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Abstract: With vast collection of whole genome data, analysts require faster 
and more scalable bioinformatics tools to compare those abundant sequences 
for knowledge discovery. Despite of their availability, utilising the larger whole 
genomes for phylogeny reconstruction and taxa identification is still a 
challenging task. In complex organisms, a substantial portion of genome is 
made up of repetitive DNA. The short tandem repeat (STR) is one of the most 
crucial repeats. We develop an efficient and scalable algorithm called STR seed 
selection (3S), which mines STRs in whole genomes using k-mer comparison. 
The analysis of short tandem repeats has revealed species-specific variations 
that serve as crucial indicators of their genetic relatedness. When it comes to 
reconstructing the phylogeny and identifying taxa within eukaryotic species, 
the utilisation of short tandem repeat variants consistently matches with the 
established taxonomy by NCBI. With its remarkable attributes of minimal 
memory usage, rapid processing capabilities, and exceptional scalability, 3S 
emerges as a cutting-edge approach for biosequence analysis based on short 
tandem repeats. 
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1 Introduction 

With advent of new generation sequencing technologies, a large collection of eukaryotic 
genomes are now freely available in public repositories. Analysis of those data has 
confirmed the hypothesis that eukaryotic genomes are rich in repetitions, in particular, 
tandem repeats (TRs) whose functional role needs to be elucidated. A TR is certain 
number of juxtaposed repetitions of a group of k nucleotides, termed as k-mer or motif. 
Depending on the motif length, TRs are classified into three categories: microsatellites or 
short tandem repeats (STRs) (1–6 nt), minisatellites (7–60 nt) and satellites (larger than 
60 nt). Highly poly-morphic nature of the STRs is extremely useful for linkage analysis 
(Ott et al., 2015), genotyping (Kashi et al., 1997) and DNA fingerprinting (Zietkiewicz  
et al., 1994). Variation in the repeat copy number of STRs at coding regions is linked to 
several neurodegenerative diseases in human such as Huntington’s disease and 
Spinocerebellar Ataxia (Usdin, 2008). STRs have also been observed to play crucial roles 
in epigenetic regulation of gene expression (Greene et al., 2007) and genome organisation 
(Kumar et al., 2013). 

One of the primary techniques of finding STRs in genetic material like DNA is 
wetlab methodologies, such as the polymerase chain reaction (PCR), gel electrophoresis, 
and Southern blot techniques. Although they have long been employed for the detection 
of STRs, these traditional approaches, however, suffer from protracted turnaround times, 
often spanning weeks, and in some cases even stretching into months (Ishiura et al., 
2018). In a quest for expedited and cost-effective alternatives, computational methods 
have emerged as beacons of hope. These in-silico strategies offer swifter and more 
economical means of extracting STRs, making them increasingly attractive to the 
scientific community. 

Contemporary computational approaches for STR extraction can be broadly classified 
into two categories: heuristic and combinatorial methodologies (Lim et al., 2012). The 
heuristic methods (Domanic and Preparata, 2007; Do et al., 2008) rely on probabilistic 
models to identify STRs, but their comprehensiveness and accuracy remain subject to 
scrutiny. In contrast, combinatorial methods (Wirawan et al., 2010; Pickett et al., 2017) 
adhere to stringent construction rules that facilitate the detection of STRs within DNA 
sequences. By initially capturing all STRs, including redundant occurrences, and 
subsequently subjecting them to refined filtering techniques, these approaches furnish the 
final set of STRs. Regrettably, the sequential nature of these combinatorial methods 
engenders a computational complexity that approximates quasi-linearity (O (N logN)), 
with the sequence length N-nt. 

Recent advances have yielded two promising methods: Kmer-SSR (Pickett et al., 
2017) and PERF (Avvaru et al., 2017). These innovative approaches integrate the 
detection and filtering stages, thereby endowing them with linear time complexity. 
Nonetheless, when confronted with the formidable challenge of processing vast genomic 
landscapes, both methods encounter obstacles. Kmer-SSR, in its pursuit of 
comprehensiveness, endeavours to identify all subsequences of a given length (k) and 
dutifully preserves the precise locations of each k-mer motif along the sequence. While 
the detection of tandem occurrences of a k-mer proves straightforward using the stored 
positional information, but the associated memory and computational demands become 
increasingly burdensome as the sequence length escalates. Furthermore, due to its 
dependence on multiple sequential scans of the sequence for each motif size, Kmer-SSR 
confronts scalability limitations [Figure 2(b)]. 
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In contrast, PERF initiates its journey by artificially generating motifs of varying 
lengths, spanning from a minimum (m) to a maximum (M). Each motif then begets a 
repeat string through the concatenation of multiple tandem repetitions, ceasing only when 
the cumulative length reaches a user-specified cut-off (L nt). Consequently, for a motif 
length reaching the zenith (M), PERF engenders an astronomical number of distinct 
repeat strings-4*(4M-1)/(4-1), to be precise-each measuring L nt in length. As the 
computational burden exponentially burgeons with longer cutoffs and larger M values, 
storage and retrieval of these gargantuan repeat strings within a dictionary give rise to 
formidable space-time complexity [Figure 3(b)]. Furthermore, the subsequent string 
matching endeavour ensues quasi-linear STR extraction (O(N L)), a predicament further 
amplified when higher cut-off values are employed. Pertinently, PERF’s inability to 
discriminate between atomic and non-atomic k-mers necessitates additional filtering to 
extricate STRs of non-atomic motifs. Consequently, both methodologies grapple with the 
vexing challenge of scalability [refer to Figures 2(a) to 3(b) for illustrative depictions]. 
Against this backdrop, the present study embarks on an innovative exploration of the 
STR mining conundrum, adroitly adopting a fresh perspective as described in the 
following Section 2. 

