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Abstract: The emergence of the 5G portable network has brought plenty of 
advantages. Notwithstanding, it provoked new difficulties in the 5G 
organisation’s online protection guard framework, resource management, 
energy, and reserve, along these lines making the current methodologies out of 
date to handle the new difficulties. This paper brings an effective edge-based 
DL model for a 5G cellular network. It gives insights about cloud controller 
managing RAN for transferring data from user devices to the core network, for 
example, network strength, security capacities, and network versatility. The 
proposed engineering comprises four unique layers recognised as network 
orchestration layer, RAN controllers layer, distributed units layer, and service 
layer. It uses a DCNN-based model and also further converges with  
feed-forward organisations to learn the effect of organisation designs and other 
outside factors. To enhance the safety features of the proposed model, we have 
used AES methods besides DCNN on the edge. Experimental studies state that 
while evaluating our DL incorporated model with other techniques, the 
proposed model outperforms under measures like accuracy, memory utilisation, 
sensitivity, etc. 
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1 Introduction 

By 2024, 5G portable edge registering is expected to be a multi-million-dollar industry 
with big business organisations, arriving at USD 73M. Every year, the complexity of 
information keeps on developing. The ascent of organisation intricacy frameworks 
originates from the increment of on-request and adjustable administrations. Web access 
suppliers should oblige traffic for web perusing, associated vehicles, video web-based, 
internet gaming, voice over IP, and consistently on internet of things (IoT) gadget 
transmissions. New imperatives presented by on-request benefits as recorded above 
require an extreme change of fixed and portable access organisations. Fifth-generation 
(5G) portable organisations are being created to serve the rising degrees of traffic request 
and variety. To adapt to the complex traffic requested by present-day clients, network 
administrators are taking on distributed computing methods. 5G providers will utilise 
software Define networks (SDN) and network function virtualisation (NFV) to reduce the 
functional expense of developing versatile organisations to give on-request benefits 
(Cheng et al., 2021). In the long run, and clients can expect execution upgrades 
because5G is improved to give low-idleness, high-accessibility, and high-data 
transmission correspondence for quite some cases, including delay-touchy applications 
like independent vehicles and mechanised Industry 4.0 robotic technology. 

Mobile edge computing can supplement the objectives of the entrance organisation to 
settle existing difficulties, including the nature of administration/experience, security, and 
power utilisation as a feature of the important organisational change (Trakadas et al., 
2021). Close to NFV and SDN, portable edge registering was perceived by the European 
5G public-private partnership (PPP) as a key to empowering innovation that will assist in 
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the fulfilling of requesting necessities for throughput, dormancy, versatility, and 
mechanisation in 5G (McClellan et al., 2020). Portable edge figuring places 
computational handling power nearer to the end client. This closeness reduces how much 
traffic is conveyed across the centre organisation to huge server farms, further developing 
reaction speed with latencies under ten milliseconds (Wang et al., 2020), and arranges 
with server farms to offload a few computational undertakings like a web-based 
derivation from the fundamental cloud. Versatile edge registering can empower ongoing 
investigation through distributed computing capacities in a safe and setting mindful way 
with a coordinated effort between network administrators and application suppliers 
(McClellan et al., 2020). 

Figure 1  major implementation challenges of dl 

 

Overseeing a huge number of heterogeneous associations under severe reaction 
requirements for applications, administration creation, and organisation presents a 
perplexing test to 5G organisations utilising versatile edge registering. To understand the 
benefits of portable edge figuring, there is a need to foster a computerised methodology 
to give, arrange, and oversee network administrations and applications under conditions 
that change over the long run and across regions. A promising arrangement is presented 
to AI (ML) to organise activities to meet this new arrangement of requests that are past 
the restrictions of conventional enhancement procedures (Mao et al., 2018). The 
advancement of the 5G centre organisation and versatile edge figuring division of work 
relies upon a mechanised network board that is fuelled by efficient AI (ML) strategies. 
Customary improvement procedures are not adequately versatile to deal with the 
intricate, constant examination expected in 5G organisations. In the next 20 years, AI will 
become commonly known for design acknowledgment. A subset of ML, deep learning 
(DL), has been broadly investigated and applied inside the fields of online vision (Yu et 
al., 2020) and regular language handling (Gumaei et al., 2021). 5G organisations can be 
upgraded to naturally configure, streamline, secure, and recuperate utilising the 
intellectual ability of DL, although this strategy likewise presents open issues regarding 
progressive reaction, energy utilisation, and advancement of OPEX and CAPEX. 
Combining cloud-based innovations and computerisation with DL in versatile edge 
figuring will increase asset utilisation and efficiency, increment strength, advance power 
utilisation, increment incomes, and give simplicity of activity to specialist organisations 
(Koubaa et al., 2020). Figure 1 depicts the major implementation challenges of DL. In 
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this paper we propose the new model to address the limitations like frequency reuse, 
resource allocation, behaviour of networks and cost savings. 

