

International Journal of Security and Networks

ISSN online: 1747-8413 - ISSN print: 1747-8405
https://www.inderscience.com/ijsn

OneR-DQN: a botnet traffic detection model based on deep Q
network algorithm in deep reinforcement learning

Yutao Hu, Yuntao Zhao, Yongxin Feng, Xiangyu Ma

DOI: 10.1504/IJSN.2023.10062404

Article History:
Received: 20 March 2023
Last revised: 06 June 2023
Accepted: 08 June 2023
Published online: 12 March 2024

Powered by TCPDF (www.tcpdf.org)

Copyright © 2024 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijsn
https://dx.doi.org/10.1504/IJSN.2023.10062404
http://www.tcpdf.org

Int. J. Security and Networks, Vol. 19, No. 1, 2024 31

Copyright © 2024 Inderscience Enterprises Ltd.

OneR-DQN: a botnet traffic detection model based
on deep Q network algorithm in deep reinforcement
learning

Yutao Hu, Yuntao Zhao*, Yongxin Feng
and Xiangyu Ma
School of Information Science and Engineering,
Shenyang Ligong University,
Shengyang 110870, China
Email: huyutao_2023@163.com
Email: zhaoyuntao2014@163.com
Email: fengyongxin@263.net
Email: maxiangyu0729@126.com
*Corresponding author

Abstract: With the continuous progress of network technology, the rapid growth of botnets
poses a significant challenge to network security. A universal detection model needs to be
improved to cope with various datasets with variable feature states. This article constructs a
detection model based on deep reinforcement learning (DRL) deep Q network (DQN). It uses a
OneR classifier to select features from the dataset and hand them to the model for training. The
unique experience pool mechanism of DQN is used to extract independent experience and
training samples for cross-training continuously. The trained model compares with the other
detection models in a new dataset for experimental comparison. The experiment shows that
compared with the existing detection model, the improved DQN botnet detection model has
higher accuracy rate and precision rate, which indicates that the detection model equipped with
the DQN algorithm has more robust adaptability in the new dataset.

Keywords: botnet detection; deep reinforcement learning; DRL; DQN model; feature
classification; OneR classifier.

Reference to this paper should be made as follows: Hu, Y., Zhao, Y., Feng, Y. and Ma, X.
(2024) ‘OneR-DQN: a botnet traffic detection model based on deep Q network algorithm in deep
reinforcement learning’, Int. J. Security and Networks, Vol. 19, No. 1, pp.31–42.

Biographical notes: Yutao Hu received his BS in Computer Science and Technology from the
Shenyang University of Technology, China, in 2021. He is currently working toward the
Master’s degree in Computer Technology with the School of Information Science and
Engineering, Shenyang Ligong University, China. His research interests include network security
and deep reinforcement learning (DRL).

Yuntao Zhao completed his PhD of Navigation, Guidance and Control from the Nanjing
University of Science and Technology. He is currently a Professor and Doctoral Supervisor of
the School of Information Science and Engineering at the Shenyang Ligong University. His main
research area is in cyberspace security, machine learning and deep learning algorithms.

Yongxin Feng received her PhD in Computer Application Technology from the Northeastern
University, China, in 2003. She is currently a Professor and Doctoral Supervisor of the School of
Information Science and Engineering at the Shenyang Ligong University. Her research interests
include mobile wireless network technology and network security.

Xiangyu Ma is currently pursuing the MS degree in Computer Technology with Shenyang
Ligong University, Shenyang, China. During his pursuit of a Master’s degree, he participated in a
network security innovation competition and won third prize at the national level. He research
interests include network security, network engineering and deep learning.

1 Introduction
Nowadays, the methods of botnet network intrusion are
constantly innovating. In 2020 alone, there were 35 million

botnet network intrusion incidents in Shanghai, China
(Heng’an Jiaxin Technology Co., 2020). Many hosts are
unwittingly turned into ‘botnet’ hosts and become the host
of botnet networks when they access phishing websites that

32 Y. Hu et al.

have the same interface as legitimate sites, which are then
used by the botnet network families to attack other websites,
causing many sites to force to shut down due to DDoS
attacks. Although experts have built many detection models
for IRC botnet networks in the early days, the structure of
botnet networks is also constantly evolving, gradually
evolving from the early IRC mode to HTTP and
peer-to-peer (P2P) modes (Dhayal et al., 2018). Hackers use
DDoS, spam, brute-force cracking, penetration, and other
attack methods to infect hosts in large quantities, forming
large and small botnet network families. These families
include massive botnet networks with hundreds of
thousands of hosts and small botnet networks with only a
hundred hosts (Huang, 2020). Many users may
unknowingly utilise to engage in illegal activities, which not
only brings adverse effects to significant operators’ and
merchants’ websites but also affects the reputation and the
user’s computer. Due to the P2P mode, it is difficult to
know the location of the botnet network controller’s host in
the trace, and it can only continuously improve its detection
capability to avoid hosts infected by botnet networks, which
poses a significant threat to the world’s network security
problem.

Due to the openness and vulnerability of the IRC
protocol, detecting IRC botnets is relatively easy. The
earliest detection method was based on rules such as port,
protocol, and source address to filter traffic, but this method
can only detect known attack traffic and not new attacks.
With the development of P2P protocols, attackers began
using P2P protocols to control botnets, which are more
covert. The detection of P2P botnets needs to consider their
distributed and decentralised characteristics. In P2P botnets,
communication between botnet hosts is not through a
centralised server but through a P2P network for connection
and communication. Therefore, special techniques are
needed to detect P2P botnet traffic. A standard method is
based on statistical analysis and machine learning
algorithms, using feature extraction and classification
algorithms to analyse and identify traffic. This method can
detect P2P botnet traffic and identify new unknown attacks.

