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Abstract: With the continuous progress of network technology, the rapid growth of botnets 
poses a significant challenge to network security. A universal detection model needs to be 
improved to cope with various datasets with variable feature states. This article constructs a 
detection model based on deep reinforcement learning (DRL) deep Q network (DQN). It uses a 
OneR classifier to select features from the dataset and hand them to the model for training. The 
unique experience pool mechanism of DQN is used to extract independent experience and 
training samples for cross-training continuously. The trained model compares with the other 
detection models in a new dataset for experimental comparison. The experiment shows that 
compared with the existing detection model, the improved DQN botnet detection model has 
higher accuracy rate and precision rate, which indicates that the detection model equipped with 
the DQN algorithm has more robust adaptability in the new dataset. 

Keywords: botnet detection; deep reinforcement learning; DRL; DQN model; feature 
classification; OneR classifier. 
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1 Introduction 
Nowadays, the methods of botnet network intrusion are 
constantly innovating. In 2020 alone, there were 35 million 

botnet network intrusion incidents in Shanghai, China 
(Heng’an Jiaxin Technology Co., 2020). Many hosts are 
unwittingly turned into ‘botnet’ hosts and become the host 
of botnet networks when they access phishing websites that 
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have the same interface as legitimate sites, which are then 
used by the botnet network families to attack other websites, 
causing many sites to force to shut down due to DDoS 
attacks. Although experts have built many detection models 
for IRC botnet networks in the early days, the structure of 
botnet networks is also constantly evolving, gradually 
evolving from the early IRC mode to HTTP and  
peer-to-peer (P2P) modes (Dhayal et al., 2018). Hackers use 
DDoS, spam, brute-force cracking, penetration, and other 
attack methods to infect hosts in large quantities, forming 
large and small botnet network families. These families 
include massive botnet networks with hundreds of 
thousands of hosts and small botnet networks with only a 
hundred hosts (Huang, 2020). Many users may 
unknowingly utilise to engage in illegal activities, which not 
only brings adverse effects to significant operators’ and 
merchants’ websites but also affects the reputation and the 
user’s computer. Due to the P2P mode, it is difficult to 
know the location of the botnet network controller’s host in 
the trace, and it can only continuously improve its detection 
capability to avoid hosts infected by botnet networks, which 
poses a significant threat to the world’s network security 
problem. 

Due to the openness and vulnerability of the IRC 
protocol, detecting IRC botnets is relatively easy. The 
earliest detection method was based on rules such as port, 
protocol, and source address to filter traffic, but this method 
can only detect known attack traffic and not new attacks. 
With the development of P2P protocols, attackers began 
using P2P protocols to control botnets, which are more 
covert. The detection of P2P botnets needs to consider their 
distributed and decentralised characteristics. In P2P botnets, 
communication between botnet hosts is not through a 
centralised server but through a P2P network for connection 
and communication. Therefore, special techniques are 
needed to detect P2P botnet traffic. A standard method is 
based on statistical analysis and machine learning 
algorithms, using feature extraction and classification 
algorithms to analyse and identify traffic. This method can 
detect P2P botnet traffic and identify new unknown attacks. 

Modern detection methods include feature analysis, 
behaviour analysis, machine learning, and deep learning. 
Botnet traffic can be detected by monitoring traffic in 
real-time, analysing traffic, and identifying features. This 
article proposes a botnet network detection method based on 
machine learning and deep reinforcement learning (DRL). 
By feature recognition and classification and training the 
detection model with features that have a more significant 
impact, it can recognise various attacks, thereby preventing 
botnet traffic from invading. 

The main contributions of this study are as follows:  

1 To address the issue of feature selection in 
reinforcement learning, a OneR classifier based on 
machine learning is first used to select individual 
features with significant impact. This section reduces the 
time and cost of manual operations. It ensures that the 
selected feature parameters are more conducive to model 

training, thus avoiding poor detection performance 
caused by feature selection problems. 

2 Using DRL DQN algorithm to build a detection model 
makes the judgment of data flow more professional. In 
addition, the unique experience pooling mechanism of 
DQN can also eliminate correlations between data 
streams, ensuring the accuracy rate of judgments. 
Experimental comparisons have shown that compared to 
the already well-established LSTM and RNN+CNN 
models, the accuracy rate of the DQN model still 
improves by 1.4%. 