Traditionally, the frequencies of STR alleles at particular loci relative to a reference 
genome are used to establish differentiation between the genomes of different organisms 
and their groupings (Li et al., 2018; Guo et al., 2018, Gou et al., 2020; Chen et al., 2022; 
Lewis et al., 2020). As a result, these methods heavily rely on the positional data of STR 
loci and the reference genome. Such methods are only applicable to closely related 
species with clearly characterised reference genomes. The current method deviates from 
the conventional one in that it harvests STRs from a single genome and concatenates 
them to create a repeat sequence made from the mined STRs. The real genomes are 
compared based on the variations in the STR made repeat sequences. Interestingly, we 
find that these variations can be used to correctly distinguish several taxonomic groups of 
eukaryotic species and hence grouping and classification of their taxa becomes plausible. 
Experiments on phylogeny tree reconstruction and taxa identification are 100% congruent 
with the data provided in NCBI. The results indicate that STR variation is a fundamental 
characteristic of complex organisms and can be used to infer details about their 
individuality and group identity. Due to its linear time computational complexity, the 
method is also a sophisticated tool to mine STRs from larger genomes of evolutionary 
higher eukaryotic species. 

The major contributions of the research can be listed as follows: 

1 Use of STRs for phylogenetic analysis: the research demonstrates the effectiveness 
of utilising STRs for phylogenetic analysis. By analysing the variations in STRs 
across different taxa of complex organisms, the research provides a valuable tool for 
inferring genetic relationships and reconstructing phylogenies. More importantly, it 
can be considered as a tool for phylogeny reconstruction of gigantic genomes. 

2 Taxa-specific variation: the study highlights the taxa-specific nature of STR 
variation. By identifying and analysing STRs in different taxa, the research enables 
the identification and differentiation of genomic taxa based on their unique STR 
profiles. 

3 Reference-free genetic relationship inference: a significant contribution of the 
research is the development of a reference-free approach for inferring genetic 
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relationships. By relying solely on the variations in STRs without the need for a 
reference genome or specific STR loci, the research offers a practical solution for 
genetic relationship analysis in scenarios where such references are not available. 

4 Characterisation of STR origins: the research provides insights into the origins of 
STRs by identifying their atomic motifs. By exploring the characteristics of atomic 
motifs that do not generate cyclic-redundant and enclosing TRs, the research 
contributes to a better understanding of the mechanisms underlying STR formation. 

5 Development of the 3S algorithm: the research introduces the 3S algorithm as a 
powerful tool for mining STRs in whole genomes. The algorithm is highly scalable 
and offers a linear order computational complexity, making it suitable for analysing 
longer whole genomes efficiently. 

These contributions collectively advance the field of genetic analysis by leveraging STRs 
to infer genetic relationships, overcome the limitations of reference genomes, and gain 
insights into the origins of STRs. 

The rest of the article is organised as follows: Section 2: materials and methods. This 
section provides a detailed description of the methods and algorithms employed in the 
research. It outlines the approach taken to mine STRs and explains the underlying 
principles and techniques utilised. Section 3: experiments. The experiments are 
conducted to evaluate the proposed method presented in this section. Section 3.1: 
comparative performance in STR mining: this subsection focuses on comparing the 
performance of the proposed method against existing approaches for STR mining. 
Various metrics, such as accuracy, efficiency, and scalability, are used to evaluate and 
compare the results. Section 3.2: STR mining from whole genomes: here, the 
experiments specifically target the mining of STRs from entire genomes. Section 3.3: 
phylogeny reconstruction: in this subsection, experiments are conducted to reconstruct 
phylogenies using the extracted STR data. Section 3.4: taxa identification: experiments 
related to the identification of genomic taxa using the extracted STRs are presented in 
this subsection. Section 4: conclusion: the article concludes in this section by 
summarising the key findings, contributions, and implications of the research. It also 
highlights potential future directions and areas for further investigation or improvement 
in the field of STR mining and genetic relationship inference. By organising the article 
into these sections, the research presents a comprehensive and logical flow of 
information, starting from the methods and algorithms employed, followed by the 
experimental results, and concluding with the overall findings and implications. 