Modern detection methods include feature analysis,
behaviour analysis, machine learning, and deep learning.
Botnet traffic can be detected by monitoring traffic in
real-time, analysing traffic, and identifying features. This
article proposes a botnet network detection method based on
machine learning and deep reinforcement learning (DRL).
By feature recognition and classification and training the
detection model with features that have a more significant
impact, it can recognise various attacks, thereby preventing
botnet traffic from invading.

The main contributions of this study are as follows:

1 To address the issue of feature selection in
reinforcement learning, a OneR classifier based on
machine learning is first used to select individual
features with significant impact. This section reduces the
time and cost of manual operations. It ensures that the
selected feature parameters are more conducive to model

training, thus avoiding poor detection performance
caused by feature selection problems.

2 Using DRL DQN algorithm to build a detection model
makes the judgment of data flow more professional. In
addition, the unique experience pooling mechanism of
DQN can also eliminate correlations between data
streams, ensuring the accuracy rate of judgments.
Experimental comparisons have shown that compared to
the already well-established LSTM and RNN+CNN
models, the accuracy rate of the DQN model still
improves by 1.4%.

3 Due to the singularity of the dataset itself, a definite
conclusion that DQN is superior to other existing
detection models cannot be obtained in comparative
experiments. Therefore, this article used the initial
dataset CIC-IDS2017, which also underwent data
pre-processing, to compare the three types of models
in the initial environment, which better reflects the
adaptability of the models. The experimental
comparison shows that compared to LSTM and RN +
CNN models, The accuracy rate of the DQN detection
model is 14% higher than theirs, with an accuracy rate
increase of 12%, indicating a significant improvement
and better adaptability to unfamiliar datasets.

2 Related work
In recent years, mainstream detection methods can divide
into two categories based on traffic and behaviour. From a
behavioural perspective, Lu (2020) ignores the sequential
nature of data and uses graph centrality-based metrics to
focus on communication graph structures. However, this
method requires accessing all data at once to establish the
graph model and is thus not very suitable as a handy tool.
From a traffic perspective, Zeidanloo et al. (2010)
constructed a general detection framework to determine
whether the traffic form belongs to a botnet. Although this
framework is practical for traditional IRC botnets, it cannot
identify the new P2P botnets that emerged. To address this,
Zhao et al. (2013) studied a real-time botnet detection
method based on TCP/UDP flows, which classifies packets
with the same five-tuple: source/destination IP address,
source/destination port number, and protocol identifier into
a data flow and uses short time windows to divide data
flows to achieve real-time detection of botnets. Joshi et al.
(2020) proposed using SVM and RFC random forest
classifiers to conduct classification experiments on the N-
BaIoT dataset. Alqatawna et al. (2021) conducted a feature
importance analysis and detected the URL feature set in
Android botnets. Some experts and professors used decision
trees, K-NN, MLP, naive Bayes, random forests, SVM, and
extreme gradient boosting based on each time window’s
dataset to detect mobile botnets and achieved high accuracy
rate rates in specific datasets (Kirubavathi et al., 2018;
Anwar et al., 2016; Abdullah et al., 2014; Girei et al., 2016;

 OneR-DQN: a botnet traffic detection model based on deep Q network algorithm in deep reinforcement learning 33

Costa et al., 2019; Yerima et al., 2021; Fu et al., 2020; Xu,
2016).

With the rise of deep learning, Torres et al. proposed
using RNN to detect a small amount of data through 5-fold
cross-validation (Torres et al., 2016). Pektas et al. (2018)
used deep neural networks to model network traffic to
detect botnets. Hussain et al. (2021) used the residual
network ResNet-18 to detect botnet network scanning
activities and DDoS attacks during the zero-day attack
phase. Chen used the residual spatiotemporal network to
solve network degradation problems and combined the long
short-term memory (LSTM) and convolutional neural
network (CNN) pooling layer in deep learning to design the
Res-1DCNN-LSTM model for botnet network traffic (Chen,
2022). Qi (2022), and Lu (2021), combined and improved
deep learning algorithms such as GRU, LSTM, and CNN to
achieve the detection of botnet network traffic. In addition,
Xue and Wang (2022) combined deep learning with the
internet of Things. They designed the bidirectional
LSTM-RNN model to detect consumer IoT devices and
botnet network activities in the network.

Christopher et al. started from the perspective of
botnets. They used generative adversarial networks (GAN)
to generate samples to make the detector more directional
and improve the model’s detection capability (Christopher
et al., 2018). Not only this, some teams used DRL to
generate adversarial samples that evade machine learning
detection algorithms, thereby generating a large volume of
botnet family networks and completing their invasion as
botnets. They continuously improve the detection model’s
robustness (Wu et al., 2019; Apruzzese et al., 2020;
Randhawa et al., 2022; Kadir et al., 2015). Venturi et al.
(2020) created an adversarial dataset based on GAN to
avoid traditional machine learning detectors.

With the development of DRL theory, combined with
the robust learning mechanism of deep learning in
high-dimensional and multi-feature scenarios (Huang, 2008;
Volodymyr et al., 2015), it has begun to show outstanding
performance in various fields (Zhao and Ding, 2018). This
paper proposes a botnet network detection and classification
method based on the deep Q-network (DQN). This method
belongs to static analysis, builds a DQN model, inputs
various features of botnet networks, and trains it using a
botnet network traffic dataset. The model combines the
trial-and-error mechanism and action optimisation strategy
of the Q-learning algorithm in reinforcement learning with
the high-dimensional feature input of deep learning to
achieve detection and classification of seven types of botnet
network traffic, including DDOS and Botnet, as well as
regular traffic.

