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Abstract: For computer aided diagnosis, computerised organ segmentation is a 
crucial but complicated task. The anatomy of the pancreas varies greatly and it 
is an abdominal organ. Especially when compared to other organs like the liver, 
heart, or kidneys, this prevents earlier segmentation approaches from obtaining 
high accuracy levels. To address this issue, we proposed a modification in 
UNet architecture called DAH-UNet that combines residual blocks, a rebuilt 
atrous spatial pyramid pooling (ASPP), and depth-wise convolutions. Also, a 
hybrid loss function which is explicitly aware of the boundaries is another thing 
we suggest. Experiments were conducted on two publicly available dataset and 
proved better in some metrics as compare to existing semantic segmentation 
models. 
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1 Introduction 

For clinical applications, using computers to aid clinicians requires accurate pancreatic 
segmentation. Due of the incredibly small size, uneven shape, and border, it is not a 
simple process (Figure 1). Semantic segmentation is used to automatically segment the 
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pancreas in clinical abdominal computed tomography (CT) images. Traditional methods 
for segmenting the pancreas, such as pixel based (Yao et al., 2020), morphology-based 
(Chiranjeevi and Jena, 2017), graph-based, statistics-based (Mallouli, 2019), sparse 
segmentation (Tang et al., 2022) and super-pixel (Farag et al., 2014) and region based 
segmentation, frequently used straightforward models or were influenced by a synthetic 
inductive bias. Additionally, traditional methods frequently lack the flexibility needed to 
adjust to pixel-level segmentation tasks, particularly when the segmentation aim varies 
significantly. However, because of the deep learning (DL) method’s inherent benefits, a 
convolutional neural network (CNN)-based approach was suggested as a promising 
approach for pancreatic segmentation. Then, using either pipelined or irregular in shape 
segmentation models, various research developed cutting-edge pancreatic segmentation 
methods based on CNNs. But prior pancreas segmentation studies (Yan and Zhang, 
2021), which included 82 patients from the National Institutes of Health (NIH) clinical 
centre, were carried out on small research populations. For various and sizable datasets, 
clinical evaluation of the pancreas segmentation performance is required since DL 
approaches are responsive to the properties of the data that are contained in the model. To 
the best of our knowledge, there are not many DL studies on sizable CT datasets that 
encompass different pancreatic sizes. 

Figure 1 Visual complexity of pancreas organ (red colour) showing various in size, depth and 
override with other organs (see online version for colours) 
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2 Related work 

Recent studies have found that machine learning and DL based semantic segmentation 
networks perform better on medical image segmentation tasks than more conventional 
methods. DL algorithms have been utilised in earlier work to classify and segment 
pancreas images and ResNet50 was used to detect malignancy of tumour. Through 
classification and segmentation using DL models such as Resnet50, UNet and U-Net++. 
UNet might collect additional features from pancreas tissue with skip connections and 
acquire more precise information than FCN when combining features in the decoder 
section. Deep supervision can be integrated into the network to significantly enhance 
quality of the model and reduce the danger of divergence vanish during training (Yan and 
Zhang, 2021). 

In general, we may categorise pancreatic segmentation techniques into two groups: 
2D network-based techniques and 3D network-based techniques. The full CT volume is 
used as the input of 3D networks [such as 3D U-net (Karri and Jena, 2016) and V-net 
(Milletari et al., 2016)], which can collect the CT volume’s 3D spatial information. The 
depth of the networks and the quantity of the feature maps, which are two important 
elements for performance enhancement, are yet constrained by the high demand for 
computer resources, particularly GPU memory (Song et al., 2017). The fact that there are 
so few CT images accessible for training causes another issue for 3D networks. The 
primary explanation is that hand labelling takes a considerable amount of money and 
time to complete. Slices are taken from the CT volume by making cuts along coronal, 
sagittal, and axial axes as in Figure 1. To create a 3D pancreatic volume, each slice from 
three views is analysed independently in the model, and the forecast outcomes from each 
perspective are combined via majority voting (Cai et al., 2018). The pancreatic only takes 
up just under 2% of the total CT volume, and the border between it and the organs and 
tissues around it is unclear, thus the model can be misled by the background region. A 
two-stage structure is considered in order to address this issue. A coarse-to-fine approach 
was suggested by Zhou et al. (2017) to lessen the contamination of the background 
region. First, the slices are coarsely segmented using a 2D FCN. The pancreatic area is 
then detected using the outcomes of the rough segmentation, and the CT volume is 
trimmed to create a tiny block that contains the pancreatic region. This block is then fed 
into a second 2D FCN for detailed segmentation. An end-to-end layered CNN-RNN 
classification model was presented in Cai et al. (2019). The segmentation outcomes are 
fed into a recurrent neural network after first training a 2D CNN to separate multi-layer 
neighbouring pancreatic areas (RNN). By combining the data from its parallel layers, 
RNN further produces high accuracy. The pancreas was segmented using two cascaded 
2D FCN (Yu et al., 2018). Utilising an FCN, a rough segmentation probability map is 
first acquired. After that, a foreground translation module converts the probability map 
into a spatial weight map, which is then compounded by the input slice to produce a slice 
that contains the fine segmentation data. The full CT volume is clipped into a smaller 
volume that contains the pancreatic region in accordance with the fine segmentation 
probability map. Finally, the segmentation’s loss function for both coarse and fine slicing 
is optimised. 

