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Abstract: The effect of teaching evaluation of differential equations in higher mathematics 
involving network visualisation is extremely advantageous in a multidimensional evaluation 
system. The study compares the teaching idea of higher mathematical differential equations to a 
signal flow diagram in a network topology, with mathematical variables as branch nodes for 
visual structural presentation. A force-guided layout algorithm is introduced to avoid crossover 
and overlap of nodes. A grey wolf optimisation algorithm incorporating dynamic weights is also 
used to prioritise the mathematical calculations in conjunction with the features of mathematical 
differential teaching. The results of the algorithm performance tests showed that the  
IGWO-visualised layout algorithm had the best optimisation of the functions, with an average 
optimisation time of 1.6874 s, while the force-guided layout algorithm had an average 
optimisation time of 12.5986 s. 
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1 Introduction 
The rise of visualisation technology is driving innovative 
developments in computer networking technology. 
Visualisation technology is an interface technology for data, 
algorithms and processing that improves the ability to 
identify abstract data (Ding and Zhuang, 2018; Hao et al., 
2018). Network topology is a topological relationship 
created by interconnecting network devices, and 
visualisation can abstract this connection to a topological 
relationship on a computer. Input control and data storage 
are visualised using visualisation software techniques and 
programming languages, and signal data processing is 
carried out in modules within the software, such as the main 
control interface and visual graphical editor, to visualise the 
teaching of mathematical differential equations (Ivanova, 
2019; Qi et al., 2019). The goal of network visualisation is 
to present network data graphically to the user, to aid 
understanding of the structure and relationships within the 
network data, and to uncover valuable information hidden 
within the network data. Current research on network 
visualisation has focused on automatic node layout 
techniques and visualisation system design for single-layer 
networks. Due to the logical and coherent nature of teaching 

differential equations, the research uses an improved 
visualisation network algorithm to prioritise the teaching of 
mathematical differentials to ensure that students have a 
better understanding of how mathematical variables are 
computed in relation to each other. Through the above 
research design, the study expects to help students 
understand abstract relationships in mathematics in an 
intuitive and visual way, and achieve a more comprehensive 
and in-depth grasp of the content of differential equations in 
higher mathematics. The research assumes that the 
application of visual network topology algorithm to the 
teaching evaluation of differential equation of higher 
mathematics has ideal effect, and the teaching evaluator 
who completes differential equation of higher mathematics 
in a more intuitive form is also the purpose and goal of the 
research. The innovation points of the research are as 
follows. 

1 The traditional force guided placement algorithm is 
improved to overcome the disadvantage that it is not 
suitable for social network structure analysis and 
display. 
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2 Based on the visualisation of network topology, the 
evaluation of differential equation teaching in higher 
mathematics is realised with the help of grey wolf 
optimisation algorithm. 

3 Setup comparative datasets and algorithms to verify the 
application effect of the methods in the teaching of 
differential equations in higher mathematics. 

Section 2 of the research analyses the research status of the 
visualisation network topology algorithm and the teaching 
of differential equations in higher mathematics. Section 3 
focuses on the visualisation network topology under the 
force guided layout algorithm and the application of the 
visualisation network topology algorithm in the teaching of 
differential equations in higher mathematics. Section 4 
analyses the application effect of the visualisation network 
topology algorithm. Section 5 summarises the experimental 
results and points out the existing problems. 