3 Methodology
This paper proposes a OneR-DQN model constructed using
the machine learning OneR classifier and the DRL DQN
algorithm. The aim is to maintain high predictive
capabilities for different botnet datasets. The entire process
is divided into four steps: merging and pre-processing the

datasets, conducting feature engineering with machine
learning to select relevant features, building the DQN
model, comparison experiments with the built DQN model
and the others botnet detection model to compare the
performance of the two algorithms under different datasets,
and using the existing deep learning LSTM detection model
as an objective model judging reference. This paper also
explores the impact of feature engineering without using the
OneR classifier during model training. The experimental
procedure and model framework are illustrated in Figure 1.
And next, we will introduce each section one by one in the
order shown in Figure 1.

Figure 1 Flow diagram of botnet traffic detection based on
DDQN algorithm (see online version for colours)

3.1 Data selection and processing
The datasets used in this study are from the CIC-IDS series
provided by the Canadian Institute for Cybersecurity.
The datasets include CIC-IDS2017, CIC-Dos2017,
CSE-CIC-IDS2018, and CIC-DDos2019. The NumPy
library was employed in this paper to merge labels with the
same label values and filter out certain data samples.
The resulting merged dataset is referred to as the
CIC-Collection, and the corresponding label values obtained
are presented in Table 1.

34 Y. Hu et al.

Each label is associated with the features from the four
datasets. By using the Pandas library for data reading, there
are a total of 9,167,581 records with 79-dimensional
features. However, not all features are relevant or
informative. The dataset contains certain features
completely irrelevant for prediction, referred to as pollution
features, and need to be discarded. Following the ranking of
feature pollution severity, this paper utilised the drop
function to remove nine features, as shown in Table 2.

Table 1 ‘Label’ labels in the CIC-collection dataset

Benign DDos Bruteforce Infiltration
Botnet Dos Webattack Portscan

Table 2 The deleted 9-dimensional feature severely
contaminates the dataset

PSH flag count ECE flag count RST flag count

ACK flag count Fwd packet length
Min

Bwd packet length
min

Packet length min Protocol Down/up ratio

There are also some features, such as active Std. and Idle
Std., that can affect the dataset. However, after data
batching on the smaller dataset, the degree of feature
pollution is not significant or noticeable, so these features
are retained.

During the process of identifying polluted features, this
study discovered 11 features with a predictive capacity of
zero. These features have no meaningful value in any
classification model, and some even have None as their
feature values. For these features, the drop function was also
used to discard them, as shown in Table 3.

Table 3 Deleted 11 dimensional meaningless features

Bwd. avg. bulk
rate Bwd. avg. bytes/Bulk Bwd avg.

packets/Bulk

Bwd PSH flags Bwd URG Flags CWE flag count
FIN flag count Fwd. avg. bulk rate Fwd. avg.

bytes/bulk
Fwd. avg.
packets/bulk

Fwd. URG flags

Table 4 Data sample of CIC collection botnet dataset

Botnet traffic class Number of samples

Benign 7186189
DDos 1234729
Dos 397,344
Botnet 145,968
Bruteforce 103,244
Infiltration 94,857
Webattack 2,995
Portscan 2,255

Through the three steps described above, this study obtained
a clean sample dataset (CIC-collection) of four datasets. The
dataset contains detailed labels for personal attacks and
corresponding broader attack categories. There are no
none values, and no duplicate samples exist. The dataset
comprises 9,167,581 records, with each record having
59-dimensional features. The dataset is stored in the Parquet
file format. Compared to CSV files, Parquet files offer
smaller compressed storage space and more efficient
reading (Braams, 2018). The data can be read using the
built-in Pyarrow library in Python. An example of the data
samples in the dataset is presented in Table 4.

3.2 OneR classifier
OneR was first introduced by Holte in 1993, and it has since
been used in a variety of domains, including medical
diagnosis, credit scoring, and text classification.In recent
years, more advanced machine learning algorithms, such as
neural networks and decision trees, have gained popularity
for classification tasks. However, OneR remains a useful
tool for exploratory data analysis and as a baseline model
for comparison with more complex methods.

The OneR classifier is a simple and effective algorithm
that builds a rule-based model for classification tasks. It
works by selecting a single feature from the dataset and then
determining the class that most frequently occurs for each
unique value of that feature. This process generates a set of
rules, which can be used to predict the class of new
instances based on their feature values.

The OneR algorithm is computationally efficient,
making it well-suited for large datasets with many features.
Additionally, it can provide insights into the most important
features for a particular classification problem, aiding in
feature selection and interpretation.

OneR classifier algorithm steps are as follows:

Algorithm 1 OneR classifier algorithm steps

1 Convert the feature values of the dataset into binary values
(assign 1 to feature values that are greater than or equal to
the mean, and 0 to those that are less than the mean)

2 Calculate the frequency of each feature value in each
category and determine the misclassification rate of the
most frequent feature value

3 Add up the misclassification rates of all feature values for
a particular feature, and identify the combination of
features with the lowest misclassification rate and the total
number of errors

4 Compare the total number of errors for each feature and
select the feature with the lowest number of errors as the
best feature for classification

5 The classification rule for the best feature corresponds to
the feature value classification

Before performing the classification operation with the
OneR classifier, it is necessary to discard certain features
that cannot be used for classification, such as features of
‘type’ type. After this pre-processing step, the dataset is
reduced to 44 dimensions. Then, the remaining features are

 OneR-DQN: a botnet traffic detection model based on deep Q network algorithm in deep reinforcement learning 35

input into the OneR classifier, which utilises a machine-
learning decision tree classifier as its core. The steps
involved in this process are as follows:

(max_ 1, ' ')DecisionTreeClassifier depth critierion gini= =

In this process, the decision tree has a depth of 1 layer and
uses the Gini coefficient. After fitting the training set,
predictions are made on both the testing and training sets
using the prediction function:

()
. (_ []. . (1,1))

_ . _ []. . (1,1)
preds rootnode predict X test feature array reshape
preds tr rootnode predict X train feature array reshape

= −
= −

The evaluation metrics are then calculated by comparing the
predicted results with the accurate labels. If the metric
evaluation value is more significant than 0.5, the feature
name, metric value, and prediction result of that feature are
saved. These values are stored in a list and converted into a
data frame. The metric evaluation value, specifically the
roc_auc_score, is calculated directly using the metrics
method from the sklearn library. The results are sorted in
descending order:

. (,
[' ', ' _ _ ', ' _ ',
' ', ' _ ']). _
(' _ _ ',)

pd DataFrame data results columns
feature roc auc score fitted models

predictions preds train sort values
by roc auc score ascending False

= =

= =

Figure 2 The working principle of feature selection for OnerR
classifier (see online version for colours)

Based on the metric evaluation value (roc_auc_score)
greater than 0.5, features with significant discriminatory
power are selected. The average prediction results on the
testing and training sets are computed for these valuable
features, resulting in an overall prediction result vector. The
ROC curve parameters are then calculated based on the
overall prediction results and proper training set labels. The
calculation method for the ROC curve is as follows:

ROC TPR FPR= − (1)

True positive rate (TPR) represents the probability of
correct predictions, and false positive rate (FPR) represents
the probability of incorrect predictions. The area under the
ROC curve (AUC score) is used as a widely recognised
standard for evaluating the overall performance of
classifiers. The AUC value ranges from 0 to 1, with higher
values indicating better performance. The random selection
benchmark is set at an AUC score of 0.5, with features
having an AUC score greater than 0.5 considered more
informative for classification. The flowchart of the entire
OneR classifier process is depicted in Figure 2.

And after constructing the OneR classifier, the study
proceeds by inputting the samples, excluding Benign, into
the classifier for each of the seven attack methods.
The ROC curves are then generated based on the
best-performing feature for each attack, as shown in
Figure 3.

Figure 3 Roc curve of OnerR classifier in botnet traffic
(see online version for colours)

The OneR classifier performs perfect ROC curves in attacks
such as Bruteforce and Botnet. It indicates its ability to
accurately identify most samples in these attack categories
without additional learning. However, its effectiveness
diminishes when dealing with Infiltration attacks, as it
exhibits no discerning capability. The study then proceeds
to use the metrics class from the sklearn library to compute
and obtain the top-ranked 2-dimensional features for each
attack, resulting in 14 features, as shown in Table 5. From
these features, the most effective ones are selected as inputs
for the detection model.

36 Y. Hu et al.

In the subsequent detection model training, feature
selection is a crucial step in achieving high performance.
Among the features selected by the classifier, since features
17, 47, and 48 have appeared, and feature 8 (Bwd IAT Max)
has shown poor performance, these four features are
excluded. The remaining 10-dimensional features are
chosen as the input for training the model.

Table 5 AUC score for filtering features of various attack
categories

Attack
means Number Feature AUC score

DDoS 33 Fwd packet length
max

0.7279

34 Avg Fwd segment
size

0.7257

DoS 17 Bwd packets/s 0.8171
38 Fwd seg size min 0.7846

Bruteforce 7 Bwd header length 0.9638
25 Fwd act data

packets
0.9587

Portscan 47 Packet length Std. 0.8580
48 Packet length

variance
0.8580

Botnet 17 Bwd packets/s 0.8705
14 Bwd packet length

mean
0.8610

Webattack 48 Packet length
variance

0.8074

47 Packet length Std. 0.8065
Infiltration 2 Active min 0.5453

8 Bwd IAT max 0.5324

3.3 DQN detection model
‘DRL’ was proposed by DeepMind in 2015. They combined
the excellent performance of high-dimensional features in
deep learning with the reward mechanism in reinforcement
learning. They used the fused algorithm to complete the
challenge of Atari games. According to their report, the
performance of DRL after training is even stronger
than some experts. The following will introduce the DRL
algorithms used in this paper.

3.3.1 Q-learning
Q-learning is a value iteration-based reinforcement
learning algorithm for solving Markov decision process
(MDP) problems. The Q-learning algorithm aims to learn an
optimal policy that maximises the long-term cumulative
reward. In Q-learning, we learn a state-action value function
(Q-function) representing the expected cumulative reward
obtained by taking a particular action in a given state. The
algorithm is shown as follows.

() ()
() ()'

'
'

, ,
, ,max

a

t t t t

t t t t

Q s a Q s a

r Q s a Q s a

←

+  + − 
 

α γ (2)

In equation (2), ‘St’ represents the current state, ‘at’
represents the action taken in the current state, ‘r’ represents
the immediate reward obtained after taking the action at, ‘s’
represents the next state reached after taking the action, and
‘α‘ is the learning rate parameter. This calculation formula
uses temporal difference learning to update the Q-value. It
selects the maximum Q(St’, at’) from the next state ‘s’ and
multiplies it by ‘γ‘, then adds the actual reward value ‘r’ to
obtain the final true value of Q(St, at). Q-learning aims to
learn an optimal state action-value function that maximises
the cumulative return on taking actions in any state. During
the learning process, we adopt a greedy strategy to select the
optimal action in the current state:

()arg max ,at Q St at= (3)

In equation (3), Update the Q(St, at) value function by
continuously using the Bellman equation until the value
function converges to the optimal value function maxaQ(St,
at). When the value function converges, the optimal strategy
can obtain by selecting the action with the most significant
value function in each state.