2 Materials and methods 

2.1 Concept of proposed STR mining and formation of repeat sequence 

TRs are formed from specific atomic motifs, which we refer to as ‘seeds’. In this context, 
a motif can have a variable length L(–1)1, ranging from L (the maximum motif length) to 
1 nucleotide. The algorithm systematically examines each motif, starting from the longest 
length (L) and moving towards the shortest (1 nt), to determine if it meets certain criteria. 
First, it checks if the motif is atomic, and if so, it verifies whether there is an adjacent 
repetition of the motif in a tandem fashion. Additionally, it ensures that the two 
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repetitions are not cyclically redundant or enclosed within TRs of other longer motifs. 
Once a valid motif is identified, it becomes the seed for an ongoing STR pattern. The 
algorithm keeps track of the sustainability of this tandem pattern as it progresses through 
the sequence. This process continues until the entire sequence is traversed. Seeds of 
lengths ranging from L to 1 nt are successively chosen and followed to extract the STRs. 
These extracted STRs are then concatenated to create a repeat sequence, which can be 
used for comparing actual genomes. 

2.2 Atomicity, cyclic-redundancy and enclosing properties 

Consider a DNA sequence S of length N. A motif is a subsequence of length k, where  
k = L (–1)1. The number of motifs of length k, we denote by Mk, is equal to 4k. For STR, 
L is 6 and the total number of STR motifs is 

( )
6

6

1

4 4 1 / (4 1) 5, 460k
k

M M
=

= = ∗ − − =  (1) 

A motif of length k is termed as atomic if no other motif of length k’ ≤ k repeats in 
tandem within it. For instance, the DNA fragment TACACACACCCTACGTACGTACG 
TACATCAATATCAATATCAATG comprises two TRs of the motif ACAC (k = 4) 
beginning at position 2, but the motif itself consists of two repetitions of the motif AC  
(k = 2), hence the sequence ACAC is not atomic. In this situation, we just need to report 
the STR of the motif AC with a repeat count of 4. Additionally, a STR may have cyclic 
duplicate STRs at various points. As an illustration, ACGT (k = 4) has three TRs 
beginning at position 13 at the same example sequence. It should be noted that  
successive positions 14, 15, and 16 contain three cyclic duplicate STRs, namely 
CGTACGTACGTA, GTACGTACGTAC, and TACGTACG. Cyclic duplication is 
unnecessary and should be removed. Furthermore, if tandems of shorter motifs occur 
completely within a longer motif or its tandem, then the STRs of shorter motifs are 
termed as enclosed STRs and hence are redundant. For instance, the motif ATCAAT, 
which begins at position 27, appears as a STR with repeat count of 3. However, it has two 
STRs that start at positions 31 and 37 and have a repeat count of 2 for the motif AT; as a 
result, they are entirely enveloped by the STR of ATCAAT and should be ignored. In the 
sections that follow, we formally explain the method for removing the redundant STRs 
mentioned above through tests for atomicity, cyclic redundancy, and enclosing 
properties. 

2.2.1 Formal description 

• Test of atomicity: let k
jω  be the jth motif of length k, where 0 ≤ j ≤ 4k – 1. It is atomic 

if not totally constituted by TRs of any other motif of length k′ < k. An atomic motif 
k
jω  is in tandem if 

,c pi i k− =  (2) 

where ic and ip are locations of the first nucleotides of its two consecutive instances. 
TRs of a non-atomic motif do not satisfy equation (2), hence used by 3S to identify 
TRs of an atomic motif. 
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An STR, ( )τ k
i jω  is τ (∈ Z+) times tandem repetitions of an atomic motif ,k

jω  
starting from nucleotide location i (0 ≤ i < N – k). 

Its length λk = τ*k. Let il denote the starting location of the last occurrence of k
jω  in 

( ).τ k
i jω  The next starting location of k

jω  in ( )τ k
i jω  is in = il + k, if the TR 

expands further. In that case, ( )τ k
i jω  is under inspection from location il to in. We 

denote the set of motifs between il and in by Ω and the STRs formed by the motifs in 
Ω by Γ. 