2 Related works 
To alleviate students’ emotional stress when learning higher 
mathematics, Vorontsova and Chebun’Kina (2021) 
identified the most difficult topics in the unit of study by 
analysing the emotional responses of students when learning 
higher mathematics as recorded in a colour matrix, which 
led to strategies for improving the teaching format. 
Innovative teaching aids are another way for educators to 
deliver the curriculum to students; researchers such as 
Zakaria integrated a formal computer algebra system into 
the teaching of differential equations to provide experiential 
lessons for mathematics students, and this innovative way of 
teaching differential equations was well received by 
students, helping them to better understand conceptual 
knowledge (Zakaria et al., 2019). The contemporary trend in 
education is to transition from traditional face-to-face 
teaching to blended learning, where new online tools are 
introduced into the educational process. Semakin (2020) 
proposed to create two balanced components of the 
educational process in blended learning by combining 
traditional classroom teaching elements with online learning 
elements to find the best way to organise the learning 
process in higher mathematics. The results of the study 
showed that students have higher learning initiative in a 
course on integration of differential equations in a blended 
mode of teaching. The mathematical modelling approach is 
crucial to the scientific approach to the study of physical 
processes and phenomena because of the scientific and 
cognitive potential and versatility of mathematical models. 
Kornilov (2019) scientist provides a scientific view to 
promote students’ understanding of mathematical modelling 
and differential equation theory. Research has shown that in 
practical lessons on differential equations, students 
effectively acquire the ability and skills to find solutions to 
inverse problems mathematically. To solve the boundary 
value problem of higher order volterra integro-differential 
equations, Dawood et al. (2020) proposed to solve the 
problem by the variable iteration method and modified 

homotopy perturbation method, and the results showed that 
the variable iteration method has high accuracy in solving 
volterra integro-differential equations. 

Topology control is an effective method to improve the 
energy efficiency and fault tolerance of wireless sensor 
networks and thus extend the network lifetime, Wang et al. 
(2018) proposed a topology control algorithm for wireless 
sensor networks based on fault-tolerant dual cluster heads to 
achieve network lifetime extension and improve fault 
tolerance, and simulation results show that compared with 
traditional clustering algorithms, wireless sensor network 
topology control algorithms can reduce power consumption, 
extend network lifetime and improve fault tolerance. In 
order to solve the problem of low acceptance rate and low 
cost-effectiveness caused by existing virtual network 
embedding algorithms ignoring the topological 
characteristics of nodes, Liu et al. (2018) introduced the 
field theory of physics into virtual network embedding and 
proposed a topological potential-based virtual network 
embedding algorithm, and the experimental results showed 
that compared with existing virtual network embedding 
algorithms, the system has a higher acceptance rate under 
simulated conditions rate and good cost performance ratio. 
Zhang et al. (2018) proposed a new method to accelerate the 
identification of network topology, which uses a  
node-branch correlation matrix to represent the basic 
network topology and achieve a dynamic network topology. 
Clusterisation is considered as one of the most important 
energy-efficient solutions in wireless sensor networks, but 
poor cluster head selection may consume more energy than 
other sensor nodes due to packet transmission between 
cluster members and aggregated nodes. Sekaran et al. 
(2020) proposed a new cluster head selection method using 
the grey wolf optimisation algorithm and developed 
objective functions and weight parameters for efficient 
cluster head selection and clustering, compared to the 
algorithm proposed in the study outperformed other 
algorithms in achieving better network performance. The 
grey wolf optimisation algorithm is a metaheuristic 
algorithm inspired by the social hierarchy and hunting 
behaviour of the grey wolf. To solve the beamforming 
problem of smart antennas in code division multiple access 
systems, Mohsin et al. (2020) used the grey wolf 
optimisation algorithm on a uniform linear antenna array to 
obtain the optimal beam steering map to reduce some of the 
peaks in the sound pressure level, and simulation results 
showed that the grey wolf optimisation algorithm-based 
approach could achieve faster convergence and higher 
beamforming accuracy compared to genetic algorithms. 
Typical grey wolf optimisation algorithms are more suited 
to development than exploration and still fall short in terms 
of site update formulations. Inspired by differential 
evolution and particle swarm optimisation algorithms, Long 
et al. (2019) improved the exploration capabilities of the 
grey wolf optimisation algorithm by using the best 
information about individuals and randomly selected 
individuals, and simulations showed that the algorithm 
outperformed the basic grey wolf optimisation algorithm in 
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most cases with the same or less evaluation of the maximum 
fit function. 

The research results of scholars at home and abroad 
show that many scholars mainly focus on the teaching effect 
of differential equations and solving the mathematical 
problems of differential equations, but less attention is paid 
to the research of visualisation algorithms as a teaching tool 
for differential equations. The visual network topology 
algorithm can visualise the relationships between abstract 
data, and the grey wolf optimisation algorithm can prioritise 
the content, and the combination of the above literature 
shows that both algorithms have a wide range of 
applications and rich research results. Based on this, the 
study proposes to use the visual network topology algorithm 
to assist in the teaching of differential equations, and to use 
the grey wolf optimisation algorithm to prioritise the 
teaching content. 