The advantage of the Q-learning algorithm is that it can
handle continuous state and action space and does not need
models (model-independent methods). Even if we do not
know the model of the environment, we can use Q-learning
to learn the optimal strategy.

3.3.2 Deep Q network
DQN is an algorithm based on DRL, an extension of the
Q-learning algorithm in deep learning. DQN uses a neural
network to approximate the Q-value function, which can
learn in high-dimensional and complex state spaces and has
a certain degree of generalisation ability.

Figure 4 DQN neural network structure (see online version
for colours)

DQN consists of four main modules: the model, agent,
memory, and DQN algorithm. Each agent’s decision affects
the environment’s changes, and the model processes this
feedback and stores the data in memory. The model
provides the agent with a reward value based on the
information, allowing the agent to update its decision
continually. The memory releases data to allow the agent to
undergo multiple training sessions, preventing problems
with the expected Q-value being too large. Sample and
memory data are passed back and forth to the agent for

 OneR-DQN: a botnet traffic detection model based on deep Q network algorithm in deep reinforcement learning 37

training until the model converges and completes the
training.

The DQN algorithm starts by providing an environment
states to the agent, who then utilises the value function
network to obtain all Q(s, a) values associated with states.
The agent decides by employing the ε-greedy strategy to
select an action a. The environment responds to the action
by providing a reward value ‘r’ and the following
environment states’. This completes one epoch. The
parameters of the value function network are then updated
based on the reward value ‘r,’ and the process proceeds to
the next epoch. This cycle continues until a converged value
function network is trained, concluding the loop. The
workings of one epoch are depicted in Figure 4.

At the algorithm level, DQN extends the Q-learning
algorithm. However, since DQN approximates the Q-values
using a neural network, determining the ‘θ’ weights of the
neural network becomes crucial in the entire process. In this
study, the gradient descent algorithm is employed to
minimise the loss function, continuously adjusting the θ
weights. The algorithm for the loss function is depicted as
equation (4).

[]2(, , , ') ~ ()() (, ;))i i s a r s U D i iL θ E y Q s a θ= − (4)

In equation (4), s represents the state, a represents the
action, r represents the immediate reward, s’ represents the
next state, θi represents the parameters of the neural
network in the i-th iteration, Q(s, a, θi) represents the
Q-value function for taking action a in states with θi, U(D)
represents the uniformly sampled experience set from the
experience replay pool, and D represents the target Q-value,
which is the representation of the experience pool itself. yi
calculated as follows:

()max , ;i i
a

y r Q s a θ
′

−′ ′= + (5)

In equation (5), iθ− represents the parameters of the target
neural network at the i-th iteration. ()', '; iQ s a θ− represents
the output of the target network. By introducing the target
network, the target Q-values remain unchanged for a certain
period of time, reducing the correlation between the current
Q-values and the target Q-values to some extent, thereby
improving the stability of the algorithm, which helps
prevent overfitting.

Performing botnet detection using DQN mainly consists
of three steps. Firstly, the Q-network is trained to identify
the features of a large amount of network traffic and store
multiple predicted results into the experience replay buffer.
Then, the model is continuously trained through self-play.
Finally, the trained model is used to detect anomalous
traffic.

PARL is a classic framework based on DRL, which is
widely used in various fields such as unmanned driving and
game control using DRL algorithms. The DQN model
architecture used in this article is built on the PARL
framework and the PaddlePaddle library of PaddlePaddle,

and has been specifically improved for traffic detection
based on the general model.

To achieve this, we first construct the framework and
core algorithms of the model using Model and Agent
classes. The Model class uses the PaddlePaddle layers
module to create three fully connected layers, with ReLU
activation functions in the first two layers and no activation
function in the last layer, whose output dimension is the
action space. The value function is then defined to output
the state value function Q by processing the input state obs.
through the fully connected layers. In the Agent class, we
define the functions build_program, sample, predict, and
learn to enable the agent to make decisions based on the
maximum Q value as much as possible and to converge by
slowly decreasing the ε-greedy value to prevent continuous
exploration.

In the botnet traffic detection model, to facilitate agent
learning, when the agent selects an action to classify the
traffic type, it receives a reward value ‘r’. The reward
function is defined as follows:

5,
5,

0.1, 1

True
False

Not judged every ms
r



−
= −




 (6)

When the agent makes a correct selection, positive feedback
of 5 scores is rewarded. On the other hand, when the agent
makes an incorrect selection, negative feedback of −5 scores
is given. Additionally, to prevent the agent from avoiding
making decisions indefinitely, a penalty of 0.1 scores is
deducted every 1 ms. This approach improves the model’s
accuracy rate and enhances its decision-making speed.

Figure 5 Working principle of re-memory pool (see online
version for colours)

In addition, DQN introduces the replay memory
mechanism. Traditional Q-learning algorithms interact and
improve based on the current policy, discarding samples
generated from each model’s utilisation interaction after
learning. This approach is inefficient in utilising data
samples but also leads to correlated data samples. If the
model assumes the presence of correlations between data
samples that do not exist, its decision-making ability will be
significantly compromised. Therefore, in DQN, a quadruple
(st, at, rt, st′) is added to the experience replay memory as a

38 Y. Hu et al.

data sample. During model learning, these samples are
interleaved with new data samples to change the model’s
policy and update the Q-network parameters. Collected
samples are sequentially stored in the experience replay
memory according to their time order. If the memory is full,
new samples will overwrite the oldest samples in the
memory. The experience replay memory uniformly and
randomly sample a batch of samples from the cached
samples for the model to learn. This approach ensures that
each training sample typically comes from multiple
interaction sequences, reducing data correlations and
improving sample utilisation. The working principle of the
experience pool on the DQN model is shown in Figure 5.

