 summarises the optimal size of attributes selected in each study period, along 
with the ID of the selected features after successfully implementing correlation and 
RFECV3 on the transformed dataset with SMOTE. We performed the feature selection on 
the training set to prevent information leakage. Year 5 extracted only fourteen features 
for model prediction from the initial 64 variables, the least number of optimal features 
used by the models for differentiating bankrupt firms from non-bankrupt firms. Years 3 
and 1 used the highest number of optimal attributes for the prediction task. 
Table 3 Results of feature selection tools used in the experiment 

Dataset Optimal number ID of selected featuresa 
Year 1 27 A1, A3, A4, A5, A8, A9, A10, A13, A15, A16, A19, A21, 

A27, A28, A29, A33, A37, A41, A45, A47, A49, A53, A55, 
A57, A59, A60 and A61. 

Year 2 20 A4, A5, A15, A20, A21, A26, A27, A29, A30, A37, A39, A40, 
A41, A45, A55, A57, A58, A59, A60 and A61. 

Year 3 28 A2, A3, A5, A13, A15, A19, A20, A21, A22, A24, A27, A29, 
A32, A34, A35, A36, A37, A39, A41, A45, A55, A56, A57, 

A58, A59, A60, A61 and A64. 
Year 4 18 A5, A6, A15, A21, A24, A27, A28, A29, A34, A37, A39, A41, 

A42, A51, A55, A58, A61 and A64. 
Year 5 14 A6, A15, A21, A27, A29, A32, A34, A37, A39, A41, A42, 

A55, A58 and A61. 

Note: aDescription of selected attributes are provided in Appendix B. 

The results in Table 4 show the performance of various classifiers in experiment 1 with 
SMOTE and feature selection techniques over five years. The evaluation is based on 
tenfold cross-validation. The metrics evaluated include AUC, recall, accuracy, F-score, 
and precision. To achieve optimal performance, we fitted the experimental models with 
the optimal parameters determined through RandomisedSearchCV techniques, as 
explained in Appendix A, rather than with default parameters4. Across the experimental 
period, all classifiers generally demonstrated strong performance regarding AUC, recall, 
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accuracy, precision, and F-measure metrics. However, the AdaBoost classifier exhibited 
relatively lower performance during the experimental period. 
Table 4 Classifiers performances in experiment one with SMOTE and feature selection 

Model Metric Year 1 Year 2 Year 3 Year 4 Year 5 
RF AUC 0.9989 0.9985 0.9978 0.9969 0.9967 

Recall 0.9928 0.9872 0.9875 0.9914 0.9822 
Accuracy 0.9873 0.9868 0.9812 0.9760 0.9733 
F-score 0.9884 0.9864 0.9815 0.9766 0.9745 

Precision 0.9850 0.9865 0.9757 0.9622 0.9647 
AdaBoost AUC 0.9664 0.9430 0.9517 0.9364 0.9660 

Recall 0.8725 0.8533 0.8684 0.8538 0.8872 
Accuracy 0.8958 0.8650 0.8799 0.8577 0.8932 
F-score 0.8945 0.8634 0.8785 0.8571 0.8925 

Precision 0.9026 0.8739 0.8890 0.8605 0.8981 
GBDT AUC 0.9967 0.9975 0.9989 0.9970 0.9989 

Recall 0.9726 0.9732 0.9754 0.9757 0.9742 
Accuracy 0.9727 0.9790 0.9820 0.9742 0.9832 
F-score 0.9720 0.9724 0.9745 0.9743 0.9735 

Precision 0.9710 0.9720 0.9724 0.9620 0.9723 
XGBoost AUC 0.9990 0.9991 0.9990 0.9971 0.9989 

Recall 0.9915 0.9884 0.9884 0.9885 0.9871 
Accuracy 0.9875 0.9879 0.9866 0.9768 0.9862 
F-score 0.9876 0.9879 0.9866 0.9770 0.9862 

Precision 0.9837 0.9874 0.9849 0.9658 0.9654 
Bagging AUC 0.9937 0.9917 0.9921 0.9908 0.9895 