• Test of cyclic-redundancy: if an STR ( )τ kω  is viewed from a locations i + 1,  

i + 2, ···, i + r (r < k), another STRs ( )+
τ k
i r jω  would always be found, where j′ ≠ j 

and τ′ is either τ – 1 or τ, and k
jω  is r element right rotated version of .k

jω  If there 

exists ( )τ k
i jω r∈  and 

+ + ( 1)i r i τ k< ∗ −  (3) 

3S discards STRs like ( )+
τ k

ji δ ω  as a cyclic redundant STR of ( ).τ k
i jω  

• Test of enclosing: if tandems of shorter motifs occur completely within a longer 
motif or its tandem, then the STRs of shorter motifs are termed as enclosed STRs 
and hence are redundant. Analytically, if both the start and end positions of an STR 
of any shorter motif, viz. ( ) ,τ k

i jω′
′ ′  are within the respective indices of an STR of 

longer motif k
jω  or the motif itself, then the former becomes redundant with respect 

to the later as it is enclosed. Thus, 

( ) ( )τ k τ k
i ji jω ω′

′ ′ ⊂   (4) 

iff 

( ) ( )
and

and + +j j
kk

k k
i i

i λ i λ′
′

′ < 
′ < 
′ < 

 (5) 

• Partial repeats: if any proper prefix of seed k
jω  occurs in tandem after last 

occurrence of k
jω  in ( ) ,τ k

i jω  then the prefix is also included in the STR as partial 
motif. We include this provision in 3S as optional. With input parameter p = 1, 3S 
mines STRs with partials, otherwise (p = 0, the default value) the complete STRs and 
no partials. 

2.3 Flowchart 

We present the flow chart of the method of STR mining and concatenation of the mined 
STRs in Figure 1. 
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Figure 1 Flow chart of the proposed STR mining repeat string formation algorithm 

  

2.4 Algorithm 

We describe the procedure for seed selection and finding complete structure of STRs in 
algorithm 3S. 
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Algorithm 1 STR seed selection (3S) 

1: Input: DNA sequence ,  maximum motif length L and cut-off value l and value of 
parameter p 

2: Output: STRs with respective start location, tandem repeat counts and the motif, and the 
concatenated repeat sequence   

3: N ← length of   
4: for each nucleotide loci ˆ ˆ, (0 )i i N L∈ ≤ ≤ −do  

5:  for each k = L to 1 do 
6:   k

jω ←  motif of length k starting at nucleotide loci î  

7:   j ← a unique index of the motif [0 ≤ j ≤ 4k]  
8:   detect tandem repeat of k

jω  using equation (2) where ic = î  and ip = ˆ .i k−  

9:   if ( )( )Γτ k
ji τ k ω− ∗∃ ∈  them 

10:    τ ← τ + 1 
11:    kk

jλ τ← ∗  

12:   else 
13:    if [the tandem of k

jω  is cyclic redundant of ( ) Γτ k
i jω ′ ∈ ) using equation (3)] 

14:     discard the tandem and continue for next k value 
15:    else 
16:     for each k′ = k + 1 to L do 
17:      if [the tandem of k

jω  is enclosed within ( ) Γτ k
i jω′ ′

′ ∈ ) using equation (4) 
and equation (5)]  

18:       discard the tandem and continue for next k value 
19:      end if 
20:     end for 
21:     if (p ==1&& ∃ partial motif of 
22:    the seed of ( ) )Γτ k

i jω ′ ∈  then 

23:     +k k
j jλ λ length of′ ′=  

24:    partial motif 
25:     end if 
26:     if k

jλ l′ ≥  then 

27:      Output STR ( ) ( )Γ andτ k τ k
i ij jω ω′ ′∈ =     where eighter  

j = j′ or j ≠ j′ 
28:     end if 
29:     ( ) ( )2Γ Γ k τ k

j ii k jω ω ′−=     

30:     Ω Ω k k
j jω ω ′=    
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31:    end if 
32:   end if 
33:  end for 
34: end for 
35: Report   as the repeat sequence made from only STRs of the given genome   
36: end algorithm 

2.5 Computational complexity 

No repeated searching and rehashing are involved in verifying a motif as seed STR. 
Checking atomicity and non-cyclic redundancy involve complexity O(1) while the test of 
non-enclosing involves O(L – k). For sequence of length N and L number of motifs at 
each nucleotide, the total complexity becomes (O(1) + O(L – k))*O(N*L). As L = 6 for 
STRs and N >> 6, the total complexity tends to O(N). 

3 Experiments 

We conduct our experimental studies in two stages: first, we assess the effectiveness of 
the proposed STR mining algorithm 3S, and then we assert the usefulness of the  
STR-created repeat sequences for genome comparison. Accuracy, efficiency and 
scalability are employed to compare the performance of 3S in STR mining tasks with 
Kmer-SSR and PERF using their implementations available at https://github.com/ 
ridgelab/Kmer-SSR and https://github.com/RKM lab/perf, respectively. When compared 
to Kmer-SSR, PERF reports STRs along with partial motifs. We compare the outcomes 
in light of the fact that 3S can extract STRs in two ways, with and without partial motifs. 
Finally, after achieving efficient and accurate mining of STRs we proceed to conduct 
STR based phylogeny reconstruction and taxa identification of eukaryotic species. The 
ultimate goal of the second stage of experiments is to determine whether a genome’s 
STRs can accurately represent a genomic sequence to the extent where only the STRs can 
be used to infer the right phylogeny and correct identification of genomic taxa. We 
perform the experiments on DNA sequences of several chromosomes and whole genome 
sequences (both reference and assembled) of different organisms, publicly available in 
https://www.ncbi.nlm.nih.gov/assembly/organism/. All experiments are conducted by 
using a modest computer with Intel(R) Core(TM) i5-5200U CPU @ 2.20 GHz with 4GB 
RAM and 1TB HDD. 