3 Application of visual network topology 
algorithms to mathematical differential 
equations 

3.1 Visualisation of network topology under  
force-guided layout algorithms 

Network topology refers to a topological relationship 
formed by the connection between network devices, and 
visualisation is to abstract this connection into a topological 
relationship on the computer. The task of network topology 
visualisation is to show this topological relationship in a 
visual way, in order to facilitate managers to intuitively 
understand this topology more intuitively (Han, 2020). The 
development of visualisation technology plays a crucial role 
in driving the development of computer networks, and is 
gradually becoming an interface technology between data, 
algorithms and processing to enhance people’s perception of 
abstract data. The visualisation of network topology 
algorithms is the study of network topology relationships 
formed by the construction of vertices and edges of graphs, 
and they can be used to solve system optimisation problems 
in simulation models by adding a visual programming 
language to them to achieve a simulation presentation of 
their algorithms. The transfer function plays an important 
role in the analysis of network systems, where the system is 
referred to given external action conditions and parameters. 
Here the complex time-domain model of the system is 
transformed into a simple frequency-domain model by using 
mathematical variations, i.e., using the linear orthogonal 
Laplace transform, whose formula is shown in equation (1). 

0
( ) ( ) stF s f t e dt

∞
−=   (1) 

In equation (1), f(t) is the time function, F(s) is the mapped 
function, t is the time and s is the product operator in the 
complex time domain. The total system of two tandem 
systems is represented as a product of transfer functions to 
achieve a decomposition of the system. The Shannon-Happ 
formula is also used to simulate and process the computer 

language. The core idea of the formula is to determine 
whether the signal flow diagram is switched on or off to 
distinguish between open and closed signal flow diagrams, 
in which the branch loops are in contact with each other and 
their loop gains are relatively independent, so the transfer 
function of the system is to some extent consistent with the 
loop gain of the signal flow diagram with consistency, the 
results of the calculation method are expressed in  
equation (2). 

( ) ( ) ( )
( ) ( )* ( ) 0

G s B s A s
A s B s G s

=
→ − =
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In equation (2), G(s) is the transfer function and B(s), A(s) is 
the system input and output quantities respectively. At the 
same time the mathematical differential equation because of 
the diversity of its system variables, so the nodes in the 
signal flow diagram to represent the variable, with a 
directional branch to connect up the nodes, and set the 
branch gain on behalf of the variable coefficients, to 
establish the signal flow diagram of its system. For the  
one-way system, the input and output of its system represent 
a receipt point respectively, that is, with the help of the 
linear additivity of the transfer function, to achieve the 
value of each variable node and gain in the differential 
equation, the final output of the system can be expressed as 
shown in equation (3). 

1 2 3( ) ( ) ( ) ( ) ( )nY s Y s Y s Y s Y s= + + + +  (3) 

In equation (3), n is the number of input systems and Y(s) is 
the total system. The topology algorithm allows for 
algorithmic splitting of differential equations and 
differentiates the stepwise nature of algorithmic 
computation and mathematical teaching with loop 
intersections. Figure 1 shows a flowchart of the network 
topology algorithm. 

The structure of the algorithm in Figure 1 shows that a 
good representation of the digital teaching content in a 
topological structure makes all parts of the content 
connected, and this data is imported into an array to 
calculate the loop branches and the combined gain in order 
to obtain the combined form of mathematical teaching, and 
subsequently to judge whether there are intersections in the 
loop connected by each node and branch, i.e., to obtain the 
combined form of mathematical teaching at the end. 
Simultaneous layout algorithms are an important method for 
visualising network topologies. It is a choice made in 
combination with the visualisation requirements and the 
type of network, recalculating the points and edges in the 
topology in order to rationalise its structure and reduce the 
intersection of node connections. The logical layout 
algorithm has a wide range of applications, including 
numerical layout, ray layout, hierarchical layout and  
force-guided layout. The force-guided layout algorithm is 
mainly based on the physical idea of layout inspection, 
which can effectively take into account the positive and 
negative forces between node connections, i.e., nodes are 
constantly adjusted and changed under these two forces to 
achieve a balanced state of nodes, reducing crossover and 
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overlap in the topology. This reduces crossover and overlap 
in the topology, resulting in a more uniform and coordinated 
distribution of nodes and a better layout effect. The  
force-guided layout algorithm is the mainstream layout 
algorithm in the field of social network information 
visualisation, and the simulation of the algorithm can be 
carried out after ensuring that the distance between 
connected nodes is suitable within a certain range. Figure 2 
shows a schematic diagram of the network topology and the 
node stress structure. 