1.1 Key highlights 

1 We have proposed a secure and effective conceptual framework for data drive view in 
a 5G network that combines DL technologies. 

2 DL is used on the edge. 

3 AES algorithm is used to enhance the security levels of the proposed framework. 

4 Evaluated the proposed DCNN with various performance measures and compared it 
with other cutting-edge methods. 

2 Related works 

Polese et al. (2020) designed a data-driven architecture for cellular networks with the 
applications of machine learning. They have evaluated its performance with real data 
which was obtained from the major US network operators. In that regard, they have 
provided insights on how to dynamically cluster and associate base stations and 
controllers, according to the global mobility patterns of the users. Also, they have 
described how the controllers can be used to run ML algorithms to predict the number of 
users in each base station, and a use case in which these predictions are exploited by a 
higher-layer application to route vehicular traffic according to network Key Performance 
Indicators (KPIs). They depict that the prediction accuracy improves when run on 
machine learning algorithms that rely on the controllers’ view and, consequently, on the 
spatial correlation introduced by the user mobility, concerning when the prediction is 
based only on the local data of each single base station (Liang et al., 2019). 

Wang et al. (2020) surveyed the convergence of edge computing and DL. They 
reviewed and discussed in their paper, the application and scenario of edge computing 
and DL, the practical implementation methods, and enabling technologies, i.e., DL 
training and inference in the customised edge computing framework, and the challenges 
and futuristic scopes of more pervasive and fine-grained intelligence. They demand that 
by consolidating information scattered across the communication, networking, and DL 
areas, their survey can help readers to understand the connections between enabling 
technologies while promoting further discussions on the fusion of edge intelligence and 
intelligent edge, i.e., edge DL. 

McClellan et al. (2020) evaluated the opportunities and applications of DL in 5G 
networks. In their work, they discussed the state of the art for ML within mobile edge 
computing and the advances needed in automating adaptive resource allocation, mobility 
modelling, security, and energy efficiency for 5G networks. They showed that MEC is 
the most desirable candidate for the new verticals, features, and service categories 
required to establish 5G. They provide a detailed key concept of DL and how it can be 
implemented to act best in MEC environments with computational memory limitations. 
Table 1 depicts the summary of state-of-art works. 

Gumaei et al. (2021) introduced a 5G enabled drone identification and flight mode 
detection mechanism with the integration of blockchain and deep recurrent neural 



   

 

   

   
 

   

   

 

   

    Edge controller-based deep learning framework for data-driven view 97    
 

    
 
 

   

   
 

   

   

 

   

       
 

network. In their work, raw RF signals of different drones under several flight modes are 
remotely sensed and collected on a cloud server to train a deep recurrent neural network 
model and then distribute the trained model on edge devices for detecting drones and 
their flight modes. The integrity of data and data transmission security is done in the 
proposed framework by blockchain. Their proposed model’s performance was measured 
based on a public dataset, namely DroneRF, and it attained greater accuracy. 
Table 1 State-of-art works (see online version for colours) 

DL method Remarks 
DNN The spatial temporal relationships between stations to predict future demands 
DNN Used to identify real-time traffic 
DNN To identify real time traffic and assign network slice 
DNN It decreases computational time and energy consumption 
RNN Using predictive handover can reduce signaling overhead, latency, cell dropping, 

and radio resource waste. 
RNN It anticipates user movement and service types to cache and offload tasks 
RL Using caching and computation for vehicular networks both at same time 
RL Uses the scheduling of offloaded tasks in vehicular networks 
RL Uses MEC security policies in order to protect against unknown attacks 

Rathore et al. (2021) proposed a 5G enabled IoT system with the integration of DL in 
which security features were enhanced by the blockchain. In their system, the DL and 
blockchain operations emerged from four system layers, namely cloud, fog, edge, and 
user layers. They measured the performance of the proposed system with various 
measures such as latency, accuracy, and security and its validity in futuristic and practical 
applications. 

