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Abstract: High error rate in SARS-CoV-2 genome replication allows the virus
to adapt to different environments and selective pressures. In this study, 35% of
codons of the protein-coding sequences of the genome were observed to have
undergone base substitution mutations. Machine learning based comparative
analysis of usage between conserved codons and the remaining variable codons
of the protein-coding genes revealed that the codon usage patterns between the
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two groups are significantly different. Codon usage values in the variable
region resemble genome composition, whereas the values in the conserved
regions were highly variable. This differential codon usage suggests that the
conserved regions are under influence of selection pressure in this virus
genome. Further, the selection pressure on codon usage and the nucleotide
substitution biases act towards increasing A and T base composition in
SARS-CoV-2 genome. Our observations on the base substitution will help us in
understanding evolution of this SARS-CoV-2 virus genome.

Keywords: SARS-CoV2 genome; base substitution mutation; selection;
conserved region; codon usage bias; CUB.
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1 Introduction

The unequal usage of synonymous codons, known as codon usage bias (CUB), is
determined by the combined influences of selection and mutation forces in the genome of
any organism (Grantham et al., 1980; Ikemura, 1981, 1985; Sharp and Li, 1986; Sharp
et al., 2010). The preferential usage of specific codons among the synonymous ones in
high-expression genes indicates influences of the translational selection on codon choices
(Sharp et al., 2005). When selection is weak, codon usage in an organism is primarily
influenced by complex mutational forces and drift (Bulmer, 1991). Nucleotide
substitution, context-dependent mutation, and repair-associated bias are the prominent
genome-wide mutational factors acting on codon usage (Knight et al., 2001; Plotkin and
Kudla, 2011). Organisms prefer specific codons among synonymous codons recognised
faster by cognate tRNA (Ikemura, 1981, 1985). Alternatively, a codon interacting more
effectively with the anticodon over another synonymous codon can be selected for
optimum translation. Codons preferred in high-expression genes compared to
low-expression genes for fast or accurate translation are considered optimal codons
(Ikemura, 1981). This translational selection has been shown across bacteria (Sharp et al.,
1988; Akashi, 2003; dos Reis et al., 2003) and more prominently among bacteria with
rapid growth rates (Sharp et al., 2005) because fast translation is a vital necessity for
them.

In general, a virus depends on its host’s cellular mechanism for replication, survival,
and evasion from the host’s immune system. The CUB has been reported to adapt to the
host for replicative fitness and virulence in the different viral genomes (Burns et al.,
2006; Mueller et al., 2006; Costafreda et al., 2014). CUB in virus genomes is being
studied from different points of view, such as adaptation to their hosts (Tian et al., 2018),
the extent of respiratory virulence (Chen and Yang, 2022), and the compositional
difference between conserved and variable amino acid residues (Klitting et al., 2016).
Genome composition in RNA viruses reflects codon usage and therefore CUB is
considered to be mainly under mutational pressure (Jenkins and Holmes, 2003; Belalov
and Lukashev, 2013; Yao et al., 2020). Apart from the genome composition, limited
evidence of host-specific translational selection pressure also has been reported in human
RNA viruses (Jitobaom et al., 2020), in the MERS-CoV (Hussain et al., 2020) and
influenza virus HIN1 (Wong et al., 2010). A recent study reported the coevolution of
virus and host codon usage (Chen et al., 2020). The coronavirus SARS-CoV-2 causal
agent of severe acute respiratory syndrome (SARS) disease originates in Wuhan, China;
the genome evolves due to rapid mutation inside the host cell (Denison et al., 2011).
World Health Organisation (WHO) classified the novel coronavirus pneumonia epidemic
caused by SARS-CoV-2 as a public health emergency of international concern in 2020
(Yang and Wang, 2020; Zheng, 2020). Similar to the other viral genome, CUB in
SARS-CoV-2 is mainly influenced by mutational pressure (Daron and Bravo, 2021).
Gene-specific mutation pattern in SARS-CoV-2 is believed to positively impact viral
evolution by increasing its adaptation to human codon usage (Chen and Yang, 2022;
Ramazzotti et al., 2022).