After the model is constructed, 20,000 randomly
selected samples from the pre-processed botnet dataset are
inputted for training until convergence. The entire working
principle of the DQN botnet traffic detection model is
illustrated in Figure 6.

Figure 6 DQN botnet detection model (see online version
for colours)

The overall Pseudocode of the DQN detection model is as
follows:

Botnet detection based on DQN model

Input: state s, action a, discount factor γ, learning rate α, greedy
factor ε
1 Initialise replay memory D to capacity N;
2 Random initialise Q network weight θ.
3 Initialise target Q network weight θ– so that θ– = θ
4 for epoch = 1, M do:
5 Initialise start state ；
6 for t =1, T do:
7 In state s,select action at through the ε-

greedy;
8 Execute action a, observe the judgement

results, and receive immediate rewards r
and a new state s′.

9 Push (s, a, r, s′) into the replay memory D;
10 sampling st, at, rt, st′ from D;
11 '

'

,
(, 'ma) x , t a θ

t tr s in a resting ra
Q

r
te

st a l eQ e s−


=  +

12 Using (y–Qe(s, a))2 as loss function to train Q
network;

13 Update status, which is s ← s′;

14 Every C steps, Update target network
weight, which is θ– ← θ ;

15 When s is in the termination state, end for;
16 When ∀s, a, Qe(s, a) convergence, end for;
Output: DQN model training completed.

4 Experimental process and results
4.1 Experimental environment
This experiment using the computer operating system about
Windows 10, with an i7-7200 CPU and 16G of memory.
The development environment includes Python 3.6.5 and
Pycharm, and the DQN detection model is built using the
PaddlePaddle and PARL frameworks.

4.2 Data
In Section 3.1, the dataset has been processed in this study.
A random sample of 20,000 data samples was selected
according to the proportion for the experiments. The
quantity and labels of the selected dataset are shown in
Table 6.

Table 6 Randomly selected botnet dataset samples

Botnet traffic class Samples number Select label

Benign 13,998 1
DDos 2,928 2
Dos 1,104 3
Botnet 556 4
Bruteforce 460 5
Infiltration 444 6
Webattack 264 7
Portscan 264 8
Total 20,000

4.3 Model assessment
In this study, two approaches were employed for feature
classification: one using the OneR classifier and the other
randomly selecting 10-dimensional features. Apply two sets
of features to DQN and LSTM and CNN+RNN models
compared to DQN, and compare their experimental results
in the test set. Select accuracy rate and precision rate as the
evaluation criteria. The formulas for accuracy rate and
precision rate are shown in equations (7) and (8):

TP TNAccuracy
TP TN FP FN

+=
+ + +

 (7)

TPPrecision
TP FP

=
+

 (8)

In equation (7) and (8), TP represents the number of
positive samples predicted as positive, FP represents the
number of negative samples predicted as positive, TN

 OneR-DQN: a botnet traffic detection model based on deep Q network algorithm in deep reinforcement learning 39

represents the number of positive samples predicted as
negative, and FN represents the number of negative samples
predicted as negative.

4.4 Analysis of experimental results
In this section, we will conduct three sets of comparative
experiments: training the DQN detection model, LSTM
detection model, and CNN + RNN(CR) detection model
using the features filtered by the OneR classifier and
randomly selected features, respectively, to verify the
excellent ability of OneR classifier to filter features; Using
the same pre-processed CIC-ISD2017 dataset instead of the
CIC-collection test set, the detection ability of three types of
models in unfamiliar datasets are tested to verify the high
adaptability of DRL.

4.4.1 Model comparison with randomly selected
features

In this experiment, 10-dimensional features were randomly
selected using the random function and used for training in
two models. The comparison of accuracy rate and precision
rate obtained is shown in Figures 7 and Figure 8.

Figure 7 Accuracy rate comparison of three models (see online
version for colours)

Based on Figures 4 and 5, it shows that the accuracy rate of
the DQN detection model is very high in the early
oscillation frequency, which is caused by the ε-greedy of the
DQN detection model. This result is that the accuracy rate
of the DQN continues to decrease in the early training.
During the training process, as each of the three models
converges, the e-discount factor decreases from the initial
set of 0.1 to 0.01, ultimately allowing the model to complete
the training. Both in terms of accuracy rate and precision
rate, the DQN detection model is superior to the LSTM and
CR detection models. The randomly selected features
prevented all three models from achieving good detection
performance in the test set, and even the best-performing
DQN only achieved an accuracy rate of 63.74%, with an
accuracy rate at most 80%. These results are not qualified

for a detection model. Therefore, we will add a OneR
classifier to filter features and complete the second
comparative experiment.

Figure 8 Precision rate comparison of three models (see online
version for colours)

Figure 9 Accuracy rate comparison of three models (see online
version for colours)

4.4.2 Model comparison with OneR Classifier
The 10 features selected by the OneR classifier, as
mentioned in Section 3.2, are used for training. These
features include 17th Bwd. Packets/s, 47th Packet Length
Std., 48th Packet Length Variance, and others. The
comparison of accuracy rate and precision rate obtained is
shown in Figures 9 and Figure 10. Since all data of the three
models are higher than 0.5, the ordinate range of the line
chart in Figures 9 and Figure 10 is set between 0.5–1. After
observing the Figures 9 and 10, it can be observed that
using the features provided by the OneR classifier for
training, the accuracy rate and precision rate of the three
models have been greatly improved, indicating that the
feature selection ability of the OneR classifier is excellent in
completing the task. Unlike when LSTM and CR
approaching converge at less than 500 epochs at the
beginning, the DQN detection model slowly converges after

40 Y. Hu et al.

8,000 epochs, indicating that DQN places great emphasis on
early exploration and sacrifices its accuracy rate. After the
model slowly converged, the judgment ability of the DQN
detection model began to show, ultimately surpassing the
LSTM and CR detection models. In terms of precision rate,
DQN inherits its performance in random feature selection
experiments, and exploration not only slows down its
precision rate improvement but also reduces its accuracy
rate. However, as the model converges, the precision rate
difference between the three models is slight, but DQN
detection is still slightly better.