Figure 1 Program flowchart of network topology algorithm,  
(a) node connection diagram schematic diagram of 
node layer gravity distribution (b) node connection 
diagram schematic diagram of node layer gravity 
distribution (see online version for colours) 
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However, the force-guided layout algorithm is unable to 
identify the node structure and paths due to the proximity of 
the nodes, and thus cannot grasp the logical relationships 
under the deeper levels of the nodes. Therefore, based on 
this, the Subgroup analysis layout (SAL) algorithm is 
introduced to perform subgroup analysis on the node 
information in the network topology (Mansouri and 
Bouhlel, 2019). Subgroup analysis can help participants to 
better understand the characteristics of the network structure 
and can effectively improve the force-guided layout 
algorithm with the help of role analysis and key attribute 
analysis. Subclustering by key attributes is used to 
determine whether two indicator variables belong to the 
same subcluster and to calculate the statistical probability of 
correlation. 

The formula for calculating the statistical probability 
that a single variable should belong to the same subgroup is 
shown in equation (4). 

1maxδ m mmBS q f==  (4) 

In equation (4), BS is the statistical probability that a single 
indicator i belongs to the j subgroup, qm is the correlation 
between the m same-attribute matrix and the same-subgroup 
matrix, and fm is the degree of similarity between a single 
indicator i and the j subgroup on the m attribute. 

Figure 2 Network topology diagram and node stress structure 
diagram (see online version for colours) 
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3.2 Application of visual layout algorithms in 
teaching mathematical differentiation 

The application of visual network topology to mathematics 
teaching means that the input checking and saving of data is 
achieved with the help of visual software technology and 
programming languages, and the processing of signal data is 
achieved with modules such as the master control interface, 
visual graphical editing and simulation data generator in the 
software. While mathematical differential equations are the 
main research content in the teaching design, their 
visualisation makes it difficult for students to achieve a 
good grasp of the learning content. Therefore, the study is 
based on this, through the introduction of the grey wolf 
optimisation algorithm to achieve priority selection in the 
teaching of mathematical differentiation, to ensure that 
students can better have a clearer content of how to 
calculate between mathematical variables, more conducive 
to the development of mathematical teaching activities 
(Татьяна Анатольевна Бродская, 2019; Qamar et al., 
2018; Muzhikova, 2018). The grey wolf optimisation 
algorithm simulates the predatory behaviour of the grey 
wolf to obtain the target characteristics, i.e., by calculating 
the fitness of individuals and sorting the top three ‘wolves’, 
and then updating the position and parameters of the bottom 
‘wolves’ to achieve the maximum number of iterations of 
the target. The maximum number of iterations to achieve 
the goal is reached. However, the grey wolf optimisation 
algorithm is prone to slow convergence at a later stage, so 
the study implements improvements to the algorithm by 
adding convergence factors and dynamic weights to avoid 
falling into local optimum behaviour. The formula is shown 
in equation (5). 
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( 1) ( )
2

pX t X t A D
A a r a
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= ∗ −
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In equation (5), D is the distance between the grey wolf and 
the target value, Xp is the location of the target value, t is the 
number of iterations of the algorithm, X is the location of 
the grey wolf, r is a random number in the range (0–1), is 
the convergence factor, aA is the range control parameter, 
and the absolute value of A is greater than 1 for global 
search and vice versa for local search. The convergence 
factor in the original algorithm is linearly decreasing, which 
makes it difficult to adapt the algorithm to changes in all 
parameter values. Therefore, the study designs an improved 
convergence factor to make the grey wolf optimisation 
algorithm better determine the population range and find the 
local optimum even if the number of iterations increases. 
The formula for the improved convergence factor is shown 
in equation (6). 