3.1 Comparative performance of STR mining 

• Accuracy: Table 1 shows exactly equal numbers of STRs extracted by 3S (with and 
without partial motifs), Kmer-SSR and PERF from human chromosome 1. For  
in-depth comparison on the accuracy of mined STRs, we provide start positions 
(Supplementary_Table_S1.xlsx), repeat counts (Supplementary_Table_S2.xlsx) and 
the motif combination itself (Supplementary_Table_S3.xlsx). Supplementary_Table_ 
S4.xlsx contains the total STR counts on all other human chromosomes. The fact that 
human chromosome 1 has the most STRs and chromosomal Y has the fewest is an 
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interesting observation. Results obtained by 3S in all the experiments match exactly 
with the respective results by Kmer-SSR and PERF. All these confirm correctness of 
the proposed seed selection approach. Supplementary tables are available in 
https://github.com/STRHunter/3S. 

Table 1 STR counts from human chromosome 1 with cut-off value 12 

Motif size 
Methods 

Kmer-SSR 3S with p = 0 PERF 3S with p = 1 
6 146,655 146,665 146,665 146,665 
5 13,116 13,116 59,284 59,284 
4 46,636 46,636 46,636 46,636 
3 15,817 15,817 15,817 15,817 
2 25,207 25,207 25,207 25,207 
1 57,335 57,335 57,335 57,335 
All 304,766 304,766 350,932 350,932 

• Efficiency: we evaluate computing efficiency and memory requirement of 3S on all 
the human chromosomes and compare with Kmer-SSR and PERF (Supplementary 
Table 5). 3S is found significantly efficient over PERF and Kmer-SSR. Considering 
overall performance on all human chromosomes, 3S takes one fifth of CPU time by 
PERF and one 29th by Kmer-SSR by requiring less than 1% of their average 
processing memory (excluding the storage for sequence). It is significant to note that 
CPU time is invariant against cut-off length for both Kmer-SSR and 3S 
(Supplementary Table 6). Supplementary tables are available in 
https://github.com/STRHunter/3S. 

• Scalability: a method may be efficient on moderately small amount of data, but its 
real test of proficiency is how well it performs on large volumes of data or on long 
sequences. We conduct a study on scalability of computation against sequence 
length. For this experiment, we utilised concatenated human chromosomes to 
generate long sequences that were arranged in increasing order. The maximum 
sequence length employed was 1.6 Gbp (gigabase pairs). PERF and Kmer-SSR along 
with 3S were applied on those set of sequences to mine STRs for comparing CPU 
time and processing memory. Further a separate experiment was conducted on the 
sequence length 1.6 Gbp but this time with increasing cut-off values [Figure 2(b)]. It 
is apparent in Figures 1 and 2 that 3S is exceedingly well and the best performer, 
both on CPU time, memory and in mining STRs of any cut-off length. 

3.2 Mining STRs on whole genomes 

Excellent scalability makes STR mining by 3S from whole genome sequences almost 
instant. We consider a total of eight whole genome reference sequences of evolutionary 
higher organism and five assembled human genomes for the study. We present the 
complete result in Table 2. In all the cases, CPU time is within 200 seconds and 
processing memory is limited to only 4 MB. 3S is thus very useful in extracting long 
STRs from whole genomes sequences. 
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Figure 2 Scalability on CPU time against sequence length (a) with PERF, (b) with Kmer-SSR 
(see online version for colours) 
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3.3 STR-based phylogeny reconstruction 

The development of whole genome sequencing technology has made it possible to swiftly 
and affordably sequence larger genomes, but this has created a computational challenge 
in efficiently comparing such massive and numerous data. Sequence alignment 
techniques used in the past became inappropriate and impractical. It spurs the 
development of numerous alignment-free sequence analysis tools and techniques 
(Zielezinski et al., 2017, 2019). K-mer statistics is the main alternative among these 
techniques, but picking the best k is essential for the greatest feature extraction. 
Additionally, the length of optimal k is also becoming larger for complete genome 
sequences of evolutionary higher organisms, making it extremely difficult to compute 
feature vectors using k-mer frequency statistics. Thus, the need for a method that is 
suitable and scalable for comparing the whole genome sequence of evolutionary higher 
species persists. 
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Figure 3 (a) Scalability on processing memory against sequence length and (b) Scalability on 
CPU time against cut-off length (see online version for colours) 
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In Mitra et al. (2020), the authors attempted to devise a method, pattern extraction though 
entropy retrieval (PEER) that employ the entropy of successive intervals (or waits) of 
optimal length k-mers of the sequence for feature extraction. It transforms a sequence 
into a vector of wait entropies of optimal k-mers. Distance between a pair of sequences 
amounts to the Euclidean. 