In Li et al. (2022) developed a thin 3D voxel by synthesising three nearby CT scans, 
and suggested a comparable label mapping technique by using 2D CNN to segment 
lightweight 3D voxels along with 2.5D segmentation method was created called  
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multi-attention dual context network (MADC-Net) features. For the pancreatic tumour 
detection modified U-Net called MobileNet-V2 (MBU-Net) was proposed (Huang and 
Wu, 2022) and investigated the effect of data augmentation on NIH dataset. They also 
proved that MBU-Net model requires less parameters (6.30 M) during the training phase. 
By integrating a novel object identification method (FCN-guided region proposal 
network) and U-Net, authors (Deng et al., 2023) suggest to locate the pancreatitis regions 
to avoid the imbalance in dataset. The detector creates a fixed feature map of the regions 
affected by pancreatitis by using FCN. To improve the salient aspects of pancreas 
segmentation, Long et al. (2022) used an attention mechanism and to ensure complete 
fusion of surrounding contextual and geographical information and to increase 
segmentation accuracy, they subsequently combine the two modules. Dai et al. (2023) 
initially create candidate pancreatic regions using coarse segmentation using 2D UNet. 
They suggested integrating flexible convolution during fine segmentation step to address 
the pancreas’ deformation issue. Additionally, they suggested combining local and global 
features using the scale inter-active fusion (SIF) module. Chen and Wan (2022) 
suggested a brand-new network called CTUNet that integrates Transformer and 3D  
U-Net and can automatically segment the pancreas with great accuracy. In order to 
coordinate global explicit features and direct the network learning, they implemented the 
transformer on skip connections and attention mechanism. The absolute pancreas position 
could be recorded via the residual transformer block (Qiu et al., 2023). Pooling-related 
erroneous pancreatic anatomy is addressed with a dual down-sampling block. The 
network concentrates on the pancreas boundaries due to the Hausdorff distance 
limitation. For the segmentation of the pancreatic, the residual transformer UNet is 
actually advised. 

Fei and Luo (2022) suggest the DTUNet, which builds on the UNet platform to 
introduce the dense ASPP modules and transformer and sequentially mounts the two. 
Transformer creates a global receptive field by connecting each pixel of the input feature 
maps, capturing the global context, and accomplishing the development of long-range 
dependency. As part of a semi-supervised learning framework based on iterative 
uncertainty-guided pseudo-label refinement (Liu et al., 2022), they proposed a novel 
graph-enhanced pancreatic segmentation network (GEPS-Net). In order to concentrate on 
the spatial relationship information, it plugs a graph improvement module on top of the 
CNN-based U-Net. The aberrant pancreas is initially segmented based on a dual branch 
coding network (DB-Net) and one branch of the encoder component extracts the semantic 
aspects of the pancreas and its surrounds, and the other branch uses wide-channel 
convolution and minimal down sampling to capture the complicated pancreas (Zhou  
et al., 2023). A U-Net decoder is utilised to combine the various feature maps acquired by 
the two branches. The exterior contours of the pancreas with lesion occupancy are 
precisely delineated by M3Net (Qu et al., 2022), which can segment both normal and 
diseased pancreases. To investigate location and channel non-Euclidean relationships 
between phases, cross-phase non-local attention is encouraged. For pancreas 
segmentation, we suggest a cascaded multi-scale feature calibration UNet (CMFCUNet) 
where the multi-scale features in the core of each scaled segmentation are calibrated 
vertically in a pixel-wise manner (Qiu et al., 2022). Additionally, a dual enhancement 
module is used to connect the coarse-scaled segmentation with the fine-scaled 
segmentation (DEM). To maintain and spread the pancreas’ form traits, low-level and 
high-level features are gradually joined with FPF-Net (Chen et al., 2022). To address the 
issues brought on by the diversity in form and small size of the pancreas, attentional 
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feature fusion (AFF) is utilised in place of context-unaware addition or concatenation. To 
utilise long-range dependencies and multi-scale spatial features they used coordinate and 
multi-scale spatial attention (CMSA). Cui et al. (2022) suggested a SCU-Net++, an 
enhanced channel attention mechanism and Laplacian sharpening filter-based semantic 
segmentation model: Sharpening filters are utilised to construct dense skip connections in 
order to close any semantic gaps, and channel attention modules are employed to train the 
model to focus more on feature maps that are relevant to our pixel-level classification 
objective. 