3 Due to the singularity of the dataset itself, a definite 
conclusion that DQN is superior to other existing 
detection models cannot be obtained in comparative 
experiments. Therefore, this article used the initial 
dataset CIC-IDS2017, which also underwent data  
pre-processing, to compare the three types of models  
in the initial environment, which better reflects the 
adaptability of the models. The experimental 
comparison shows that compared to LSTM and RN + 
CNN models, The accuracy rate of the DQN detection 
model is 14% higher than theirs, with an accuracy rate 
increase of 12%, indicating a significant improvement 
and better adaptability to unfamiliar datasets. 

2 Related work 
In recent years, mainstream detection methods can divide 
into two categories based on traffic and behaviour. From a 
behavioural perspective, Lu (2020) ignores the sequential 
nature of data and uses graph centrality-based metrics to 
focus on communication graph structures. However, this 
method requires accessing all data at once to establish the 
graph model and is thus not very suitable as a handy tool. 
From a traffic perspective, Zeidanloo et al. (2010) 
constructed a general detection framework to determine 
whether the traffic form belongs to a botnet. Although this 
framework is practical for traditional IRC botnets, it cannot 
identify the new P2P botnets that emerged. To address this, 
Zhao et al. (2013) studied a real-time botnet detection 
method based on TCP/UDP flows, which classifies packets 
with the same five-tuple: source/destination IP address, 
source/destination port number, and protocol identifier into 
a data flow and uses short time windows to divide data 
flows to achieve real-time detection of botnets. Joshi et al. 
(2020) proposed using SVM and RFC random forest 
classifiers to conduct classification experiments on the N-
BaIoT dataset. Alqatawna et al. (2021) conducted a feature 
importance analysis and detected the URL feature set in 
Android botnets. Some experts and professors used decision 
trees, K-NN, MLP, naive Bayes, random forests, SVM, and 
extreme gradient boosting based on each time window’s 
dataset to detect mobile botnets and achieved high accuracy 
rate rates in specific datasets (Kirubavathi et al., 2018; 
Anwar et al., 2016; Abdullah et al., 2014; Girei et al., 2016; 
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Costa et al., 2019; Yerima et al., 2021; Fu et al., 2020; Xu, 
2016). 

With the rise of deep learning, Torres et al. proposed 
using RNN to detect a small amount of data through 5-fold 
cross-validation (Torres et al., 2016). Pektas et al. (2018) 
used deep neural networks to model network traffic to 
detect botnets. Hussain et al. (2021) used the residual 
network ResNet-18 to detect botnet network scanning 
activities and DDoS attacks during the zero-day attack 
phase. Chen used the residual spatiotemporal network to 
solve network degradation problems and combined the long 
short-term memory (LSTM) and convolutional neural 
network (CNN) pooling layer in deep learning to design the 
Res-1DCNN-LSTM model for botnet network traffic (Chen, 
2022). Qi (2022), and Lu (2021), combined and improved 
deep learning algorithms such as GRU, LSTM, and CNN to 
achieve the detection of botnet network traffic. In addition, 
Xue and Wang (2022) combined deep learning with the 
internet of Things. They designed the bidirectional 
LSTM-RNN model to detect consumer IoT devices and 
botnet network activities in the network. 

Christopher et al. started from the perspective of 
botnets. They used generative adversarial networks (GAN) 
to generate samples to make the detector more directional 
and improve the model’s detection capability (Christopher 
et al., 2018). Not only this, some teams used DRL to 
generate adversarial samples that evade machine learning 
detection algorithms, thereby generating a large volume of 
botnet family networks and completing their invasion as 
botnets. They continuously improve the detection model’s 
robustness (Wu et al., 2019; Apruzzese et al., 2020; 
Randhawa et al., 2022; Kadir et al., 2015). Venturi et al. 
(2020) created an adversarial dataset based on GAN to 
avoid traditional machine learning detectors. 