( )4maxa m m t′ = −  (6) 

In equation (6), max is the maximum number of iterations, 
m is the turning point of the number of iterations, which is 
mainly assigned with the specific algorithm settings, and a′ 
is the improved factor parameter. The introduction of 
dynamic weights enables dynamic changes in wolf position 
updates and is an improved strategy for the iterative process 
to dynamically reduce the range to better update the position 
of individual grey wolves. The formula is shown in  
equation (7). 

( )1 2 3

1 1

b b

y a y

w X X X X

X λ X A D′

= + +

= − ∗
 (7) 

In equation (7), wb is the learning weight of the next ranked 
wolf in the top three, which varies with the number of 
iterations, y is the highest to lowest individual representative 
of the grey wolf population, b is the higher ranked wolf, and 
λ1 is the parameter factor in the weight setting. The 
introduction of the improved grey wolf optimiser (IGWO) 
to the original visual network topology algorithm allows for 
a finite order filtering of the mathematical teaching 
topology to obtain a clearer idea of the data calculation 
steps. Figure 3 shows a schematic diagram of the 
mathematical data information extraction process under 
IGWO. 

The calculation of mathematical differential equations 
and the design of teaching models cover a wide variety of 
content, and students’ computational thinking is easily 
influenced by mathematical thinking and the parameters of 
complex equations, so it is necessary to iterate over the 
parameters of indicators of different priorities in order to 
filter the content of the data to fit the set of equations. 
Figure 4 shows the relationship between the mathematics 
teaching network topology in the visualisation software. 

The main control interface in Figure 4 enables 
visualisation of graphical processing and system 
performance, i.e., the aggregation of data information by 
storing and analysing the results of this visualisation in the 

form of files and simulations. The extraction of 
mathematical features and the development of mathematical 
teaching models help students to better understand 
mathematical content. 

Figure 3 Schematic diagram of mathematical data information 
extraction process under grey wolf optimisation 
algorithm (see online version for colours) 
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Figure 4 The application of mathematical teaching network 
topology in visualisation software (see online version 
for colours) 
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4 Analysis of the effectiveness of visual layout 
algorithms in teaching mathematical 
differentiation 

To show the effect of the layout of the constructed network 
topology, the study was meant to have a maximum allowed 
number of evolutionary generations of 10,000 and to end 
the iteration when the error was less than or equal to 1e-3. 
The language in which the experiments were written was 
MATLAB 6.5 and the platform was a P42.0 PC computer. 
The datasets taken for the experiments are shown in Table 1 
and include three datasets. Of these, dataset A and dataset B 
are real network data and dataset C is simulated data. 

The experiments were run randomly five times to 
compare the average function value, minimum function 
value, average number of iterations, minimum number of 
iterations, and average optimisation time of the four 
topology algorithms: force-guided layout algorithm,  
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SAL-force-guided layout algorithm, visualised layout 
algorithm, and IGWO-visualised layout algorithm. The 
results are shown in Table 2. The IGWO-visualised layout 
algorithm has the best optimisation of the function with an 
average optimisation time of 1.6874 s, while the  
force-guided layout algorithm has an average optimisation 
time of 12.5986 s. Although the functions find the global 
minima (0, 0) due to their strong oscillatory nature and the 
property that the global minima are surrounded by local 
minima, the IGWO-visualised layout algorithm all finds the 
global minima (0, 0). The good results of the  
IGWO-visualised layout algorithm may be due to having a 
tight neighbourhood topology, while the force-guided layout 
algorithm is less effective, possibly due to being a more 
complex network topology. 