Below is a list of our key contributions: 

• A modification to UNet architecture with Atrous and depth wise convolution. 

• We present a brand-new loss function that is based on metric recall, focal and cross 
entropy loss. Recall loss compares the instantaneous training recall performance of 
each class with its standard cross entropy and focal loss. 

• The suggested hybrid loss develops a better semantic segmentation model that offers 
enhanced and balanced accuracy and IOU performance. 

• The suggested loss enhances feature learning for image segmentation along with the 
proposed modification in UNet architecture. 

The rest of the paper is organised as followed: In Section 3, detailed architecture of 
proposed semantic segmentation model followed with results and discussion in Section 4. 
Finally, conclusions at end of the Section 5. 

3 Methods and materials 

In this paper, we present depthwise convolution, atrous and hybrid loss (DAH-UNet), an 
upgraded version of the UNet-based backbone network that combines residual blocks, a 
rebuilt atrous spatial pyramid pooling (ASPP), and depth-wise convolutions. Also, a 
hybrid loss function which is explicitly aware of the boundary is another thing we 
suggest. 

3.1 Model architecture 

Our model utilises a U-shaped decoder and encoder layout, as seen in Figure 2, which 
enhances the fundamental UNet layout in a number of ways. 

• First, we use group convolution to substitute the ordinary convolutions in both 
decoder and encoder section of layout, with a notable exception of the first most 
layer, such that the intra and inter channel correlation information is individually 
extracted throughout each level’s of encoding process (Zhou et al., 2018). In order to 
separately capture the specific changes among neighbouring slices of images, which 
is beneficial for more precise segmentation, we use the overlay of neighbouring 
slices holding the foreground as the input of our model, which is based on this 
structure. In principle, the channels should be handled individually; it is preferable to 
avoid mapping them together. 
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• Second, we have included a residual architecture (Hu et al., 2020) between 
neighbouring convolution blocks, which helps to reduce the loss incurred during 
down-sampling process. 

• Third, to minimise risk of data loss while down-sampling, we established a 
bottleneck layer utilising ASPP (Chen et al., 2017), which is crucial for retrieving 
multi-level relevant information. Convolution procedures are carried out 
simultaneously on the feature maps created during the encoding stage with various 
dilation rates in order to gather the environment of the image at several scales and 
produce more precise foreground location data (Huang et al., 2020). 

Existing approaches might not be capable of recognising the presence of the pancreas 
when given a hard input since the occupancy of pancreas in CT images is very small and 
is override with the neighbour organs like liver, stomach, etc. and also size of pancreas is 
flexible and variable with respect to patients. For such a small and complex structured 
organs, extraction of multi-level and single level contextual information is crucial. In the 
decoding stage of model, we applied group deconvolution (Roth et al., 2018) at every 
stage of each layers to get back original input image size and 1 by 1 convolution was 
applied to limit the number of feature maps to two. 