Chergui and Verikoukis (2019) proposed a 5G network that is reliable and possible 
end-to-end slicing dynamically with the application of offline SLA constrained DL. The 
various slices’ tenants (i.e., logical operators) are progressively allocated secluded bits of 
physical resource blocks (PRBs), baseband handling assets, backhaul limit as well as data 
forwarding elements (DFE), and SDN regulator associations. By conjuring enormous 
KPIs datasets originating from a live cell network supplied with traffic tests, they have 
presented a low-intricacy slices’ traffic predictor based on a soft gated recurrent unit 
(GRU). They then, at that point, worked at each virtual organisation and trained them to 
appraise the necessary assets in light of the traffic per cut, while not abusing two 
assistance level arrangements. In particular, infringement rate-based SLA and asset 
limits-based SLA. This was accomplished by incorporating dataset-subordinate summed-
up non-arched imperatives into the DNN disconnected enhancement assignments that 
were settled using a non-lose two-player game technique. In this regard, they feature the 
job of the fundamental hyperparameters in the compromise among over-provisioning and 
slices’ isolation. Further, utilising the unwavering quality hypothesis, they gave a shut 
structure investigation to the lower bound of the alleged dependable assembly likelihood 
and featured the impact of the infringement rate on it. In Navya and Deepalakshmi 
(2019), authors employ a combination of machine learning algorithms namely extreme 
learning machine algorithm with k-means clustering and analytic hierarchy process, for 
the prediction 
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In Jeyaraj and Sankar (2019), energy parameters are calculated and data are routed to 
the coordinator node for further communication. An efficient node is selected based on 
the least cost value that depends on high residual energy and less distance to sink. 

3 System architecture 

In our work, we present the new design paradigms for the 5G RAN to make it possible to 
practically deploy intelligence in cellular networks so that it can overcome the  
limitations and constraints of 4G LTE deployments. Figure 2 depicts the proposed system 
architecture. The different layers of controllers in our architecture are used to aggregate 
and process network data using DL techniques. This is done with a multi-layer semi-
distributed point of view that strikes a balance between the decentralised 4G approach 
and a completely centralised approach that would be impractical due to the amount of 
data to be processed. It should be noted that the proposed architecture only applies to the 
control plane and has no bearing on data packet routing. In this case, DL is on the cutting 
edge of architecture. In addition, we have implemented an AES algorithm to eliminate 
security threats to a higher level. 

Figure 2 System architecture 

 

The proposed system architecture has four layers namely, 

1 Network orchestration layer: In this layer, services are done. It consists of CU 
association and control loop on a sec/min timescale. 

2 RAN controller layer: It is deployed at the edge and of the control loop on a 10–100 
ms timescale. It orchestrates CUs/DUs and runs DL algorithms. 

3 Distributed units: It is used at the edge with 3G PP high layers and controls loop on 
an ms timescale. 

4 Radio units layer (RUs): It is used in the field with RF equipment, and the lower 
layers of the 3G PP stack and control loop are on a sub-ms timescale. 

4 Integration with 3G PP networks 

The proposed architecture exploits a multi-layer overlay that is compliant with 3G PP NR 
networks. The overlay consists of three main elements which are discussed below. 
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4.1 RAN 

It is deployed to provide cellular service to the users and includes the 3G PP NR CUs, 
DUs, and RUs. The RAN handles the data plane of the users, i.e., the user traffic is 
forwarded from or to the core network and the public internet from the CUs. 