Recall 0.9646 0.9681 0.9681 0.9701 0.9650 
Accuracy 0.9652 0.9678 0.9664 0.9610 0.9604 
F-score 0.9660 0.9692 0.9662 0.9600 0.9612 

Precision 0.9674 0.9648 0.9633 0.9533 0.9547 
LightGBM AUC 0.9986 0.9975 0.9980 0.9942 0.9983 

Recall 0.9792 0.9777 0.9799 0.9769 0.9808 
Accuracy 0.9836 0.9775 0.9796 0.9636 0.9826 
F-score 0.9837 0.9775 0.9796 0.9640 0.9825 

Precision 0.9883 0.9773 0.9793 0.9516 0.9843 
ETC AUC 0.9972 0.9968 0.9958 0.9959 0.9955 

Recall 0.9933 0.9918 0.9899 0.9893 0.9812 
Accuracy 0.9903 0.9902 0.9870 0.9797 0.9722 
F-score 0.9903 0.9900 0.9870 0.9789 0.9721 

Precision 0.9879 0.9888 0.9826 0.9705 0.9633 
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Further, Table 4 highlights the best classifier for each metric considered throughout the 
study period. Specifically, the XGBoost classifier achieved the highest AUC, indicating 
its discriminatory solid power. On the other hand, the ETC classifier outperformed other 
models in terms of accuracy, precision, recall, and F-measure metrics, showcasing its 
overall effectiveness in classification tasks. To achieve the best performance, we 
optimised the XGBoost model using four crucial hyperparameters: min_child_weight, 
max_depth, learning_rate, and gamma. When combined with class imbalance handling 
and feature selection techniques, these findings offer valuable insights into the strengths 
and weaknesses of different ensemble classifiers. By identifying the best-performing 
classifiers for each metric, our research contributes to selecting appropriate models for 
future tasks involving similar data characteristics. 

We conducted a statistical significance analysis of the classification accuracy  
(Table 5) and AUC (Table 6) using Student’s paired t-test, which is a reliable method for 
comparing different classifiers based on their mean classification performance, as shown 
in prior research (Hajek and Henriques, 2017). The asterisk signs indicate the statistical 
significance of the classifiers’ performance comparisons. Analysing the p-values, we find 
that XGBoost achieved the highest AUC scores and significantly outperformed bagging, 
LightGBM, AdaBoost, and the extra tree classifier since their p-values are less than 0.05. 
Similarly, RF significantly outperformed bagging, ETC, and AdaBoost. However, the 
differences in AUC scores between XGBoost and RF, GBDT or LightGBM are not 
statistically significant (p-values greater than 0.05). GBDT showed competitive 
performance, but no statistically significant differences were found between GBDT and 
other classifiers, including XGBoost, RF, LightGBM, and the extra tree classifier. 
Finally, our results indicate that the AdaBoost classifier achieved lower performance 
compared to all the other experimental ensembles in the study. 
Table 5 Results of student’s paired t-test (AUC) 

 GBDT XGBoost Bagging LightGBM ETC AdaBoost 
RF 0.961 0.090 0.000* 0.568 0.001* 0.002* 
GBDT  0.159 0.004* 0.561 0.103 0.002* 
XGBoost   0.000* 0.044* 0.005* 0.001* 
Bagging    0.003* 0.001* 0.003* 
LightGBM     0.239 0.001* 
ETC      0.002* 

Note: The asterisk signs indicate the statistical significance of the classifiers’ 
performance comparisons. 