The underlying mechanism of the rapid evolution of SARS-CoV-2 is yet to be
thoroughly investigated. In this study, we have done a detailed computational analysis on
CUB and base substitution dynamics in this viral genome considering a global dataset of
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25,135 filtered sequences of the SARS-CoV-2 genome from the early phase of the
pandemic. We observed that the codon usage in the conserved sites is highly biased,
whereas the variable site codon usage resembles genome composition indicating
conserved sites are under more substantial selection. Further, organisms differ with
regard to the identities of the selected codons (Sharp et al., 1988). The base composition
of the selected codons may or may not match the genome base composition. In the case
of the former, (G+C)-rich genomes tend to have (G+C)-rich selected codons, while
(A+T)-rich microorganisms tend to have (A+T)-rich selected codons. If the G+C
composition of selected codons matched with the genome G+C composition, it would
indicate that the selection on codon usage and the nucleotide substitution biases act in the
same direction to determine the nucleotide content of a genome (Hershberg and Petrov,
2009). Our study results demonstrate that the selection on codon usage and nucleotide
substitution biases are acting in the same direction towards increasing A and T bases in
this SARS-CoV-2 virus genome.

2 Materials and methods

2.1 SARS-CoV-2 CDS sequences considered for codon usage analysis

We have considered the SARS-CoV-2 virus reference genome (NC _045512.2) consisting
of 29,903 bases reported in the NCBI database for our codon usage study. We also took
these genes’ protein-coding sequence (CDS) annotations from the NCBI database. The
genome of SARS-CoV-2 consists of twenty-six protein coding genes out of which sixteen
non-structural protein genes are nspl through nsp16 which are distributed over one open
reading frame (ORF1), four genes E, M, N, and S code for structural proteins and the
remaining six genes code for accessory proteins ORF3a, ORF6, ORF7a, ORF7b, ORFS§
and ORF10 (Holmes, 2003; Angeletti et al., 2020; Mousavizadeh and Ghasemi, 2021).
Codon usage of all these twenty-six genes we considered in our analysis. Unlike the other
protein coding genes, the nsp12 gene that encodes for RNA-dependent RNA polymerase
(RdRp) includes a ribosomal —1 frameshift site at base position 13468. Considering the
repetition of the base position at 13468, we reconstructed the ORF of the nsp12 gene for
codon usage analysis.

2.2 Segregating conserved codons from the variable ones in SARS-CoV-2 CDS
sequences

Considering a simple computational approach, we have estimated conserved and variable
codon positions in the virus genome. The methodology for finding conserved and
variable codons is illustrated with an alignment of the sample set of ten strains of the
nspll gene in Table 1. In the CDS of a protein-coding gene, if a codon position has not
undergone any base substitution in the alignment of strains, the codon is considered
conserved. Possibly any change in that codon position is deleterious for the protein, and
therefore no base substitution leading to either synonymous or non-synonymous codon
change was observed. Whereas, if a codon has undergone base substitution at least in one
of the strains, it is considered variable. We assumed that the variable positions could
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accommodate mutations without impacting the protein function. A similar method of
aligning a large number of sequences to find base substitutions has been used in recent
studies (Aziz et al., 2022). A base substitution in a codon might result in to synonymous
change that do not alter encoded amino acid or might change the encoded amino acid
resulting non-synonymous change. We considered codons with both synonymous and
non-synonymous substitutions as variable ones. We wrote computer programs for finding
base substitutions and conserved/un-conserved codons in Python.

For the base substitution analysis, we have considered 25,135 SARS-CoV-2 strains
downloaded from the GISAID database (https://www.gisaid.org/). We filtered out these
strains from the 46,076 high-coverage SARS-CoV-2 strains sequences reported in the
GISAID database until 24th July 2020, sampled from patients in 95 countries. All these
fully sequenced SARS-CoV-2 virus strains were of size 29,903 bases each and had no
internal stop codons, deletions, and ambiguous nucleotides other than A/T/G/C. We
created a local BLAST database of all these strains and extracted the alignment of the
individual genes from the database for finding base substitutions.

2.3 Estimating selection on codon usage bias in SARS-CoV-2

Comparative analysis based on gene expression helps estimate translational selection in
organisms, where the expression level of the genes is known either experimentally or
from the gene information. However, the virus genome is highly compact, consisting of
very few genes that are considered essential for the survival of the virus. Virus genomes
do not encode any tRNA, and the protein gene translation relies on the tRNA of their
hosts (Albers and Czech, 2016; Tian et al., 2018). Previous studies have reported
substantial similarities between the codon usage of virus and their hosts (Lucks et al.,
2008; Bahir et al., 2009). Therefore, gene expression-based comparative analysis of
codon usage is not feasible to study selection in the viral genome. However, in the viral
genome, selection on codon usage can be feasible to study using an alternate approach.
Vital sites of a protein that are important for its function might have conserved codons.
Translational accuracy might be most important at these vital sites; hence, the preferred
codons are expected to be used at evolutionarily conserved sites. A comparative codon
usage analysis between conserved sites and the remaining variable sites in a gene
sequence can be a good strategy for understanding selection mechanisms (Jia and Higgs,
2008). As discussed earlier, we segregated conserved sites from the variable sites
considering a large set of viral strains from the public database sampled from human
patients across the globe for understanding the selection pressure on the SARS-CoV-2
genome.