4.2 RAN controllers 

This controls and coordinates the RAN elements. Each RAN controller is associated with 
a cluster of gNBs and is deployed in MEC, to minimise the communication latency with 
the RAN. Some of the control-plane processes are assigned to the RAN controllers, 
which can benefit from the cluster-based overview. RAN controllers can manage  
UE-level connectivity, by coordinating handover decisions and performing load 
balancing, or can enforce quality of service (QoS) policies. Moreover, the RAN 
controllers can be deployed in the same edge data centres that host the CU for a certain 
area, to minimise the CU-controller latency and to guarantee interconnectivity across the 
different controller domains, following the trends for cloud and edge-based deployment 
of 5G networks. RAN architectures enable operators to provide network self-optimisation 
capabilities, which use automation to manage a network more efficiently. 

4.3 Cloud network controller 

The cloud network controller, which orchestrates the RAN controllers and provides 
application-layer services, can be deployed in a remote cloud facility. 

A multi-layer controller architecture combines the benefits of the scalability of a 
distributed approach with the performance gain given by a partially-centralised view of 
the network. Each layer implements control functionalities with different latency 
constraints, allowing the network to scale: the DUs schedule over-the-air transmissions 
on a sub-ms basis, the RAN controllers may decide upon users’ association on a 
timescale of tens of milliseconds, and, finally, the cloud network controller can operate 
on multiple second (or even longer) intervals, for example, to update the association 
between gNBs and RAN controllers. At each additional layer, it is possible to support a 
larger number of devices (e.g., a DU controls tens of UEs at most, while the RAN 
controller can be designed to handle hundreds of UEs), and, given the more relaxed 
constraints on the decision timescale, it is possible to implement more refined and 
complex decision policies, based on DL algorithms enabled by the larger amount of data 
given by the clustered and/or centralised views. 

5 Deep learning edge 

In our DL edge, we have used well known DL method, namely deep convoluted neural 
network (DCNN). Figure 3 depicts the architecture of DCNN. 

The input will be fed to this model, in which the maximum pooling layer performs 
down-testing by isolating the contribution to rectangular pooling districts and processing 
the greatest estimation of every locale. At the end of the day, these pooling layers lessen 
the number of boundaries to be learned, and consequently, forestall overfitting. Then, a 
solitary worth is returned for each info ultrasound picture as the yield. All through the 
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preparation, a forward and reverse pass through the organisation is acted in every cycle. 
In the forward pass, each layer applies its enactment capacity to the yields of the past 
layer to produce new yields. Assume that a layer takes L1, …, Ln as contributions from 
past layers and creates the yields O1, …, Om for the following layers. At that point, the 
misfortune work Lf between the genuine targets T and the expectations Y is determined 
toward the finish of the forward pass. During the retrogressive pass, each layer registers 
the subordinates of the misfortune L regarding its sources of info and loads, utilising the 
subsidiaries of the misfortune as for the yields of that layer. To figure out the 
subordinates of the misfortune, the chain rule can be utilised: 

(1) (0)
1, , 1, ,

1, ,

1, ,

j

jj

j

i j ij

ZL L i number of inputs and j number of outputs
X Z X

ZL L i number of learnable parameters and
W Z W

j number of outputs

∂∂ ∂= = =
∂ ∂ ∂

∂∂ ∂= =
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Figure 3  Architecture of DCNN (see online version for colours) 

 

Gaussian distribution for the weights that are initially made will have a mean value of 0 
and with standard deviation (SD) of 0.01. We have utilised Adam (got from adaptive 
moment assessment) (She et al., 2021) calculation to refresh the organisation boundaries 
(loads and inclinations) and limit the loss function. The gradient descent calculation 
utilises a solitary learning rate for every one of the boundaries. While advancement 
calculation improves network preparation by utilising learning rates that consequently 
adjust to the loss function being upgraded. It utilises an additional energy term and a 
component-wise moving normal technique: 

( ) [ ]2
1 1 1 2 2 1 21 ( ) (1 ) ( )j j j j jf f E θ q q E θ− −= + − ∇ = + − ∇β β β β  (2) 

The rectified linear unit (ReLU) layer has been utilised as an enactment work in 
convolutional profound neural organisations. It plays out an edge procedure on every 
component of the information, where any worth under zero is set to nothing. Likewise, a 
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bunch of standardisation layer has been utilised to standardise the contribution of each 
layer across a small-scale group and accelerate preparation while at the same time 
diminishing the affected value to organise instatement. 0.0001 was chosen for the 
learning rate through experimentation. Convolutional neural organisations figure out how 
to recognise highlights like tone and edges in the first convolutional layers (Shafin et al., 
2020). 