In contrast to the AUC metric performance, the accuracy metric reveals different results. 
RF, GBDT, and XGBoost significantly outperformed Bagging and AdaBoost regarding 
accuracy. At the same time, the differences in accuracy between RF and GBDT, 
XGBoost, LightGBM, and extra tree classifier (ETC) are not substantial enough to 
determine a clear winner among them, as their p-values are not statistically significant. 
Analysing the statistical significance of accuracy performance between GBDT and 
XGBoost, bagging, LightGBM, and AdaBoost, we find that XGBoost outperforms the 
GBDT classifier. Additionally, bagging and AdaBoost exhibit poor performance 
compared to GBDT. Moreover, apart from GBDT, the XGBoost classifier outperforms 
the bagging and AdaBoost ensembles in terms of accuracy. Furthermore, the Bagging 
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classifier outperforms only the AdaBoost classifier in accuracy, while AdaBoost’s 
inferior performance against other ensembles is statistically significant. 
Table 6 Results of student’s paired t-test (accuracy) 

 GBDT XGBoost Bagging LightGBM ETC AdaBoost 
RF 0.163 0.548 0.001* 0.462 0.058 0.000* 
GBDT  0.042* 0.000* 0.029* 0.748 0.000* 
XGBoost   0.005* 0.930 0.299 0.000* 
Bagging    0.019* 0.001* 0.000* 
LightGBM     0.260 0.000* 
ETC      0.000* 

Note: The asterisk signs indicate the statistical significance of the classifiers’ 
performance comparisons. 

Several data mining techniques, including DT, ANN, and SVM, have been effectively 
used to predict bankruptcy and typically have high accuracy. Moreover, prior studies 
have also used some of the ensemble classifiers considered in this study. As a result, we 
contrast the effectiveness of our classifier with that of comparable classifiers used on the 
Polish bankruptcy datasets for year 1 (Table 7). This comparison highlights the improved 
performance of the methodology used in experiment one in the present study. 
Table 7 Comparison of results with previous studies 

Study Method Accuracy AUC 
Present study RF 0.9873 0.9989 

AdaBoost 0.8958 0.9664 
XGBoost 0.9875 0.9990 

GBDT 0.9727 0.9967 
LightGBM 0.9836 0.9986 

Bagging 0.9652 0.9937 
ETC 0.9903 0.9972 

Ziȩba et al. (2016) RF NA 0.851 
AB NA 0.916 

XGB NA 0.945 
XGBE NA 0.953 
EXGB NA 0.959 

Soui et al. (2020) SAE+softmax 0.98 0.961 

In the second set of experiments, we only performed the feature selection strategy during 
preprocessing (ignoring the class imbalance issue). We evaluated the performance of 
classifiers regarding accuracy, recall, precision, F-score, and AUC with 10-fold  
cross-validation (Table 8). XGBoost exhibited the highest performance on accuracy and 
precision metrics, whereas LightGBM performed best on recall and AUC metrics. The 
best classifiers on different metrics throughout the study period are highlighted in bold in 
Table 8. One crucial observation is that the AUC metric of all the classifiers decreased 
significantly in this experiment compared to its performance in experiment 1, along with 
other metrics except overall accuracy. Compared to the decreased performance of 
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classifiers on AUC metrics, each classifier achieved greater accuracy in experiment 2 
(Table 8). He and Garcia (2009) observed that prediction modelling faces many 
difficulties when dealing with imbalanced classification issues because classification 
models are susceptible to this problem. It is because most methods for classifying data 
using machine learning assume that each class has an equal number of examples. 
Classification accuracy can be increased without tackling the problem of data unbalance, 
but the outcomes are more likely to belong to the majority class. Hence, the observed 
improved performance of the accuracy metric in experiment 2 validates the findings of 
He and Garcia (2009). Moreover, the potential of the classifier to rightly figure out 
bankrupt firms from non-bankrupt firms (recall or sensitivity) is significantly lower in 
experiment 2 than in experiment 1. 
Table 8 Classifiers performance in experiment two without SMOTE 

Model Metric Year 1 Year 2 Year 3 Year 4 Year 5 
RF AUC 0.8332 0.8142 0.8743 0.8686 0.9308 

Recall 0.3878 0.2174 0.2564 0.4348 0.5390 
Accuracy 0.9733 0.9665 0.9615 0.9647 0.9605 
F-score 0.5268 0.3427 0.4060 0.5722 0.6393 

Precision 0.8350 0.7524 0.7908 0.8400 0.8435 
AdaBoost AUC 0.8020 0.7835 0.8066 0.8043 0.8905 