Table 1 The dataset used in the experiment 

Dataset Dataset A Dataset B Dataset C 

Type Krackhardt-
High-Tech 

Vickrs-
Chan-7th 
graders 

Analogue 
data 

Number of layers 3 2 2 
Number of nodes 21 29 13 
Number of edges in layer 206 292 53 
Number of interlayer edges 113 29 13 

Table 2 Performance of the five NTPSOs on Schaffer’f6 

Topology 

Minimum 
number 

of 
iterations 

Average 
optimisation 

time (s) 

Average 
value 

Average 
number 

of 
iterations 

Optimal 
value 

Force 
directed 
layout 
algorithm 

201 12.5986 0.0055 5943.4 0 

Sal force 
guided 
placement 
algorithm 

303 6.8146 3.2104 
e-4 

2021.8 0 

Visual 
layout 
algorithm 

284 5.6646 6.3863 
e-4 

2021.8 0 

IGWO 
visual 
layout 
algorithm 

220 6.1646 9.8214 
e-4 

2211.5 0 

Setting the same gravitational parameters and repulsive 
forces, the experiments were conducted to analyse the visual 
layout results with dataset C as an example due to space 
limitation. Figures 5(a) and 5(b) represent the visual layout 
results of the visual layout algorithm, IGWO-visualised 
layout algorithm, respectively. The letter E in the figure 
refers to the different communities and the triangles refer to 
the different nodes. Overall, both visual layout algorithms 
have two characteristics of uniform node distribution and 
more significant correspondence between nodes and 
replicas. However, the nodes of the IGWO-visualisation 

layout algorithm are subject to inter-layer gravity, which 
causes the nodes within a community to move closer to the 
centre of the community. In addition, the nodes of the 
IGWO-visual layout algorithm are subject to interlayer 
gravity, which corresponds to a smaller node offset. 

Figure 5 Visual layout effects of two visual layout algorithms, 
(a) visual layout algorithm (b) IGWO visual layout 
algorithm (see online version for colours) 
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Figure 6 Comparison of accuracy under three datasets A–C,  
(a) comparison of accuracy of dataset A  
(b) comparison of accuracy of dataset B  
(c) comparison of accuracy of dataset C  
(see online version for colours) 
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To further analyse the performance of the layout algorithm 
for IGWO-visualisation (method I), the study validated it 
against three comparative algorithms, namely the  
ZigBee network topology visualisation reproduction 
algorithm, the visualisation topology algorithm for co-word 
networks, and the new intelligent visualisation algorithm for 
distribution networks with multiple data elements,  
which are represented by methods II–IV respectively. 
Figures 6(a), 6(b) and 6(c) refer to the comparison of 
accuracy rates under the three datasets A–C, respectively. 
Under the three datasets, all four visual network topology 
algorithms converge in approximately the same number of 
iterations, with 2,400, 2,700 and 1,200 iterations under the 
three datasets A–C, respectively; and the IGWO-visual 
layout algorithm has the highest accuracy rate, with 95.6%, 
93.6% and 92.1% under the three datasets A–C, 
respectively. The accuracy of the remaining three visual 
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layout algorithms had a wide range of values, with the 
ZigBee network topology visualisation reproduction 
algorithm having the second highest performance and the 
new distribution network intelligent visualisation algorithm 
with multiple data elements having the weakest 
performance. 

Figure 7 Comparison of running time under three datasets A–C, 
(a) comparison of running time of dataset A  
(b) comparison of running time of dataset B  
(c) comparison of running time of dataset C  
(see online version for colours) 
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Figures 7(a), 7(b) and 7(c) refer to the comparison of the 
running times under the three datasets A–C, respectively. In 
dataset A, the maximum running times of the  
layout algorithm for IGWO-visualisation, the topology 
visualisation reproduction algorithm for ZigBee networks, 
the visualisation topology structure algorithm for co-word 
networks, and the new intelligent visualisation algorithm for 
distribution networks with multiple data elements are 8.26 s, 
9.12 s, 12.13 s, and 13.25 s, respectively; in dataset B, the 
four visualisation network topology algorithms have 
maximum In dataset B, the maximum running times of the 
four visual network topology algorithms were 14.56 s,  
19.03 s and 20.39 s respectively; in dataset C, the maximum 
running times were 4.65 s, 5.92 s, 6.12 s and 6.87 s 
respectively; in the three datasets, the four visual network 
topology algorithms had approximately the same variation 
pattern under different numbers of iterations, and the 
maximum numbers of iterations in the three datasets A–C 
were The maximum number of iterations in the three 
datasets A–C are 4,000, 4,500 and 2,000 respectively, when 
the corresponding running time of the four visual network 
topology algorithms is maximum. 