5.1 AES edge 

While emerging, the proposed framework may contain certain intrusion-related problems. 
To improve the security standards of our proposed system, we used an AES model at the 
edge in conjunction with a DL model. The National Institute of Standards and 
Technology (NIST) published the advanced encryption standard (AES) (Gacanin and 
Renzo, 2020) in 2001. AES is a symmetric block cipher that uses a single key for both 
encryption and decryption. The AES algorithm’s input and output are both sequences of 
128 bits. This algorithm employs a key of 128, 192, or 256 bits. AES is based on 8-bit 
bytes. Using the polynomial representation, these bytes are interpreted as infinite field 
elements: 

11 2
1 2 1 0 10

( )
nn n i

n n i
f x b x b x b x b jb x

−− −
− − =

= + + + + =  (3) 

where each bi has the value of 0 or 1. 
The AES 128-bit input block is arranged in a 4x4 state matrix, as shown in Figure 1. 

The matrix elements are denoted by the variable bij, and i, j are the row and column 
numbers, respectively. AES allows for rounds based on the size of the bits in key 
variables. For our experiment, 256-bit key size is used and thus the no of rounds used is 
14 rounds, denoted by Nr. The key scheduling algorithm is used in AES to provide keys 
to each round. The key scheduling algorithm is designed in such a way that revealing any 
round key returns the original input key from which the round key was derived. 

5.2 SubBytes 

In the AES, Tis is a nonlinear step. It employs an S-box on the bytes of the state matrix. 
Each byte of the state matrix is replaced by its multiplicative inverse, which is then fine-
mapped as follows: 

8( 4) 8 ( 5) ( 6) 8 ( 7) 8 , 0 8modi i i mod i i mod i mod ib b b b b b c for i+ + + +′ = ⊕ ⊕ ⊕ ⊕ ≤ <  (4) 

where the byte’s ith bit is denoted by bi and ci is the byte’s c ith bit has the value 
of01100011.So the relationship between the input byte x and the S-box output y is  
y = A.x–1 + B, and constant matrices (Bonati et al., 2021) are represented by A and B. 

• Shift rows: The last three rows of the state matrix were rotated by a particular no of 
byte positions. It is carried out as: 

, ( ,( ( )) ) 0 4 0u c u c t u kb modkbs s for u and c kb+ +′ = < < < <  (5) 

kb denotes the state matrix’s no. of words (each column will be taken as a word). In AES, 
kb will be 4, as the input size is 128 bits and the state matrix is 4 × 4. The state matrix’s 
cell is represented by the letter s, followed by the index of row r and column c. 
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Polynomials over GF (28) and multiplied modulo x4 + 1 with a fixed polynomial (x), 
given by 

3 2 1( ) {03} {01} {01} {02}a x x x x= + + +  (6) 

columns of state matrix is calculated by 

( ) ( ) ( )s x a x s x′ = ⊗  

Here the state matrix’s state is s(x). 
Add round key: a simple bitwise XOR operation is needed to combine a round key 

with a state. The size of each round key is specified in the key schedule as kb words. To 
meet the following requirement, each of the kb words is added to the state matrix’s 
columns: 

[ ] [ ] [ ]0, 1, 2, 3, 0, 1, 2, 3,, , , , , , ], 0c c c c c c c c round kb cs s s s s s s s w for c kb+′ ′ ′ ′ − ⊕ ≤ <×  (7) 

where bitwise XOR is represented by ⊕ and the round number at which the round key is 
added is called round and 0 ≤ round < kr. Except for the final round, all of these steps are 
repeated for each round of the AES. The mix column step is skipped in the final round. 
Figure 4 depicts the round function process for a 14-round AES. 