However, more is needed to improve the detection
model, so the next experiment will use an unfamiliar dataset
to test the testing ability of these three detection models that
have already been trained through the OneR classifier and
compare which model has more robust adaptability.

Figure 10 Precision rate comparison of three models (see online
version for colours)

Figure 11 Accuracy rate comparison of three models (see online
version for colours)

4.4.3 Model comparison with other datasets
In order to ensure the consistency of the labels, this
experiment used CIC-ID2017, one of the original datasets of
CIC-Collection, as the test set. After data pre-processing in
Section 3.1, 20,000 data samples were randomly selected,
and three detection models that had already been trained in
the previous experiment were used to observe their accuracy
and precision in this dataset. The comparison of accuracy

rate and precision rate obtained is shown in Figures 11 and
Figure 12. Since all data of the three models are higher than
0.5, the ordinate range of the line chart in Figures 11 and
Figure 12 is set between 0.5–1.

From Figures 11 and 12, it can be observed that the
detection ability of the DQN detection model in the new
dataset is more robust than that of the LSTM detection
model and the CR detection model. Although the DQN
detection model converges last every time it is trained, and
the accuracy and precision of the initial model are not as
good as the other two models, with the increase of epochs,
the accuracy and precision of the DQN detection model can
still be improved, rather than stabilising like LSTM and CR.
Whether in terms of accuracy or precision, the DQN
detection model can still reach over 90% in the later stage,
but the LSTM detection model and CR detection model fell
by 90%. Although the detection ability of all three models
in unfamiliar datasets has decreased, the decrease in the
DQN detection model is acceptable, as it still has sufficient
detection ability for unfamiliar datasets. This experiment
demonstrates the strong adaptability of the DQN detection
model.

Figure 12 Precision rate comparison of three models (see online
version for colours)

However, the DQN detection model is not perfect either. In
each comparative experiment, the training and judgment
time of the DQN detection model is always the longest, with
only 20,000 samples. The LSTM detection model and CR
detection model only took 3−5 minutes to complete the
training. However, for the DQN detection model, it takes 8
minutes to complete the training, which may vary due to
differences in computer CPU and memory. However, it
cannot be denied that the training time of the DQN
detection model is longer than that of the LSTM and CR
detection models.

5 Conclusions
This paper proposes a DQN algorithm detection model
based on DRL by designing a botnet traffic detection model.
Compared with existing LSTM and CR detection models,
the DQN model improves judgment ability and reuses

 OneR-DQN: a botnet traffic detection model based on deep Q network algorithm in deep reinforcement learning 41

sample resources by accumulating Q-values and using
experience pools. The experimental results show that the
feature selection using OneR classifier improves the
detection ability of the model. In addition, the stability of
the DQN model enables it to better adapt to changes in
different datasets. Regardless of whether the OneR classifier
using for feature selection, the detection model constructed
using DQN outperforms LSTM and CR detection models in
terms of accuracy and accuracy. However, due to the
presence of not only neural networks but also Q value
prediction and experience pool storage in DQN, the model
becomes more complex and requires more time and space
costs than LSTM and CR algorithms. Moreover, the DQN
model is sensitive to parameters, and unsuitable features can
lead to poor performance.

Future research could explore other DRL algorithms that
can improve over time and reduce the time cost of model
construction. It may also be necessary to adopt other
classifiers to analyse and train new models from the
perspective of multiple features. Despite its limitations, our
proposed method represents a significant step forward in
botnet network detection. It can potentially contribute to
developing more accurate and efficient detection methods.

Acknowledgements
This study was supported by the Liaoning Province Applied
Basic Research Program, 2023JH2/101600038. The authors
gratefully acknowledge the anonymous reviewers for their
valuable comments.

References
Abdullah, Z., Saudi, M. and Anuar, B. (2014) ‘Mobile botnet

detection: proof of concept’, IEEE 5th Control and System
Graduate Research Colloquium, Vol. 5, No. 2, pp.257–262.

Alqatawna, J., Ala, M., Hassonah, M. et al. (2021) ‘Android botnet
detection using machine learning models based on a
comprehensive static analysis approach’, Journal of
Information Security and Applications, Vol. 2021, No. 58,
pp.1–14.

Anwar, S., Zain, J.M., Inayat, Z. et al. (2016) ‘A static approach
towards mobile botnet detection’, International Conference
on Electronic Design (ICED), Vol. 3, No. 1, pp.563–567.

Apruzzese, G. et al. (2020) ‘Deep reinforcement adversarial
learning again-st botnet evasion attacks’, IEEE Transactions
on Network and Service Management, Vol. 17, No. 4,
pp.1808–1821.

Braams, B. (2018) ‘Predicate pushdown in parquet and databricks
spark’, The Netherlands: Universiteit van Amsterdam,
Vol. 2018, No. 4, pp.849–911.

Chen, F. (2022) ‘Research on botnet detection technology based
on deep learning’, Guangdong University of Technology,
Vol. 12, No. 2, pp.1–56.