3.2 Depth-wise separable convolution 

At, encoder section of model, we substitute the ordinary convolution with a particular 
group convolution called depth-wise separable convolution. Ordinary convolution is a 
simultaneous mapping of spatial and correlation information of an individual channels 
(Alhichri et al., 2021). Although these two types of input are connected, depth-wise 
convolution in inception allows the correlations between the two to be broken (Roth  
et al., 2015). According to the Inception hypothesis, the two correlations can really be 
mapped individually to produce superior results since; they are independent of one 
another (Naidu et al., 2018). As pancreas images have many slices, an individual 
mapping of information across channels makes more sense. In our approach, we employ 
the Exception which is extreme case of Inception method, in which; the number of 
groups in the group convolution is equal to the number of input channels.  
With this process, totally decoupling of spatial correlation between channels and the 
inter-channel correlation occur (Yang et al., 2020). The input feature map undergoes 
channel-by-channel linear transformation using 1 by 1 convolution, and the resultant 
feature map is fed through a series of 3 by 3 convolutions. Because there are exactly as 
many groups in our grouped convolution as there are input channels, each filter in this 
convolution process has a convolution kernel of 3 by 3, meaning that each channel of the 
input feature map is only convolved by one kernel with a size of 3 by 3 by 1. The output 
feature map is created by stacking the outputs of these filters. Because there are exactly 
as many groups in grouped convolution as there are input channels, each filter in this 
convolution process has a convolution kernel of 3 by 3, meaning that each channel of the 
input feature map is only convolved by one kernel with a size of 3 by 3 by 1. The output 
feature map is created by stacking the outputs of these filters. 
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Figure 2 Proposed model architecture (see online version for colours) 

 

Figure 3 Xception module (see online version for colours) 

 

In calculation of model parameters, lets assume P is the feature maps at input layer of 
model and Q feature maps at output layer with kernel size of convolution layer is 3, then 
number of parameters of model is 3 × 3 × P × Q. In case of depth-wise separable 
convolution, the number of parameters are addition of parameters of depth-wise and point 
wise (Pg = Pdepth–wise + Ppoint–wise = (3 × 3 × Q) + (1 × 1 × Q × P). From these observations, 
our model parameters are less as compared to ordinary UNet and it enhances the feature 
maps which help for good classification of tumour and non-tumour regions of pancreas. 
In addition to this, our model has two level down-sampling with replacement of ordinary 
convolution with depth-wise separable structure Xception as in Figure 3. To achieve 
information decoupling, convolution kernels with the same amount of input channels are 
employed in each down-sampling phase, followed by an ordinary convolution to increase 
the amount of feature maps produced. If ordinary convolution is being used entirely, a 
whole down-sampling approach involves 1,261,532 3×3 convolution kernels, whereas 
our enhanced structure requires only 679,329 3×3 convolution kernels. 

3.3 ASPP module 

Pancreas images typically have slightly out of focus boundaries and are easily confused 
with neighbouring soft tissue structures, especially because it holds a comparatively small 
area in a CT image with such a complex background and less than 1.5% in a 2D image. 
This makes determining whether or not the pancreas occurs in the image much more 
difficult. Just above all, the existing models are incapable of extracting sufficient 
information about the position of the pancreas, which is heavily dependent on the image’s 
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overall context. To enhance the capability of extracting features in our architecture, we 
use an ASPP plugin with atrous convolution. The ASPP plugin, uses numerous 
concurrent atrous convolution layers with various sampling rates and takes its design cues 
from the spatial pyramid. At various scales, the feature map simultaneously captures the 
context. We presume that the deep and superficial features of medical images are 
significant in the case where the medical image does not already consist noise, any 
unwanted information or complex background, and that the fusion of various levels of 
features can result in improved judgment in this situation. The ASPP module that we 
employ mostly consists of the components shown in Figure 3: 

• This architecture has one ordinary and three atrous convolution layers with size 1 × 1 
and 3 × 3 respectively. Filters will deteriorate into a straightforward 1 × 1 
convolution with only the filter centre functioning when the dilated rate is almost 
equal to the feature map size. The dilated ratio of the original module is therefore 
scaled to (2, 4, 6). 

• Features of the image are obtained by applying average pooling globally and these 
extracted features are passed through a convolution layer of size 1 × 1 which 
performs bi-linear interpolation to get back the original image of same 
size/resolution as like input image. 

• In order to create a new extracted features with 256 layers, the four different types of 
extracted features from the previous two steps are combined in the channel 
dimension and thereafter routed through 1 × 1 convolution for fusion. 

• The ASPP unit, which can collect multi-level location information more effectively 
and has higher classification and learning skills to recognise and localise the 
pancreas, partially corrects the standard UNet’s deficiency in describing information. 
Additionally, if the dilate rate approaches or even exceeds the size of the input 
feature map, it will collapse into 1 × 1 convolution, and a dilate rate that is too high 
will not allow for pixel-level output. For these reasons, we adopt a reduced dilate 
rate of (2, 4, 6). 