Figure 4 Round function steps in 14-round AES 

 

The addition of round keys, which are generated by the key expansion routine, is an 
important part of the round function stages. The key expansion produces Md(Ms + 1) 
words in total: the algorithm requires an initial set of Md words, and each of the Ms 
rounds requires Mb words of key data. The key schedule that results is a linear array of 4-
byte words denoted by [wi], 0 Md(Ns + 1). Rotword () is another function that is used to 
perform a circular permutation. In linear permutation we have to consider the position of 
data values, whereas in circular permutation there is not any need for start or end. Rcon[i] 
is around constant array containing values specified as [xi–1, 00, 00, 00] with xi–1 
powers of x in the array. 
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( )( 4) 4 8 4 3[ ] / 1 ,iRcon i x mod x x x x where i is the current round−= + + + +  (8) 

6 Performance analysis 

We have analysed our proposed model with various parameters such as accuracy, 
sensitivity, specificity, computational time, recall, F1-score, TPR, and FPR. Predictions 
that are positive and correct are called true positives (TP). Predictions that are negative 
and correct are called true negative (TN). Predictions that are positive and false are called 
false positives (FP). Predictions that are negative and false are called false negatives 
(FN). Table 2 depicts the matrices of performance. 

Table 3 depicts the comparison of models with sensitivity, specificity, and accuracy; 
Figure 5 depicts the analysis of Models with parameters such as sensitivity, specificity, 
and accuracy of various network datasets and average values. Table 4 depicts the 
comparison of models with recall, f-score, and memory utilisation, and Figure 6 depicts 
respective graphs. 
Table 2 Metrics of performance measures (see online version for colours) 

Performance measures Mathematical equations 
1 Sensitivity, TPR TP1/(TP1+FN1) 
2 Specificity, S TN1/(TN1+FP1) 
3 Precision TP1/(TP1+FP1) 
4 Accuracy (TP1+TN1)/(TP1+FN1+TP1+TN1) 
5 F Score 2*TP1 / 2TP1+FP1+FN1) 

Table 3 Comparison of models with sensitivity, specificity and accuracy 

Dataset Models Sensitivity (%) Specificity (%) Accuracy (%) 
1 VGG16 88 78 85.9 

DENSENET169 87.3 84 87.4 
CNN 89.6 88 90.3 

LSTM 90.67 81 93.1 
DCNN(Ours) 91.2 89 94.4 

2 VGG16 83.9 82 80 
DENSENET169 79.5 85 86.2 

CNN 83 88.9 82.8 
LSTM 85 80.3 87 

DCNN(Ours) 84 85 95 
3 VGG16 83.6 81 82.9 

DENSENET169 82.9 84.5 86.5 
CNN 86.6 86.3 84.5 

LSTM 87.8 83.9 89.7 
DCNN(Ours) 88.4 88.3 94 

 



   

 

   

   
 

   

   

 

   

   104 S. Shamsudheen et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Table 3 Comparison of models with sensitivity, specificity and accuracy (continued) 

Dataset Models Sensitivity (%) Specificity (%) Accuracy (%) 
4 VGG16 87 77 84.8 

DENSENET169 86.2 83 86.3 
CNN 88.5 87 89.2 

LSTM 89.56 80 92.01 
DCNN(Ours) 90.1 88 93.3 

5 VGG16 89 79 86.1 
DENSENET169 88.4 85 88.5 

CNN 90.7 89 91.4 
LSTM 91.77 82 94.2 

DCNN(Ours) 92.3 90 95.55 

Figure 5 Analysis of models with parameters such as sensitivity, specificity, and accuracy of 
various datasets and average value (see online version for colours) 
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Table 4 Comparison of models with recall, f-score, and memory utilisation 