Christopher, D., Majdani, F. and Petrovski, V. (2018) ‘Botnet
detection in the internet of things using deep learning
approaches’, 2018 International Joint Conference on Neural
Networks (IJCNN), Vol. 7, No. 1, pp.8–13.

Costa, V., Barbon, S., Miani, R. et al. (2019) ‘Mobile botnets
detection based on machine learning over system calls’,
International Journal of Security and Networks, Vol. 14,
No. 2, pp.103–118.

Dhayal, H. and Kumar, J. (2018) ‘Botnet and P2P botnet
detection strategies: a review’, 2018 International Conference
on Communication and Signal Processing (ICCSP),
Vol. 4, No.3, pp.1077–1082.

Fu, Z., Xu, Y. and Wu, Z. (2020) ‘SVM-KNN network intrusion
detection method based on incremental learning’, Computer
Engineering, Vol. 46, No. 4, pp.115–122.

Girei, A., Shah, A. and Shahid, B. (2016) ‘An enhanced botnet
detection technique for mobile devices using log analysis’,
International Conference on Automation and Computing
(ICAC), Vol. 2016, No. 22, pp.450–455.

Heng’an Jiaxin Technology Co., Ltd. (2020) ‘2020 network
security situation report’, Information Security Research,
Vol. 7, No. 3, pp.198–206.

Huang, B. (2008) ‘Research on intensive learning method and its
application’, Shanghai Jiaotong University, Vol. 2008, No. 8,
pp.124–239.

Huang, Z. (2020) ‘Focus on the global network security situation
in the first half of 2020’, China Information Security, Vol. 7,
No. 15, p.68.

Hussain, F., Abbas, S.G., Pires, I.M. et al. (2021) ‘A two-fold
machine learning approach to prevent and detect IoT botnet
attacks’, IEEE Access, Vol. 2021, No. 9, pp.163412–163430.

Joshi, S. and Abdelfattah, E. (2020) ‘Efficiency of different
machine learning algorithms on the multivariate classification
of IoT botnet attacks’, IEEE Annual Ubiquitous Computing,
Electronics and Mobile Communication Conference
(UEMCON), Vol. 11, No. 2, pp.517–521.

Kadir, A., Stakhanova, N. and Ghorbani, A. (2015) ‘Android
bot-nets: what urls are telling us’, International Conference
on Network and System Security, Vol. 12, No. 3, pp.78–91.

Kirubavathi, G. and Anitha, R. (2018) ‘Structural analysis and
detection of android botnets using machine learning
techniques’, International Journal of Information Security,
Vol. 17, No. 2, pp.153–167.

Lu, F. (2021) ‘Research on botnet detection technology based on
deep learning’, Nanjing University of Posts and
Telecommunications, Vol. 2021, No. 1, pp.1–68.

Lu, H. (2020) ‘Research on complex network representation
learning based on graph convolution’, Nanjing University of
Posts and Telecommunications, Vol. 2020, No. 3, pp.1–44.

Pektas, A. and Acarman, T. (2018) ‘Botnet detection based
on network flow summary and deep learning’, Computer
Science, Vol. 4, No. 26, pp.1–15.

Qi, Z. (2022) ‘Research on malicious network traffic detection
technology based on neural network’, Guangdong University
of Technology, Vol. 2022, No. 1, pp.1–50.

Randhawa, R., Aslam, N., Alauthman, M. et al. (2021) ‘Deep
reinforcement learning based evasion generative adversarial
network for botnet detection’, arXiv preprint, arXiv:2210.
02840, 2021.

Torres, P., Catania, C., Garcia, S. et al. (2016) ‘An analysis of
recurrent neural networks for botnet detection behavior’, 2016
IEEE Biennial Congress of Argentina (ARGENCON),
Vol. 2016, No. 6, pp.1–6.

Venturi, A. et al. (2021) ‘DReLAB – deep reinforcement learning
adversarial botnet: a benchmark dataset for adversarial attacks
against botnet intrusion detection systems’, Data in Brief,
Vol. 2021, No. 34, pp.106631–106643.

42 Y. Hu et al.

Volodymyr, M., Koray, K., David, S. et al. (2015) ‘Human-level
control through deep reinforcement learning’, Nature,
Vol. 2015, No. 2, pp.529–533.

Wu, D., Fang, B., Wang, J., Liu, Q. and Cui, X. (2019) ‘Evading
machine learning botnet detection models via deep
reinforcement learning’. IEEE International Conference on
Communications (ICC), Vol. 2019, No. 3, pp.967–973.

Xu, J. (2016) ‘Research on mobile botnet detection methods’,
Computer Technology and Development, Vol. 26, No. 12,
pp.117–121.

Xue, H. and Wang, C. (2022) ‘Research on botnet traffic detection
based on GAN’, Electronic Design Engineering, Vol. 30,
No. 17, pp.146–149.

Yerima, Y. and Bashar, A. (2021) ‘Bot-IMG:A framework for
image-based detection of Android botnets using machine
learning’, ACS/IEEE International Conference on Computer
Systems and Applications (AICCSA), Vol. 2021, No. 18,
pp.1–7.

Zeidanloo, R. and Manaf, B. (2010) ‘Botnet detection based on
traffic monitoring’, International Conference on Networking
and Information Technolog., Vol. 7, No. 11, pp.97–101.

Zhao, D., Traore, I. and Ghorbani, A. (2013) ‘Botnet detection
based on traffic behavior analysis and flow intervals’,
Computers and Security, Vol. 39, No. 4, pp.2–16.

Zhao, X. and Ding, S. (2018) ‘Overview of deep intensive learning
research’, Computer Science, Vol. 45, No. 7, pp.1–6.