Distance between their wait vectors. It can also determine optimal value of k(Kopt) 
using length of the given sequence N and cardinality (β) of its alphabet(a, c, g and t), as 

ln( 1)
lnopt
NK − =   β

 (6) 

Even if PEER proves to be more effective at reconstructing phylogeny than seven other 
cutting-edge alignment-free methods, Kopt becomes 16-nt for whole genomes of higher 
organisms. Due to this, a high-dimensional (416) feature vector is produced, which makes 
it computationally difficult for machines with limited resources and causes the feature 
vector to become sparse. Interestingly, 3S can mine and generate a STR repeat sequence 
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by concatenating all STRs from lengthy genomes of higher organism just in 200 seconds 
while only using 4MB of memory for STR mining calculations (Table 2). We note that 
the repeat sequence lengths for all the genomes examined in this analysis range from  
15.6 MB to 17.7 MB of nucleotides. The repeat sequence lengths are less than 1% of the 
length of the whole genomes (≈ 3gbp), and as a result, the optimal k becomes 10 nt rather 
than 16nt for full genomes. This optimal k length reduction offers high computational 
preference, making quick comparison of the genomes plausible. 

• Dataset for phylogeny reconstruction: in order to study precision level and 
effectiveness of the approach towards STR-based phylogeny reconstruction, we 
consider three sets of animal genomes in increasing order of diversity. The first one 
contains 12 genome sequences (accession numbers are in Supplementary Table 7) 
from a single biological order (primate) and hence they are closely related. The 
second one contains ten genomes (accession numbers are in Supplementary Table 8) 
from two biological taxa, mammal and bird. Finally, we consider a total of 100 
whole genomes (accession numbers are in Supplementary Table 9) of animals from 
different taxa, insects, birds, fishes, amphibians and mammals. 

• Phylogeny reconstruction for 12 primates: With the group of 12 primates, we begin 
our phylogeny reconstruction experiments. By using the proposed STR mining 
method 3S, we extract all the STRs from a genome and create a repeat sequence for 
that genome by concatenating them. We calculate PEER vectors for each of those 
primates’ genomes at k = 10 nt from their STR-generated repeat sequences, and from 
the pair-wise PEER distances between the PEER vectors; we derive the PEER 
distance matrix. Figure 4(b) depicts the phylogenetic tree. The grouping shown in the 
tree closely resembles the matching taxa listed in the NCBI taxonomy [Figure 4(a)]. 
The ability of STR-created repeat sequences to successfully group closely related 
species that belong to the same biological order is demonstrated by the accuracy of 
phylogeny reconstruction (primate). 

• Phylogeny reconstruction for ten genomes: we proceed to check if the same 
approach is well applicable in grouping of species from different biological orders. 

We take up the set of ten species of the second set for phylogeny reconstruction. It is 
apparent from Figures (5(a) and 5(b) that 3S and PEER can in effect is able to 
distinguish the biological orders, primate, rodent and ferungulates, and groups the 
species identical with NCBI taxonomy for the same species [Figure 5(a)]. 

• Phylogeny reconstruction for 100 genomes: we consider 100 genomes of eukaryotic 
species from five different animal taxa, insects, birds, fishes, amphibians and 
mammals. We transform the sequences into corresponding STR-created repeat 
sequences followed by construction of PEER vectors at k = 10 nt and obtain the 
PEER distance matrix. The phylogeny tree is shown in Figure 5. The tree shows 
100% grouping with NCBI reported taxa for all the 100 genomes. This clearly 
indicates correctness of the proposed approach towards phylogeny reconstruction. 
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Table 2 STR counts at cut-off ranges on both reference and assembled whole genome 
sequences 
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Figure 4 Phylogeny reconstruction of 12 primates dataset, (a) NCBI taxonomy, (b) proposed tree 

 
(a) 

 
(b) 

Figure 5 Phylogeny reconstruction of ten species dataset, (a) NCBI taxonomy, (b) proposed tree 

 
(a) 
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Figure 5 Phylogeny reconstruction of ten species dataset, (a) NCBI taxonomy, (b) proposed tree 
(continued) 

 
(b) 

3.4 Taxa identification 

The identification of taxa plays a crucial role in bioinformatics as it aids in annotating 
newly sequenced genomes. To achieve this, we utilised the repeat string created by STRs 
for taxa identification after successfully grouping genomes of various species. Our 
positive dataset consisted of 113 genomes from mammalian taxa, while our negative 
sample comprised 64 genomes from fish taxa and 56 genomes from bird taxa. This 
approach resulted in a nearly balanced dataset, allowing for effective analysis and 
classification. 