With the development of DRL theory, combined with 
the robust learning mechanism of deep learning in  
high-dimensional and multi-feature scenarios (Huang, 2008; 
Volodymyr et al., 2015), it has begun to show outstanding 
performance in various fields (Zhao and Ding, 2018). This 
paper proposes a botnet network detection and classification 
method based on the deep Q-network (DQN). This method 
belongs to static analysis, builds a DQN model, inputs 
various features of botnet networks, and trains it using a 
botnet network traffic dataset. The model combines the 
trial-and-error mechanism and action optimisation strategy 
of the Q-learning algorithm in reinforcement learning with 
the high-dimensional feature input of deep learning to 
achieve detection and classification of seven types of botnet 
network traffic, including DDOS and Botnet, as well as 
regular traffic. 

3 Methodology 
This paper proposes a OneR-DQN model constructed using 
the machine learning OneR classifier and the DRL DQN 
algorithm. The aim is to maintain high predictive 
capabilities for different botnet datasets. The entire process 
is divided into four steps: merging and pre-processing the 

datasets, conducting feature engineering with machine 
learning to select relevant features, building the DQN 
model, comparison experiments with the built DQN model 
and the others botnet detection model to compare the 
performance of the two algorithms under different datasets, 
and using the existing deep learning LSTM detection model 
as an objective model judging reference. This paper also 
explores the impact of feature engineering without using the 
OneR classifier during model training. The experimental 
procedure and model framework are illustrated in Figure 1. 
And next, we will introduce each section one by one in the 
order shown in Figure 1. 

Figure 1 Flow diagram of botnet traffic detection based on 
DDQN algorithm (see online version for colours) 

  

3.1 Data selection and processing 
The datasets used in this study are from the CIC-IDS series 
provided by the Canadian Institute for Cybersecurity. 
The datasets include CIC-IDS2017, CIC-Dos2017, 
CSE-CIC-IDS2018, and CIC-DDos2019. The NumPy 
library was employed in this paper to merge labels with the 
same label values and filter out certain data samples. 
The resulting merged dataset is referred to as the 
CIC-Collection, and the corresponding label values obtained 
are presented in Table 1. 
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Each label is associated with the features from the four 
datasets. By using the Pandas library for data reading, there 
are a total of 9,167,581 records with 79-dimensional 
features. However, not all features are relevant or 
informative. The dataset contains certain features 
completely irrelevant for prediction, referred to as pollution 
features, and need to be discarded. Following the ranking of 
feature pollution severity, this paper utilised the drop 
function to remove nine features, as shown in Table 2. 

Table 1 ‘Label’ labels in the CIC-collection dataset 

Benign DDos Bruteforce Infiltration 
Botnet Dos Webattack Portscan 

Table 2 The deleted 9-dimensional feature severely 
contaminates the dataset 

PSH flag count ECE flag count RST flag count 

ACK flag count Fwd packet length 
Min 

Bwd packet length 
min 

Packet length min Protocol Down/up ratio 

There are also some features, such as active Std. and Idle 
Std., that can affect the dataset. However, after data 
batching on the smaller dataset, the degree of feature 
pollution is not significant or noticeable, so these features 
are retained. 

During the process of identifying polluted features, this 
study discovered 11 features with a predictive capacity of 
zero. These features have no meaningful value in any 
classification model, and some even have None as their 
feature values. For these features, the drop function was also 
used to discard them, as shown in Table 3. 

Table 3 Deleted 11 dimensional meaningless features 

Bwd. avg. bulk 
rate Bwd. avg. bytes/Bulk Bwd avg. 

packets/Bulk 

Bwd PSH flags Bwd URG Flags CWE flag count 
FIN flag count Fwd. avg. bulk rate Fwd. avg. 

bytes/bulk 
Fwd. avg. 
packets/bulk 

Fwd. URG flags  

Table 4 Data sample of CIC collection botnet dataset 

Botnet traffic class Number of samples 

Benign 7186189 
DDos 1234729 
Dos 397,344 
Botnet 145,968 
Bruteforce 103,244 
Infiltration 94,857 
Webattack 2,995 
Portscan 2,255 

Through the three steps described above, this study obtained 
a clean sample dataset (CIC-collection) of four datasets. The 
dataset contains detailed labels for personal attacks and 
corresponding broader attack categories. There are no 
none values, and no duplicate samples exist. The dataset 
comprises 9,167,581 records, with each record having 
59-dimensional features. The dataset is stored in the Parquet 
file format. Compared to CSV files, Parquet files offer 
smaller compressed storage space and more efficient 
reading (Braams, 2018). The data can be read using the 
built-in Pyarrow library in Python. An example of the data 
samples in the dataset is presented in Table 4. 