3.4 Loss function 

Loss functions determine the amount by which the forecasts differ from the actual. Lower 
loss values signify higher accuracy of model, whilst higher loss values indicate 
predictions of model are fairly correct. Always model should looks for minimisation of 
loss function as feasible, ideally it must be near to zero. Models takes the loss function to 
learn the trainable parameters, like biases and weights and these are updated in each 
iteration based on gradient descent process. Cross entropy is one loss function mostly 
used for binary classification but some times fails for multi-class classification problems. 
It defined from the concept of entropy in mathematics which is defined as: 

( )logi iEntropy P P=  (1) 

( )- log
n

i i
i

Cross entropy Y P=  (2) 
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where Y is the ground true or actual output and P is the model predicated output. Due to 
the fact that probabilities might range from 0 to 1, the logarithm of this produce negative 
value so in order make the entropy positive we included negative in front of equation. In 
case of class imbalanced problems, as loss function followed by gradient descent mostly 
focus on majority class, which will cause the weights to update in a way that increases 
the model’s confidence in forecasting the majority class while decreasing its 
concentration on the minority classes. Solution to this issue is focal loss (Lin et al., 2017). 

Figure 4 Focal loss variation with respect to (a) α, (b) γ (see online version for colours) 

 

 
(a) 

 
(b) 

3.4.1 Focal loss 
By concentrating on the instances where the model fails instead of the ones where it can 
reliably forecast, focal loss makes sure that forecasts on challenging examples get better 
over time instead of getting too confident with simple ones. This is accomplished by a 
process termed ‘down weighting’ in focal loss. By lessening the impact of simple 
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instances on the loss function, down weighting emphasizes the importance of difficult 
examples. By incorporating a modulating factor (µ) µ = (1 – Pi)γ into the cross-entropy 
loss, this method can be put into practice. 

( ) ( )1 log
n

γ
i i

i

Focal loss P P= −α  (3) 

where the cross validation tunable focusing parameter is called γ (gamma) and α is the 
weighing factor. The behaviour of focal loss for various values of γ and α is depicted in 
Figure 4. From figure, the following observations are made: 

• Since the pi is low for the sample that was incorrectly classified, the µ is near to or 
exactly 1 which leads loss function remains unaltered and became a cross-entropy 
loss. 

• The µ will tend to zero as the model’s confidence level rises, which is indicated by pi 
is equal to 1, which will reduce the loss amount for correctly categorised cases. In 
order to lessen the impact of the simple instances on the loss function, γ re-scale the 
µ such that the easy instances are down-weighted more than the hard ones. To our 
dataset focal loss performance is better with γ value equal to 2. 

• Focal loss is the same as cross entropy when γ is equal to 0. 

3.4.2 Recall loss 
To solve the imbalance dataset issue, we used a novel recall-based performance-balanced 
loss called recall loss. Based on the value of recall of model during training, the model 
weights are updated towards minimisation of loss function of that class. As opposed to 
the hard example mining method in the focal loss, it is an illustration of hard class 
mining. The recall loss, in contrast to focal loss and other losses, dynamically modifies its 
weights with training based on per-class recall value. At the cost of intersection over 
union (IOU), which takes false positives into account in semantic segmentation, the CB 
loss increases accuracy. The precision and recall of each class may be successfully 
balanced by our recall loss, which enhances accuracy while maintaining a competitive 
IOU. 

( )
1

log
+

C
C C

C
C Ci

FNRecall loss N P
FN TP=

= −  (4) 

where NC, FNC and TPC are number of samples, false positive and true positive rate of 
class C respectively. The same formula is applicable for other classes if applicable. It is 
possible to use the recall-loss as the standard cross entropy which is weighted by the 
class-wise FNC. The second realisation is that minority classes, which have greater FNC, 
are probably harder to categorise than large classes, which have lower FNC. Gradients of 
minority classes will therefore be raised, and gradients of majority classes will be 
repressed, analogous to inverse frequency loss (Tian et al., 2020). 
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3.4.3 Hybrid loss function 
In our work we took the advantages and disadvantages of above said three loss functions 
for better training of model and better performance of the model. In our case, the loss 
function is the sum of above three loss functions as in Figure 5. 