2.4 Codon usage bias measures

Different measures have been proposed to measure biased codon usage in the coding
sequence of genes (Roth et al., 2012). One of the popular measures is the effective
number of codons (N.) (Wright, 1990) that estimates overall CUB in a gene. For a gene,
N, values can vary between 20.0 and 61.0 for uniform and extremely biased codon usage
scenarios. Mathematically N. is defined as follows:
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Conserved and un-conserved amino acid positions in the nsp11 gene

Table 1
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For an amino acid 4 with degeneracy k, i.e., with £ number of synonymous codons, each
. k . .
with counts ni, na, ..., ny, N = E M and p; = ni/n, effective number of codons N, is

=

calculated as follows:

1
Ne= (1)
where
n ; p? -1
F,= W n>1 2)
Finally, for the universal genetic code table, the formula of N, for a gene can be given as:
NC=2+i+L+i+i 3)

K K F K

Here F(i=2, 3, 4 and 6) represents average values of F for all the amino acids with
degeneracy i.

Nucleotide base composition is the primary factor for CUB in a gene sequence.
Codon selection for optimum translation is another factor among several other selection
factors that also influence codon usage in a gene. The effective number of codons prime
(N.) (Novembre, 2002) is a variant of N, that measures CUB in a gene due to factors
other than nucleotide composition. One advantage of using N, and N, is that, unlike the
other CUB measures such as CAI (Sharp and Li, 1987), FoP (Ikemura, 1981), no
additional reference information is required for calculating N, and N,'values of a gene
and these values can be calculated from the gene’s nucleotide sequence. In this article, we
have used improved implementation of N, and N, (Satapathy et al., 2017) measures
available in the web portal (http://agnigarh.tezu.ernet.in/~ssankar/cub.php).

2.5 Relative synonymous codon usage

Relative synonymous codon usage (RSCU) of individual codons is calculated as the ratio
of actual codon usage to expected usage when all the synonymous codons are used
uniformly in a given gene sequence. Mathematically RSCU is defined as follows

Xi

RSCU; = ————— 4)

Here x; is the count of a codon i in the given gene sequence encoding an amino acid, and
n is the codon degeneracy or the number of synonymous codons coding for that amino
acid. RSCU value 1.00 for a codon suggests that the codon is used as expected, and any
deviation from 1.00 denotes biased usage. RSCU values of the codons are independent of
their degeneracy. We have used these RSCU values in machine learning analysis.
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2.6 Machine learning based analysis of codon usage bias in SARS-CoV-2

For presenting difference in codon usage between conserved and variable sites, we have
used seven machine learning based classifiers, decision tree (Quinlan, 1986), Gaussian
Naive Bayes (GNB) (Pérez et al., 2006), k-nearest neighbours (kNN) (Baek and Sung,
2000), logistic regression (LR) (Hastie et al., 2009), random forest (RF) (Breiman, 2001),
support vector machine (SVM) (Noble, 2006) and eXtreme Gradient Boosting (XGB)
(Sheridan et al., 2016). Implementation of these classifiers are available in the sklearn
library of Python. These methods have been shown to be effective in genome
composition analysis in a recent study by Kurmi et al. (2023). In a scenario of clear
difference, classifiers would result higher classification scores. For the classification task,
in each dataset, we had features in terms of usage of the 61 codons and a target variable
with two classes- conserved and variable sites which can be represented as D = {X, y},
where the feature dataset D is with X columns, and y is the target variable: X = {xi, x2, x3,
< Xnt,n=061,y={1or 0}, 1 represents conserved site and 0 represent variable site.

We used receiver operating characteristics (ROC) analysis to estimate performance of
the classifiers. ROC is a 2-D probability plot between true positive rates (TPR) and false
positive rates (FPR) and the area under ROC curve (AUC) value gives us an idea about
the quality of the ROC curve. Here TPR is defined as the values that are positive in the
actual class and have been correctly predicted as positive by the machine learning model.
For example, codon usage values are from conserved region of a gene and it has been
predicted as conserved. FPR are the values that are negative in the actual class but they
have been wrongly predicted as positive by the machine learning model. For example,
codon usage values are from variable region of a gene and it has been predicted as
conserved.