Recall 0.1108 0.0275 0.0747 0.1146 0.4414 
Accuracy 0.9608 0.9599 0.9513 0.9507 0.9489 
F-score 0.1750 0.0499 0.1241 0.1947 0.5409 

Precision 0.5208 0.3330 0.4557 0.7067 0.7193 
GBDT AUC 0.8763 0.8332 0.8724 0.8778 0.9266 

Recall 0.3543 0.2100 0.2586 0.4291 0.5390 
Accuracy 0.9722 0.9662 0.9624 0.9647 0.9615 
F-score 0.4897 0.3269 0.3884 0.5596 0.6587 

Precision 0.8171 0.7568 0.8199 0.8202 0.8564 
XGBoost AUC 0.8781 0.8462 0.8736 0.8818 0.9395 

Recall 0.3802 0.1950 0.2342 0.4115 0.5390 
Accuracy 0.9756 0.9674 0.9625 0.9652 0.9620 
F-score 0.5429 0.3186 0.3685 0.5527 0.6604 

Precision 0.9700 0.9022 0.8874 0.8513 0.8620 
Bagging AUC 0.7797 0.7501 0.8019 0.8130 0.8900 

Recall 0.3839 0.2649 0.2827 0.4406 0.5487 
Accuracy 0.9723 0.9664 0.9609 0.9637 0.9602 
F-score 0.5090 0.3562 0.3923 0.5946 0.6515 

Precision 0.7812 0.6945 0.6611 0.7890 0.8135 
LightGBM AUC 0.8823 0.8543 0.8967 0.8917 0.9458 

Recall 0.4060 0.2750 0.3190 0.4502 0.5634 
Accuracy 0.9738 0.9673 0.9624 0.9652 0.9617 
F-score 0.5429 0.3968 0.4427 0.5745 0.6703 

Precision 0.8303 0.7342 0.7308 0.8041 0.8315 
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Table 8 Classifiers performance in experiment two without SMOTE (continued) 

Model Metric Year 1 Year 2 Year 3 Year 4 Year 5 
ETC AUC 0.8124 0.7511 0.8300 0.8391 0.9165 

Recall 0.3211 0.1624 0.2223 0.2484 0.3902 
Accuracy 0.9711 0.9630 0.9597 0.9562 0.9524 
F-score 0.4616 0.2697 0.3450 0.3601 0.5226 

Precision 0.8005 0.6478 0.7158 0.7706 0.8297 

The third set of experiments was conducted to study the effect of feature selection 
(correlation and RFECV) on ensemble classifiers’ performance. Hence, we only 
performed the class imbalance strategy during preprocessing (ignoring the feature 
selection). The tenfold cross-validated experimental results are given in Table 9. From 
the results, we observed that, other than AdaBoost, all the other ensemble classifiers 
performed equally well on all the metrics under consideration. Surprisingly, the results of 
experiments one and three exhibit almost similar performances indicating that the feature 
selection process does not remarkably affect the performances of ensemble classifiers in 
predicting the bankruptcy of Polish firms. 
Table 9 Classifiers performances in experiment three without feature selection 

Model Metric Year 1 Year 2 Year 3 Year 4 Year 5 
RF AUC 0.9996 0.9992 0.9983 0.9978 0.9964 

Recall 0.9945 0.9955 0.9886 0.9904 0.9880 
Accuracy 0.9919 0.9907 0.9825 0.9804 0.9742 
F-score 0.9922 0.9918 0.9827 0.9816 0.9750 

Precision 0.9895 0.9876 0.9757 0.9712 0.9644 
AdaBoost AUC 0.9806 0.9609 0.9532 0.9467 0.9650 

Recall 0.9194 0.8859 0.8774 0.8695 0.8921 
Accuracy 0.9262 0.9810 0.8804 0.8688 0.8989 
F-score 0.9255 0.8899 0.8794 0.8677 0.8975 

Precision 0.9324 0.8960 0.8835 0.8689 0.9048 
GBDT AUC 0.9957 0.9111 0.9865 0.9846 0.9884 