Figure 5 Proposed training loss function 

 

4 Experimental results 

4.1 Dataset and settings 

On the TCIA Pancreas-CT dataset (https://wiki.cancerimagingarchive.net/display/Public/ 
Pancreas-CT) provided by NIH and abdominal contrast-enhanced CT dataset 
(https://chaos.grand-challenge.org/Data/), we contrasted the most recent methodologies. 
There are 82 CT images in the NIH collection, representing 53 men and 27 women 
between the ages of 18 and 76 respectively. Each volume of image has a size of 512 by 
512 with variable length of volumes in each image with specific thickness between slices. 
Scanners made by Philips and Siemens are used to collect all quantities. Our studies 
employ two-fold-cross-validation and a random sample of 82 patients, 41 samples are 
used for test and remaining for validation. To speed up the training process and quick 
convergence of model, the proposed model followed a strategy of Naidu et al. (2018) in 
fixing the initial weights. The model starts with learning rate of 10–3 and is gradually 
reduced by 0.5 for every 50 epochs during the training phase using Adam (Lin et al., 
2017) as an optimisation technique for gradient. All the images and respective labels are 
resized to 96 × 96 × 96 irrespective of their volume sizes during per-processing stage of 
dataset. 

4.2 Implementation details 

We use the PyTorch platform in windows 11 to execute our Python 3.7 investigations. On 
a single Nvidia RTX A3000 GPU (graphics card), all models have been trained in 
batches of eight. The models are trained over 600 and 460 iterations for  
dataset (https://wiki.cancerimagingarchive.net/display/Public/Pancreas-CT) and dataset 
(https://chaos.grand-challenge.org/Data/) respectively. In terms of the data augmentation 
technique, we employ scale-intensity-ranged with minimum and maximum values of –57 
and 164 respectively, foreground of images are cropped with crop foreground transform, 
and composed cascaded transforms like orientation, spacing, rotation and crop form 
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MONAI transforms. The average loss and mean dice graphs from the model training and 
cross validation phases carried out on the training and validation image sets are shown in 
Figure 6. 

Figure 6 Average loss and mean dice for (a) dataset (https://wiki.cancerimagingarchive.net/ 
display/Public/Pancreas-CT), (b) dataset (https://chaos.grand-challenge.org/Data/)  
(see online version for colours) 

 
(a) 

 
(b) 
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4.3 Metrics of measures 

• Jaccard index or IoU: it is basically a way to measure the amount of overlap 
amongst our prediction output and the target mask. This measure has a tight 
relationship to the dice score (DSC), which is frequently employed while training as 
a loss function. 

• Average Hausdorff distance: between original image and predicated images is 
calculated by dividing the total minimum distances between all points in original and 
predicated by the total number of points in original. As a more reliable 
approximation of the maximum deviation, the 95% Hausdorff distance95 (Karri, 
2021) has indeed been utilised. Though its meaning is less clear, the 95% Hausdorff 
distance is generally understood to be the 95th percentile among ordered distance 
metrics. 

• Average symmetric surface distance (ASSD): the average of all the distances between 
predicted on the boundary of a region that was segmented correctly and the boundary 
of the original, and vice versa. Additional metrics are tabulated in Table 1. 

Table 1 Metrics and formulas 

Metrics Description Equation 
Accuracy 
(ACC) 

The percentage of input images’ 
weight that is correctly segmented is 
measured by accuracy. 

+ 100
+ + +

P N

P P N N

T TAccuracy
T F T F

= ×  

Specificity (SP) The segmentation process of input 
images proportion is how exactly 
performed for negative results are 
measured by the specificity. 

100
+
N

N P

TSpecificity
T F

= ×  

Sensitivity (SE) The segmentation process of input 
images’ proportion is how exactly 
performed for positive results are 
measured by the sensitivity. 

+
P

N P

TSensitivity
F T

=  

Positive 
prediction 
value (PPV) 

The number of pixels obtained in the 
segmented images as the positive 
which are actually positive. +

TPPPV
FP TP

=  

Precision The quality of a positive prediction 
made by the model. 

TPPrecision
TP FP

=
+

 