3.4.1 One dimensional convolutional neural network classifier 
As a classifier we employed 1D convolutional neural network, which can be describe as: 
Let X be the input sequence of length N, and let Y be the output sequence of length M. 
We can represent the input sequence X as a matrix of size N*C, where C is the number of 
input channels. For example, if X is a monochrome audio signal, then C = 1, whereas if X 
is a multichannel audio signal, then C is the number of audio channels. 

Let K be the number of filters in the convolutional layer, and let F be the filter size. 
Each filter is represented as a weight matrix of size F*C. The output of the convolutional 
layer is a feature map of size 

( 1)N F K− + ∗  (7) 

Let A be the activation function applied to the output of the convolutional layer. The 
output of the activation layer is a feature map of size (N – F + 1)*K. 

Let P be the pooling operation applied to the output of the activation layer. The 
output of the pooling layer is a feature map of size 

( 1) /N F S K− + ∗  (8) 

where S is the stride of the pooling operation. 
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Figure 6 Phylogeny tree of 100 eukaryotic animals from complete genomes using proposed 
approach 

 

Note: The NCBI taxonomic groups for the sequences are as follows: insects: G1-G15, 
birds: G16-G30, fishes: G31-S72, amphibians: G73-G74 and mammals:  
G75-G100. 

Let D be the dropout fraction applied to the output of the pooling layer. Let H be the 
number of neurons in the fully-connected layer. The output of the fully-connected layer is 
a vector of size H. Let O be the output layer, which applies a softmax function to the 
output of the fully-connected layer to produce a probability distribution over the classes. 
The mathematical operations performed by a 1D CNN model can be summarised as 
follows: Let x be an input sequence of length N, represented as a 1D tensor of shape (N, 
1). 

The convolutional layer applies a set of K filters of length F, represented as a 2D 
tensor W of shape (F, K), to the input sequence x to generate a set of K feature maps yk of 
shape (N – F + 1, 1) as follows: 

( )[ ] [:, ] [ : + 1] + ,k ky i k i i F b= ∗ −W x  (9) 

where * denotes the dot product operation, bk is a scalar bias term for the kth filter, and i 
ranges from 0 to N – F. This operation can be efficiently implemented using matrix 
multiplication as follows: 

+ ,Y X W B= ⋅  (10) 

where X is a matrix of shape (N – F + 1, F), representing all possible local regions of the 
input sequence, and B is a vector of shape (1, K), representing all the bias terms. The 
output Y is a matrix of shape (N – F + 1, K), representing the feature maps. 

The feature maps are passed through an activation function, such as ReLU, to 
introduce nonlinearity into the model: 

relu( ),=Y Y  (11) 

where relu(.) is the element-wise ReLU function, defined as relu(x) = max(0, x). The 
pooling layer downsamples the feature maps by aggregating nearby values. A common 
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pooling operation is max pooling, which takes the maximum value within a window of 
size P. Mathematically, the max pooling operation can be defined as follows: 

[ , ] max( [ : ( +1) , ]),Z i k i P i P k= × ×Y  (12) 

where Z is the output tensor of the pooling layer, and i ranges from 0 to (N – F)/P, 
representing the number of non-overlapping windows of size P in the feature maps. 

The output of the pooling layer is flattened into a 1D tensor and passed through one 
or more fully connected layers to produce the final output of the network. 
Mathematically, this can be expressed as: 

flatten( ), + , soft max( ),f f= = ⋅ =h Z u W h b y u  (13) 

where flatten(.) is a function that converts a tensor into a 1D vector, Wf is a weight 
matrix, bf is a bias vector, and softmax(.) is a function that normalises the output u into a 
probability distribution. 

3.4.2 Performance metric 
Performance measures are crucial in evaluating the effectiveness of machine learning 
models. There are various metrics used for this purpose, including accuracy, precision, 
recall, F1-score, specificity, Matthews correlation coefficient (MCC), and area under the 
receiver operating characteristic curve (AUC). 

Accuracy refers to the proportion of correctly classified instances in a dataset, and is 
defined as: 

( + ) / ( + + + )Accuracy TP TN TP FP TN FN=  (14) 

where true positive (TP) is the number of instances correctly classified as positive, true 
negative (TN) is the number of instances correctly classified as negative, false positive 
(FP) is the number of instances wrongly classified as positive, and false negative (FN) is 
the number of instances wrongly classified as negative. 