Recall 0.9650 0.9407 0.9312 0.9282 0.9445 
Accuracy 0.9661 0.9505 0.9397 0.9305 0.9456 
F-score 0.9657 0.9495 0.9386 0.9294 0.9452 

Precision 0.9673 0.9597 0.9475 0.9330 0.9468 
XGBoost AUC 0.9998 0.9997 0.9994 0.9993 0.9989 

Recall 0.9937 0.9931 0.9774 0.9894 0.9900 
Accuracy 0.9928 0.9925 0.9883 0.9882 0.9843 
F-score 0.9927 0.9924 0.9894 0.9880 0.9843 

Precision 0.9918 0.9919 0.9875 0.9871 0.9790 
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Table 9 Classifiers performances in experiment three without feature selection (continued) 

Model Metric Year 1 Year 2 Year 3 Year 4 Year 5 
Bagging AUC 0.9963 0.9969 0.9929 0.9947 0.9916 

Recall 0.9804 0.9813 0.9708 0.9760 0.9663 
Accuracy 0.9763 0.9780 0.9664 0.9701 0.9585 
F-score 0.9760 0.9792 0.9661 0.9689 0.9633 

Precision 0.9721 0.9791 0.9649 0.9635 0.9574 
LightGBM AUC 0.9997 0.9994 0.9989 0.9985 0.9983 

Recall 0.9936 0.9886 0.9820 0.9824 0.9730 
Accuracy 0.9923 0.9886 0.9840 0.9804 0.9804 
F-score 0.9922 0.9885 0.9838 0.9801 0.9804 

Precision 0.9910 0.9888 0.9861 0.9787 0.9883 
ETC AUC 0.9991 0.9982 0.9967 0.9965 0.9956 

Recall 0.9931 0.9919 0.9778 0.9680 0.9604 
Accuracy 0.9912 0.9903 0.9834 0.9783 0.9720 
F-score 0.9917 0.9908 0.9841 0.9778 0.9723 

Precision 0.9905 0.9883 0.9897 0.9879 0.9847 

5 Conclusions 

One of the most crucial issues in financial research is bankruptcy prediction. As a result, 
much research has gone into developing methods of foretelling this kind of danger. The 
goal of this study is to find out if using feature selection (correlation and RFECV) and 
class imbalance handling (SMOTE) to preprocess the data and building prediction 
models using ensemble-learning techniques (RF, AdaBoost, GBDT, XGBoost, bagging, 
LightGBM, ETC) is better than using just one of these methods or combining both. To 
answer this research question, we experimented with five real-world datasets on Polish 
firms in three different ways: 

1 with feature selection and class imbalance handling 

2 without class imbalance handling and with feature selection 

3 with class imbalance handling and without feature selection. 

Based on the results, using a feature selection strategy during the preprocessing stage has 
less of an effect on the performance of the ensemble classifiers than fixing the problem of 
class imbalance in the skewed dataset of Polish firms used in the study. Adopting a 
feature selection strategy and tuning the hyperparameters of classifiers may not 
continuously improve the performance of classifiers. Nevertheless, a combined feature 
selection and class imbalance strategy method during preprocessing made predicting 
bankruptcy for Polish firms much more accessible than in previous studies. This paper 
has some flaws that could be fixed with more work. First, we should have attempted to 
replicate the results of our experiments on another set of skewed datasets about predicting 
bankruptcy. Second, we only thought about one way to handle class imbalance and one 
way to choose features. We should have compared how well other resampling and 
dimension reduction techniques worked. 
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Notes 
1 https://archive.ics.uci.edu/ml/datasets/Polish+companies+bankruptcy+data. 
2 The dataset used in the present investigation is described in great depth by Ziȩba et al. (2016). 
3 We used a decision tree estimator to perform RFECV, and other essential parameters used are 

step = 1, scoring = ‘neg_mean_squared_error’, cv = 4, verbose = 1, and n_jobs = –1). 
4 AdaBoost, bagging, ETC classifiers are fitted with default parameters throughout the study 

period, whereas GBDT and XGBoost are fitted with optimal parameters. Except for year 5, RF 
and LightGBM are fitted with default parameters, as default parameters provide better 
performance against the best parameters identified through randomised search CV. 