Recall The ability of a model to identify 
only the relevant data points +

TPRecall
TP FN

=  

F1-score It combines the precision and recall 
scores of a model 1- 2

+
Precision RecallF score
Precision Recall

∗= ∗  

4.4 Discussion 

The disintegration and consumption of sugar levels and nutrients are significantly 
influenced by the pancreas, a vital metabolic organ located in the abdomen. For doctors, 
accurate pancreatic segmentation can offer useful data. We developed a specific strategy 
in developing the model in encoder and decoder section of ordinary UNet to accomplish 
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explicit localisation of the pancreas and suggested a hybrid loss to drive the model to 
concentrate its efforts to boundary pixels in order to overcome the inaccuracy of  
coarse-to-fine approaches and ambiguous boundaries in the pancreatic segmentation. As 
per the experiments performed on different datasets, the suggested methodology showed 
better performance than other state of art segmentation of pancreas methods on the two 
dataset with cross-validation rate of 2 without the aid of clear and specific pancreas 
localisation. This modification in encoder and decoder section can implicitly localise and 
highlight the pancreas regions, and thus improve the depiction of pancreatic features. 
Additionally, Tables 2 and 3 demonstrates that the proposed algorithm outperforms the 
existing pancreatic segmentation techniques in terms of average DSC, Jaccard 
coefficient, Hausdorff Distance95 (HD95) and ASSD. The DSC and Jaccard index 
measures were used to compare the segmentation results quantitatively to the ground 
truth. The two metrics’ values fell into the range of 0% to 100%, with 0% signifying no 
overlap between the two segmented zones and 100% signifying an exact match between 
the two segmentation. Table 2 and Table 3 contains the results of analyses of segmented 
images made using DSC. Tables indicates that nearly all of the segmented images 
overlapped with the ground truth images, the dice scores for the hybrid procedure were 
close to 90%. For both scenarios, the average dice score for the proposed model was 
86%–89%. The proposed model average Jaccard coefficient for the two scenarios was 76 
and 81% respectively, lower HD95 and lower ASSD. 

Figure 7 Outcomes of different models on dataset (https://wiki.cancerimagingarchive.net/ 
display/Public/Pancreas-CT): from left to right image, ground truth, predicted with 
UNet and DAH-UNet (see online version for colours) 

 

Additionally, utilising the assessment metrics precision, accuracy, sensitivity, specificity, 
F1-score, PPV, recall, and, which are presented in Table 4 and Table 5, the outcomes of 
our segmentation model were quantitatively assessed. The estimated values have nearly 
approached 91% accuracy with only minor numerical variations, demonstrating the 
general viability of the network for segmentation. It is demonstrated that the model 
results for the other indices all exceeded 70%, demonstrating the viability and efficiency 
of the suggested approach. The end results for the synthesis of proposed models are better 
balanced in all aspects when compared to the outputs of the six trained UNets, even 
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though the significant improvement may outperform well on some assessment criteria. As 
demonstrated in Figure 7 and Figure 8, the efficiency of model segmentation is not as 
excellent as that of other segmentation models because pancreas tissues are more 
complex than other tissues like stomach, liver and other organs, which are distinguished 
by intricate shape, uneven boundary, and quasi pixel intensity. 
Table 2 Various models metrics on dataset 

Model DSC Jaccard coefficient Hausdorff Distance95 ASSD 
UNet++ (Zhou et al., 2018) 0.727 0.571 8.000 2.806 
SCU-Net++ (Cui et al., 2022) 0.738 0.585 4.899 1.280 
FPF-Net (Chen et al., 2022) 0.790 0.653 5.196 1.599 
CMFCUNet (Qiu et al., 2022) 0.797 0.663 6.164 1.979 
M3Net (Qu et al., 2022) 0.833 0.714 3.606 1.076 
RTUNet (Qiu et al., 2023) 0.878 0.782 4.123 1.046 
DAH-UNet 0.897 0.813 2.449 0.813 

Source: https://wiki.cancerimagingarchive.net/display/Public/Pancreas-CT 

Table 3 Various models metrics on dataset 

Model DSC Jaccard coefficient Hausdorff Distance95 ASSD 
UNet++ (Zhou et al., 2018) 0.469 0.306 24.755 1.846 
SCU-Net++ (Cui et al., 2022) 0.754 0.605 12.247 1.212 
FPF-Net (Cui et al., 2022) 0.774 0.631 5.745 1.277 
CMFCUNet (Qiu et al., 2022) 0.841 0.725 4.123 1.060 
M3Net (Qu et al., 2022) 0.844 0.730 3.742 1.208 
RTUNet (Qiu et al., 2023) 0.854 0.745 3.464 1.242 
DAH-UNet 0.869 0.769 3.317 1.060 

Source: https://chaos.grand-challenge.org/Data/ 

Table 4 Various models metrics on dataset 

Model ACC Precision Recall Sensitivity Specificity F1-score PPV 
UNet++ (Zhou  
et al., 2018) 

0.648 0.924 0.759 0.759 1.000 0.833 0.924 

SCU-Net++ (Cui 
et al., 2022) 

0.707 0.723 0.889 0.889 0.997 0.797 0.723 

FPF-Net (Chen  
et al., 2022) 

0.754 0.720 0.734 0.734 0.996 0.727 0.720 

CMFCUNet (Qiu 
et al., 2022) 