Precision is the proportion of true positives among all instances classified as positive, 
and is defined as: 

/ ( + )Precision TP TP FP=  (15) 

Recall is the proportion of true positives among all actual positive instances, and is 
defined as: 

/ ( + )Recall TP TP FN=  (16) 

F1-score is the harmonic mean of precision and recall, and is defined as: 

1- 2 ( ) / ( + )F score Precision Recall Precision Recall= ∗ ∗  (17) 

Specificity refers to the proportion of true negatives among all actual negative instances, 
and is defined as: 

/ ( + )Specificity TN TN FP=  (18) 
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MCC is a correlation coefficient between predicted and actual classifications that ranges 
from –1 to 1, where 1 indicates perfect agreement and –1 indicates perfect disagreement, 
and is defined as: 

( ) / (( + ) ( + ) ( + ) ( + ))MCC TP TN FP FN sqrt TP FP TP FN TN FP TN FN= ∗ − ∗ ∗ ∗ ∗  (19) 

Recursive feature elimination (RFE) is a popular technique used in machine learning to 
select the most important features in a dataset. One of the main reasons to use RFE is to 
improve the performance of a machine learning model by reducing the number of input 
features. This is important because using too many features can lead to overfitting, where 
the model becomes too complex and fails to generalise to new, unseen data. By selecting 
only the most important features, RFE can improve the model’s accuracy, reduce its 
computational cost, and make it more interpretable. Additionally, RFE can also be used 
to gain insights into the underlying relationships between the features and the target 
variable, which can be valuable for understanding the problem domain and developing 
better models. 
Table 3 Effect of top k features selection using RFE on the taxa identification 

Top k features Accuracy Precision Recall F1-score Specificity MCC 
10,000 0.9400 0,9276 0.9501 0.9332 0.9234 0.8507 
20,000 0.9407 0.9290 0.9589 0.9349 0.9278 0.8501 
30,000 0.9503 0.9345 0.9600 0.9456 0.9356 0.8601 
40,000 0.9584 0.9456 0.9656 0.9499 0.9399 0.8628 
50,000 0.9601 0.9545 0.9667 0.9601 0.9456 0.8539 
100,000 0.9600 0.9723 0.9701 0.9638 0.9567 0.8567 
200,000 0.9519 0.9560 0.9677 0.9756 0.9500 0.8500 
Using all 1,048,576 0.9013 0.8790 0.9129 0.9201 0.9134 0.8490 

Table 3 illustrates the outcomes of the classification process. The table clearly 
demonstrates that not all features are essential for identifying taxa. Through the 
implementation of RFE, we achieved remarkable results, including an accuracy of 
0.9601, precision of 0.9545, recall of 0.9667, F1-score of 0.9601, specificity of 0.9456, 
and MCC of 0.8539. Surprisingly, these excellent results were obtained using only 
50,000 features. This is particularly intriguing considering that the proposed method 
managed to reduce the number of features from 416 to 410, and with RFE, the feature 
count further diminished to just 50,000. Indeed, this achievement enables a remarkably 
efficient representation of the feature space for the vast genome of mammalian taxa, 
spanning an impressive length of 3Gbp. 

4 Conclusions 

We discover that STRs originates from those atomic motifs that do not generate both 
cyclic-redundant and enclosing TRs. We designate such motifs as seeds of STRs and 
devise a novel algorithm, STR seed selection (3S), for efficient mining of STRs of any 
cut-off length from genome-wide sequences. The algorithm works at linear time with 
excellent scalability against sequence length. Moreover, the method itself makes 
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computation time invariant against cut-off length of STRs. Series of tests on human 
chromosomes to whole genomes of complex organism confirm that 3S is 100% accurate 
and proficient. The reasons for its exceedingly well computing efficiency are single scan 
of the sequence, the elegant way in identifying the STRs and no post-processing or 
filtering. Requirement of tiny memory, fast computing capability and high level of 
scalability establish that 3S has the potential to be embedded in devices to initiate new 
dimension in automating STR based biosequence analysis. 

Furthermore, a fascinating discovery was made as a result of the phylogeny 
reconstruction experiments. We note that the STRs of the genome are capable of 
precisely representing a genomic sequence to the extent where solely the STRs may be 
utilised to deduce the correct phylogeny and identify the genomic taxa. Therefore, all of 
the tests show that STRs are useful for reconstructing the phylogeny of higher organisms, 
which would not have been conceivable without accurate and effective STR mining. 
Thus, 3S offers a cost-effective technique to compare lengthy genomes and can be a key 
tool in large-scale genomic studies. The utilisation of STR variation has proven to be 
highly effective in taxa identification, yielding notable accuracy. Furthermore, it has been 
observed that a mere 50,000 features possess the capability to represent the colossal 
genomes of mammals, measuring a staggering length of 3 Gbp. It is important to note, 
however, that the proposed methods solely mine exact motif STRs, with no current 
provision for inexact motif or motif fuzzy matching. Addressing this challenging task 
represents a promising avenue for future research in this field. 
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