Appendix A 

Results of hyperparameter tuning 

Classifier GBDT XGBoost RF LightGBM 
Year 1 (learning_ 

rate = 0.02,  
n_estimators = 500,  

max_depth = 6,  
subsample = 0.1) 

(min_child_ 
weight = 3,  
learning_ 

rate = 0.05,  
max_depth = 12,  

gamma = 0.1) 

Default Default 

Year 2 (learning_ 
rate = 0.01,  

n_estimators = 500,  
max_depth = 9) 

(min_child_ 
weight = 1,  

learning_rate = 0.3,  
max_depth = 8, 
gamma = 0.1) 

Default Default 

Year 3 (learning_ 
rate = 0.01,  

max_depth = 7,  
n_estimators = 500) 

(min_child_ 
weight = 3, 
learning_ 

rate = 0.25,  
max_depth = 12, 

gamma = 0.0) 

Default Default 

Year 4 (learning_ 
rate = 0.03,  

n_estimators = 400,  
max_depth = 5, 

subsample = 0.1) 

(min_child_ 
weight = 3,  

learning_rate = 0.3,  
max_depth = 8, 
gamma = 0.3) 

Default Default 

Year 5 (learning_ 
rate = 0.02,  

n_estimators = 500,  
max_depth = 6, 

subsample = 0.1) 

(min_child_ 
weight = 3,  
learning_ 

rate = 0.25,  
max_depth = 12, 

gamma = 0.4) 

(max_features = 0.2,  
min_samples_ 

leaf = 2,  
max_samples = 0.5,  

Min_samples_ 
split = 5,  

N_estimators = 120) 

(feature_ 
fraction = 1,  

max_depth = 10, 
n_estimators = 

1,000,  
Num_leaves = 6) 



   

 

   

   
 

   

   

 

   

   132 T. Shahana et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Appendix B 

Variables in the original dataset taken from 

ID Description ID Description 
A1 Net profit/total assets A32 (Current liabilities ∗ 365)/cost of 

products sold 
A2 Total liabilities/total assets A34 Operating expenses/total liabilities 
A3 Working capital/total assets A35 Profit on sales/total assets 
A4 Current assets/short-term liabilities A36 Total sales/total assets 
A5 [(Cash + short-term securities + 

receivables – short-term 
liabilities)/(operating expenses  

– depreciation)] * 365 

A37 (Current assets – inventories)/long-term 
liabilities 

A6 Retained earnings/total assets A39 Profit on sales/sales 
A8 Book value of equity/total liabilities A40 (Current assets – inventory  

– receivables)/short-term liabilities 
A9 Sales/total assets A41 Total liabilities/((profit on operating 

activities + depreciation) ∗ (12/365)) 
A10 Equity/total assets A42 Profit on operating activities/sales 
A13 (Gross profit + depreciation)/sales A45 Net profit/inventory 
A15 (Total liabilities ∗ 365)/(gross profit  

+ depreciation) 
A47 (Inventory ∗ 365)/cost of products sold 

A16 (Gross profit + depreciation)/total 
liabilities 

A49 EBITDA (profit on operating activities 
– depreciation)/sales 

A19 Gross profit/sales A51 Short-term liabilities/total assets 
A20 (Inventory ∗ 365)/sales A53 Equity/fixed assets 
A21 Sales(n)/sales(n – 1) A55 Working capital 
A22 Profit on operating activities / total 

assets 
A56 (Sales – cost of products sold)/sales 

A24 Gross profit (in 3 years)/total assets A57 (Current assets – inventory – short-term 
liabilities)/(sales – gross profit  

– depreciation) 
A26 (Net profit + depreciation)/total 

liabilities 
A58 Total costs/total sales 

A27 Profit on operating activities/financial 
expenses 

A59 Long-term liabilities/equity 

A28 Working capital/fixed assets A60 Sales/inventory 
A29 Logarithm of total assets A61 Sales/receivables 
A30 (Total liabilities – cash)/sales A64 Sales/fixed assets 

 