Dataset Models Recall (%) F-score (%) Memory utilisation (%) 
1 VGG16 82 83.7 90 

DENSENET169 84.1 87 92 
CNN 86.6 86 94 

LSTM 88 79 89 
DCNN(Ours) 91 85 88 

2 VGG16 83 84.8 91 
DENSENET169 85.2 88 93 

CNN 87.3 87.1 95 
LSTM 89 80 90 

DCNN(Ours) 92 86 89 
3 VGG16 84 85.9 92 

DENSENET169 86.3 89 94 
CNN 88.4 88.2 96 

LSTM 90 81 91 
DCNN(Ours) 93 87 90 

4 VGG16 82.10 83. 92.01 
DENSENET169 84.2 87.13 92.25 

CNN 86.7 86.12 94.02 
LSTM 88.1 79.1 89.02 

DCNN(Ours) 91.1 85.08 91.11 
5 VGG16 84.02 86.12 92.20 

DENSENET169 86.5 89.25 94.02 
CNN 88.6 88.5 96.6 

LSTM 90.04 81.2 91.01 
DCNN(Ours) 93.5 87.20 90.02 

Figure 6 Analysis of models with parameters such as recall, f-score, and memory utilisation of 
various datasets and average value (see online version for colours) 
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Figure 6 Analysis of models with parameters such as recall, f-score, and memory utilisation of 
various datasets and average value (continued) (see online version for colours) 

    

      

The analysis shows the variations in different datasets and how the accuracy, sensitivity 
and specificity of models affect the memory utilisation. From the above graphs, it is 
obvious that the proposed DCNN methods outperform well than other methods. Its higher 
accuracy and sensitivity help in the efficient handling of 5G networks. 

Our proposed model has lower memory utilisation. This reduces the storage and 
increases the speed of the system. Figure 7 depicts a comparative study of the proposed 
model with other latest models. 

Figure 7 Comparison of models (see online version for colours) 

  



   

 

   

   
 

   

   

 

   

    Edge controller-based deep learning framework for data-driven view 107    
 

    
 
 

   

   
 

   

   

 

   

       
 

7 Conclusions 

The emergence of 4G has improved connectivity much better than that of 3G. So, the 
arrival of the 5G network can revolutionise the field of telecommunication and some 
other related areas. Edge controller-based DL framework for data drive view in 5 G 
cellular networks. The proposed architecture consists of four important layers namely 
network orchestration layer, RAN controllers layer, distributed units layer and RUs layer. 
The edge of the system consists of a DL algorithm namely DCNN which enhances the 
performance of the architecture. The transmission of 5G networks may possess certain 
security threats. To avoid those, we have used an AES algorithm. We have evaluated our 
model with various measures and compared it with other cut edge models. Our model 
outperformed well with an average accuracy of 95%.It helps in the enhancement of 
present systems and the creation of new ones. It will pave the way which leads to creating 
the 6th generation (6G) in the future. There are a lot of implementation challenges in the 
case of DL at 5G edge which include security issues, high data usage, and raised data 
cost. We can use different prediction algorithms in real-time scenarios like cellular 
network to improve accuracy and consider parameters like handover, energy 
consumption and throughput. 

References 
Bonati, L., D’Oro, S., Polese, M., Basagni, S. and Melodia, T. (2021) ‘Intelligence and learning in 

O-RAN for data-driven NextG cellular networks’, IEEE Communications Magazine, Vol. 59, 
No. 10, pp.21–27. 

Bonati, L., Polese, M., D’Oro, S., Basagni, S. and Melodia, T. (2020) ‘Open, programmable, and 
virtualized 5G networks: State-of-the-art and the road ahead’, Computer Networks, Vol. 182, 
p.107516. 

Cheng, Y., Yin, B. and Zhang, S. (2021) ‘Deep learning for wireless networking: the next frontier’, 
IEEE Wireless Communications. 

Chergui, H. and Verikoukis, C. (2019) ‘Offline SLA-constrained deep learning for 5G networks 
reliable and dynamic end-to-end slicing’, IEEE Journal on Selected Areas in Communications, 
Vol. 38, No. 2, pp.350–360. 

Gacanin, H. and Renzo, M.D. (2020) ‘Wireless 2.0: toward an intelligent radio environment 
empowered by reconfigurable meta-surfaces and artificial intelligence’, IEEE Vehicular 
Technology Magazine, 15, No. 4, pp.74–82. 

Gumaei, A., Al-Rakhami, M., Hassan, M.M., Pace, P., Alai, G., Lin, K. and Fortino, G. (2021) 
‘Deep learning and blockchain with edge computing for 5G-enabled drone identification and 
flight mode detection’, IEEE Network, Vol. 35, No. 1, pp.94–100. 