3 Results and discussion

Before segregating variable and conserved codon positions, we estimated base
substitution in all the CDS regions of the SARS-CoV2 genome in order to understand
overall pattern of the substitutions. Each of the four bases A, T, G, and C can be
substituted by the other three bases, resulting in twelve directional base substitution
mutations. Out of the twelve mutations, four mutations (C—T, C—T, A—G, and G—A)
are called transitions, and the remaining eight mutations are called transversions. Similar
to the reports in the research literature (Lewis et al., 2016), we observed that the amount
of transitions was more than the transversions in all the CDS sequences. Among the
mutations, C—T was observed to be most frequent, possibly due to the rapid deamination
of cytosine to uracil (Lewis Jr et al., 2016). The G—T transversion was the second most
frequent base substitution. The other three transitions were more frequent compared to
the reaming transversions. These observations resembling previously reported base
substitutions in research literature suggested that the computational methodology
employed here is correct. Considering a high frequency of transitions in a few RNA
viruses reported earlier (Holland, 2006; Simmonds and Ansari, 2021) a surprisingly high
frequency of G—T transversion observed in the genome as compared to the G—A,
T—C, and A—G transitions suggest that the unusual high frequent G—T transversion
might be unique to the genome of SARS-CoV-2.
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Figure 1 Distribution of codons with mutations along the gene sequence of's protein

Distribution of Variable Sites in S Protein Gene
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Notes: The figure presents the distribution of variable codons in the S protein gene. Each
dot in the Y-axis represents the number of codon positions with mutations (details
as described in the MM section) in a window of a sequence of 10 codons
represented in the X-axis. It is evident from the figure that the mutations are
spread across the length of the S protein gene.

3.1 Variable sites in the SARS-CoV-2 gene are distributed across the gene
sequence

For estimating variable and conserved sites in the coding sequences, we found base
substitutions in the alignment of all the genes individually. Base substitutions were
abundantly observed along the length of the codon sequence of all the genes. Among the
larger genes with a size of more than 100 amino acids, the accessory protein gene ORF3a
was found with the least percentage (13.77%) of variable sites. In contrast, the non-
structured protein gene nspl0 had the highest rate (48.20%). In general, non-structured
protein genes had a high percentage of variable sites, whereas accessory proteins had the
lowest proportion. Among the structural protein genes, the portion of variable sites for S,
M, N, and E was 35.48%, 31.84%, 20.95%, and 38.16%, respectively. These variable
sites were not locally clustered but spread across the length of the ORF of the genes. For
example, Figure 1 presents the distribution of codons with mutations along the gene
sequence of the S protein.

3.2 Conserved codons are comparatively under stronger selection compared to
variable ones in the SARS-CoV-2 genome

SARS-CoV-2 genome replication typically has a high error rate and is expected to be
under weak selection. Therefore, uniform codon usage was expected in the genes.
Accordingly, N. values were expected to be on the higher side in the range of 20.00 to
61.00. We calculated N. values in the genes as a whole and separately considering only
the unserved and un-conserved codons (Table 2). It can be seen from Figure 2(a) that the
distribution of the N. values of the gene sequence considered as a whole and of the
un-conserved codons are similar and on the higher side of the range. However, the
N¢values of the conserved codons are significantly (p-value <0.0001) lower than that in



Codon usage in conserved sites is more biased compared to variable sites 51

the other two sets. Similar was the observation for the N.” values given in Figure 2(b).
This observation suggested that the conserved codons are under stronger selection than
un-conserved codons.

Figure 2 (a) Distribution of N, values in sars-cov-2 genes (b) distribution of N.” values in SARS-
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Notes: The figure presents the distribution of Nc values in three different regions of the
SARS-CoV-2 genes. Genes with a size of more than 100 codons are considered in this
figure. The Y-axis represents the distribution of N values, and the X-axis represents
the three categories. It is evident from the figure that in the whole gene and variable
codons, Nc values are significantly higher compared to conserved codons. The figure
presents N’ values distribution in three different regions of the SARS-CoV-2 genes
with a size of more than 100 codons. The Y-axis represents the distribution of N.’
values, and the X-axis represents the three categories. It is evident from the figure that
in the whole gene and variable codons, N.” values are significantly higher compared to
conserved codons.
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Codon usage bias measures N and N.” values of conserved and variable regions in