0.775 0.931 0.865 0.865 0.999 0.897 0.931 

M3Net (Qu et al., 
2022) 

0.794 0.782 0.799 0.799 0.997 0.790 0.782 

RTUNet (Qiu  
et al., 2023) 

0.853 0.847 0.910 0.910 0.997 0.878 0.847 

DAH-UNet 0.869 0.687 0.798 0.798 0.997 0.738 0.687 

Source: https://wiki.cancerimagingarchive.net/display/Public/Pancreas-CT 
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Figure 8 Outcomes of different models on dataset (https://chaos.grand-challenge.org/Data/): 
from left to right image, ground truth, predicted with UNet and DAH-UNet (see online 
version for colours) 

 

Table 5 Various models metrics on dataset 

Model ACC Precision Recall Sensitivity Specificity F1-score PPV 
UNet++ (Zhou  
et al., 2018) 

0.734 0.835 0.688 0.688 0.999 0.754 0.835 

SCU-Net++ (Cui 
et al., 2022) 

0.759 0.842 0.898 0.898 0.998 0.869 0.842 

FPF-Net (Chen  
et al., 2022) 

0.798 0.834 0.854 0.854 0.998 0.844 0.834 

CMFCUNet (Qiu 
et al., 2022) 

0.799 0.841 0.867 0.867 0.998 0.854 0.841 

M3Net (Qu et al., 
2022) 

0.865 0.771 0.777 0.777 0.997 0.774 0.771 

RTUNet (Qiu  
et al., 2023) 

0.889 0.892 0.318 0.318 0.999 0.469 0.892 

DAH-UNet 0.910 0.948 0.755 0.755 0.999 0.841 0.948 

Source: https://chaos.grand-challenge.org/Data/. 

Table 6 Effect of loss function on proposed model on dataset 

Loss function DSC Jaccard coefficient Hausdorff Distance95 ASSD 
Cross entropy 0.754 0.547 11.045 2.961 
Focal loss 0.775 0.632 8.602 1.629 
Recall loss 0.794 0.658 5.099 1.280 
Hybrid loss 0.853 0.744 3.162 0.977 

Source: https://wiki.cancerimagingarchive.net/display/Public/Pancreas-CT 

This finding suggests that the proposed model architecture instantaneously accumulate 
contextual information over feature points, use spatial information to encapsulate 
pancreas features, and enhance the model performance. Overall, the suggested algorithm 
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not only maintains a high level of pancreatic segmentation accuracy, but also increases 
the effectiveness of pancreas segmentation as in Table 4 and Table 5. 

4.4.1 Importance of loss functions 
Loss functions are crucial in determining how well a model performs. It is impossible to 
select a universal loss function for difficult tasks like segmentation. Most of the time, it is 
determined by the characteristics of the training dataset, such as its prevalence, deviation, 
constraints, etc. Any of the loss functions listed in table performs optimally in all use 
scenarios. However, we may assert that hybrid loss functions perform better with 
extremely unbalanced pancreas segmentation as in Table 6. 

Figure 9 AUC curve for dataset (see online version for colours) 

 

Source: https://wiki.cancerimagingarchive.net/display/Public/Pancreas-CT 

As shown in Figure 9, the quantitative statistical result of the ROC curve shows that 
proposed model of segmentation outperforms the existing UNet based segmentation 
models. As seen in Figure 9, the proposed model exhibits improved performance as 
indicated by the area under the ROC curve. The effectiveness of the system improves as 
the curve gets progressively closer to the top left corner. The area under the curve (AUC) 
value, which equals 1 for an ideal system, is the most commonly used performance 
metric derived from the ROC curve. 

5 Conclusions 

On two publicly available datasets, with data augmentation on the training set, the 
proposed RTUNet, DAH-UNet and other models were assessed. The outcomes of the 
trial were contrasted with those of cutting-edge techniques. The findings showed that the 
suggested DAH-UNet exhibits greater dice, Jaccard, and Recall than other models with 
less computing parameters, and offers a potential strategy for semantic segmentation of 
tiny tissues. Visual examination of the overlapped maps reveals that the suggested  
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DAH-UNet can successfully fit the human segmentation, further supporting the efficacy 
of our approach. In comparison to state-of-the-art models, the suggested DAH-UNet 
model has high accuracy even pancreas differs greatly in size, position and shape. Our 
study does have certain limitations. Although the suggested DAH-UNet Net’s parameters 
are adequate, not all of its outcomes are the best when considered to related research. 
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