Jeyaraj, G.T. and Sankar, A. (2019) ‘Extreme learning machine and K-means clustering for the 
improvement of link prediction in social networks using analytic hierarchy process’, IJENM, 
Vol. 10, Nos. 3–4, p.371, DOI: 10.1504/IJENM.2019.103162. 

Koubâa, A., Ammar, A., Alahdab, M., Kanhouch, A. and Azar, A.T. (2020) ‘Deep brain: 
Experimental evaluation of cloud-based computation offloading and edge computing in the 
internet-of-drones for deep learning applications’, Sensors, Vol. 20, No. 18, p.5240. 

Liang, L., Ye, H., Yu, G. and Li, G.Y. (2019) ‘Deep-learning-based wireless resource allocation 
with application to vehicular networks’, Proceedings of the IEEE, Vol. 108, No. 2,  
pp.341–356. 

Mao, Q., Hu, F. and Hao, Q. (2018) ‘Deep learning for intelligent wireless networks: a 
comprehensive survey’, IEEE Communications Surveys and Tutorials, Vol. 20, No. 4, 
pp.2595–2621. 



   

 

   

   
 

   

   

 

   

   108 S. Shamsudheen et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

McClellan, M., Cervelló-Pastor, C. and Sallent, S. (2020) ‘Deep learning at the mobile edge: 
Opportunities for 5G networks’, Applied Sciences, Vol. 10, No. 14, p.4735. 

Navya, V. and Deepalakshmi, P. (2019) ‘Effective transmission of critical parameters in 
heterogeneous wireless body area sensor networks’, IJENM, Vol. 10, Nos. 3–4, p.350,  
DOI: 10.1504/IJENM.2019.103161. 

Polese, M., Rittwik, J., Kounev, V., Zhang, K., Deb, S. and Zorzi, M. (2020) ‘Machine learning at 
the edge: a data-driven architecture with applications to 5G cellular networks’, IEEE 
Transactions on Mobile Computing, Vol. 20, No. 12, pp.3367–3382. 

Rathore, S., Park, J.H. and Chang, H. (2021) ‘Deep learning and blockchain-empowered security 
framework for intelligent 5G-enabled IoT’, IEEE Access, Vol. 9, No. 2021, pp.90075–90083. 

Shafin, R., Liu, L., Chandrasekhar, V., Chen, H., Reed, J. and Zhang, J.C. (2020) ‘Artificial 
intelligence-enabled cellular networks: a critical path to beyond-5G and 6G’, IEEE Wireless 
Communications, Vol. 27, No. 2, pp.212–217. 

She, C., Sun, C., Gu, Z., Li, Y., Yang, C.H., Poor, V. and Vucetic, B. (2021) ‘A tutorial on  
ultra-reliable and low-latency communications in 6G: Integrating domain knowledge into deep 
learning’, Proceedings of the IEEE, Vol. 109, No. 3, pp.204–246. 

Trakadas, P., Sarakis, L., Giannopoulos, A., Spantideas, S., Capsalis, N., Gkonis, P., Karkazis, P.  
et al. (2021) ‘A cost-efficient 5G non-public network architectural approach: key concepts and 
enablers, building blocks and potential use cases’, Sensors, 21, No. 16, p.5578. 

Wang, X., Han, Y., Leung, V.C.M., Niyato, D., Yan, X. and Chen, X. (2020) ‘Convergence of edge 
computing and deep learning: a comprehensive survey’, IEEE Communications Surveys and 
Tutorials, Vol. 22, No. 2, pp.869–904. 

Yu, P., Zhou, F., Zhang, X., Qiu, X., Kadoch, M. and Cheriet, M. (2020) ‘Deep learning-based 
resource allocation for 5G broadband TV service’, IEEE Transactions on Broadcasting,  
Vol. 66, No. 4, pp.800–813. 

Abbreviations 

5G Fifth-generation 

MEC Mobile edge computing 

CAPEX Capital expenditure 

AES Advanced encryption standard 

3GPP Third generation partnership project 

DCNN Deep convoluted neural network 

SDN Software-defined networks. 