SARS-CoV-2 genes

Table 2
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CUB difference observed between conserved and variable genic regions might be an
artefact without significance. To counter this argument, we did a simulation study. We
grouped codons of a gene sequence randomly into two sets, seql, and seq2, and found N,
values for the two sets of codons. The distribution of the two sets of N, values are plotted
in Figure 3. It is evident from Figure 3 that the distribution of the two sets of N. values
are not different. The distribution of N. values for both sequences are on the higher side
of the theoretical range of 20.0 to 61.0. The distributions are similar to that when the N,
values of gene sequences were calculated as a whole. This simulation study result
supports our finding that the conserved codons are under stronger selection.

Figure 3 Distribution of Nc values in simulation study (see online version for colours)

Distribution of Effective Number of Codons(Nc) values
60.0
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Notes: The figure presents the distribution of M. values in the simulation study. Y-axis
represents the distribution of Ne values, and X-axis represents the two sets of
codons. It is evident from the figure that there is no difference in the two
distributions.

3.3 Codons with low G and C bases are preferred more in conserved than the
variable sites in the SARS-CoV-2 genes for all the amino acids

To know if the identities of favoured codons in conserved region correspond to the
nucleotide composition in the SARS-CoV-2 genome sequence, we did a comparative
study on codon usage between conserved and variable sites. We calculated the RSCU
values of the codons for these two sites considering all the genes together (Table 3).

RSCU values of the synonymous codons vary both in conserved and variable sites.
However, the variation in RSCU values is higher in conserved sites compared to variable
sites. For example, in the variable site, RSCU values of the Leu amino acid codons range
between 1.82 and 0.44, whereas these values in the conserved site range between 2.63
and 0.04. Similar differences in RSCU values between the two sites were observed for all
the amino acids. Because of these differences in RSCU values between the conserved and
variable datasets, AUC values in the machine learning analysis were very high across all
the seven classifiers (Figure 4). This highly biased codon usage in the conserved site was
also reflected in the NV, value results presented in the earlier section.
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We further did a comparative study between A/T and G/C rich codons of variable and
conserved sites. For each amino acid, RSCU values for codons with A/U and G/C bases
at 3rd codon positions are combined and given in Figure 5. RSCU values for the six-fold
degenerate amino acid codons are shown in two groups, the four-fold degenerate family
box, and the remaining two split box codons. It can be observed from Figure 5 that the
U/A ending codons are used more compared to C/G ending codons both in conserved and
variable sites. This observation suggests that the A/U ending codons are preferred
compared to G/C ending codons in this virus genome. However, the difference between
A/U ending and G/C ending codons in conserved sites is significantly (p-value 0.0002)
higher than in variable sites. This difference between conserved and variable sites was
consistently observed for all the amino acids. Genome G+C% for the virus is low;
accordingly, U/A-ending codons are used more than the G/C-ending codons. However, in
the conserved sited, the higher difference between the two sets of codons suggests that
the conserved sites are under selection, and the selection on codon usage is acting in the
direction of A/U-ending codons.

Figure 4 Classifier performance in predicting variable and conserved sited in terms of ROC
curve (see online version for colours)
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Notes: Figure presents ROC curves with AUC values to exhibit the classifier
performance in the two sets of variable and conserved features. A consistently
higher AUC values observed across classifiers can be observed.

Recent research reports suggested that the CUB in SARS-CoV-2 appears to be
incompatible with the codon usage in the human genome (Chen and Yang, 2022) and
gradually dissimilating from humans (Mogro et al., 2022). Though selection has been
reported in some of the genes in the human genome (Plotkin et al., 2004; Dhindsa et al.,
2020), selection on codon usage is generally low and resembles genome composition
(Satapathy et al., 2015). In this context, our findings on the influence of selection on
codon usage in the SARS-CoV-2 genome will be engaging in understanding the
evolution of this deadly human pathogen in the coming future.
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Codon usage (RSCU) values in conserved and variable sites of SARS-CoV2 genome

Table 3
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Figure 5 RSCU values for codons with A/U and G/C bases at 3rd codon positions (see online
version for colours)
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Notes: Vertical bars in the figure represent RSCU values for codons with A/U and G/C
bases at 3rd codon positions separately for variable and conserved codon sets for
individual amino acids. RSCU values for the six-fold degenerate amino acid
codons are shown in two groups, family box* and split box# codons.
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