The study applied the proposed visual network topology 
algorithm to the evaluation of mathematical differential 
teaching, setting the teaching cases as 1,000, the teaching 
rating as 0–100, and the teaching effectiveness rating as 
low, medium and high, with the corresponding ratings as 
below 30, [30, 70] and over 70. Figure 8 refers to the 
effectiveness of the proposed visual network topology 

algorithm in the teaching of mathematical differentiation. 
As can be seen from the figure, the number of cases with 
teaching effectiveness ratings of low, medium and high was 
214, 321 and 465 respectively out of 1,000 teaching cases, 
with an average mathematical differential teaching rating of 
(68.56 ± 8.36). Thus, the majority of cases had high 
teaching ratings. 

Figure 8 Application effect of visual network topology 
algorithm in mathematics differential teaching  
(see online version for colours) 

 

Figure 9(a) refers to the teaching ratings of mathematics 
calculus teachers by gender. As can be seen from  
Figure 9(a), male mathematics calculus teachers were better 
evaluated in teaching compared to female teachers, with an 
average teaching rating of (71.23 ± 7.63) and (65.26 ± 6.98) 
for both male and female mathematics calculus teachers. 
Figure 9(b) shows the teaching ratings of the different 
positions of Mathematics Calculus teachers. Senior teachers 
had better teaching ratings compared to regular teachers, 
with mean teaching ratings of (65.23 ± 6.87) and (75.34  
± 7.26) for regular and senior mathematics calculus 
teachers. 

Figure 9 Teaching grades of mathematics differential teachers of 
different genders and positions (see online version  
for colours) 

 
(a)   (b) 

The study compared the results obtained with the 
assessment results of the teaching experts. Figure 10 refers 
to the error rates for the different categories of teaching 
level evaluations. For gender, male mathematics calculus 
teachers had higher overall error rates than female teachers 
for the three teaching evaluations, with error rates of 5.3% 
and 4.8% respectively, and an overall error rate of 10.1%; 
for position, general mathematics calculus teachers had 
higher overall error rates than senior teachers for the three 
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teaching evaluations, with error rates of 7.0% and 5.8% 
respectively, and an overall error rate of 12.8%. 

Figure 10 Error rate of evaluation of different teaching levels 
(see online version for colours) 

 

5 Conclusions 
To address the problems of the traditional visual network 
topology algorithms in terms of low efficiency in fast 
layout, the study proposes an IGWO-visual layout algorithm 
and applies it to the teaching evaluation of differential 
equations in higher mathematics. The simulation results of 
the algorithm show that both visual layout algorithms have 
two characteristics of uniform node distribution and more 
obvious correspondence between nodes and copies. 
However, the IGWO-visual layout algorithm causes the 
nodes within the community to move closer to the centre of 
the community, and the corresponding node offset is 
smaller. 2,400, 2,700 and 1,200 times of convergence were 
achieved for the four visual network topology algorithms 
under the three datasets of A–C, respectively; and the 
IGWO-visual layout algorithm has the highest accuracy 
rate, with the accuracy rates under the three datasets of A–C 
being 95.6%, 93.6% and 93.6%, respectively were 95.6%, 
93.6%, and 92.1%. The results of the teaching evaluations 
showed that male mathematics differential teachers had 
higher overall error rates than female teachers in the three 
teaching evaluations, with error rates of 5.3% and 4.8%, 
respectively, and mean teaching scores of (71.23 ± 7.63) 
and (65.26 ± 6.98); general mathematics differential 
teachers had higher overall error rates than senior teachers 
in the three teaching evaluations, with error rates of 7.0% 
and 5.8%, with mean teaching ratings of (65.23 ± 6.87) and 
(75.34 ± 7.26). The IGWO-visualised layout algorithm has 
good network layout capabilities and can evaluate the 
effectiveness of mathematical calculus teaching more 
accurately. However, the study still suffers from the 
following problems, the fast layout capability of the 
network node layer is weak and cannot be applied to  
large-scale network node layout. 
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