3.2 OneR classifier 
OneR was first introduced by Holte in 1993, and it has since 
been used in a variety of domains, including medical 
diagnosis, credit scoring, and text classification.In recent 
years, more advanced machine learning algorithms, such as 
neural networks and decision trees, have gained popularity 
for classification tasks. However, OneR remains a useful 
tool for exploratory data analysis and as a baseline model 
for comparison with more complex methods. 

The OneR classifier is a simple and effective algorithm 
that builds a rule-based model for classification tasks. It 
works by selecting a single feature from the dataset and then 
determining the class that most frequently occurs for each 
unique value of that feature. This process generates a set of 
rules, which can be used to predict the class of new 
instances based on their feature values. 

The OneR algorithm is computationally efficient, 
making it well-suited for large datasets with many features. 
Additionally, it can provide insights into the most important 
features for a particular classification problem, aiding in 
feature selection and interpretation. 

OneR classifier algorithm steps are as follows: 

Algorithm 1 OneR classifier algorithm steps 

1 Convert the feature values of the dataset into binary values 
(assign 1 to feature values that are greater than or equal to 
the mean, and 0 to those that are less than the mean) 

2 Calculate the frequency of each feature value in each 
category and determine the misclassification rate of the 
most frequent feature value 

3 Add up the misclassification rates of all feature values for 
a particular feature, and identify the combination of 
features with the lowest misclassification rate and the total 
number of errors 

4 Compare the total number of errors for each feature and 
select the feature with the lowest number of errors as the 
best feature for classification 

5 The classification rule for the best feature corresponds to 
the feature value classification 

Before performing the classification operation with the 
OneR classifier, it is necessary to discard certain features 
that cannot be used for classification, such as features of 
‘type’ type. After this pre-processing step, the dataset is 
reduced to 44 dimensions. Then, the remaining features are 
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input into the OneR classifier, which utilises a machine-
learning decision tree classifier as its core. The steps 
involved in this process are as follows: 

(max_ 1, ' ')DecisionTreeClassifier depth critierion gini= =  

In this process, the decision tree has a depth of 1 layer and 
uses the Gini coefficient. After fitting the training set, 
predictions are made on both the testing and training sets 
using the prediction function: 

( )
. ( _ [ ]. . ( 1,1))

_ . _ [ ]. . ( 1,1)  
preds rootnode predict X test feature array reshape
preds tr rootnode predict X train feature array reshape

= −
= −

 

The evaluation metrics are then calculated by comparing the 
predicted results with the accurate labels. If the metric 
evaluation value is more significant than 0.5, the feature 
name, metric value, and prediction result of that feature are 
saved. These values are stored in a list and converted into a 
data frame. The metric evaluation value, specifically the 
roc_auc_score, is calculated directly using the metrics 
method from the sklearn library. The results are sorted in 
descending order: 

.  ( ,  
[' ',  ' _ _ ', ' _ ',
' ',  ' _ '] ). _
( ' _ _ ',  )

pd DataFrame data results columns
feature roc auc score fitted models

predictions preds train sort values
by roc auc score ascending False

= =

= =

 

Figure 2 The working principle of feature selection for OnerR 
classifier (see online version for colours) 

 

Based on the metric evaluation value (roc_auc_score) 
greater than 0.5, features with significant discriminatory 
power are selected. The average prediction results on the 
testing and training sets are computed for these valuable 
features, resulting in an overall prediction result vector. The 
ROC curve parameters are then calculated based on the 
overall prediction results and proper training set labels. The 
calculation method for the ROC curve is as follows: 

ROC TPR FPR= −  (1) 

True positive rate (TPR) represents the probability of 
correct predictions, and false positive rate (FPR) represents 
the probability of incorrect predictions. The area under the 
ROC curve (AUC score) is used as a widely recognised 
standard for evaluating the overall performance of 
classifiers. The AUC value ranges from 0 to 1, with higher 
values indicating better performance. The random selection 
benchmark is set at an AUC score of 0.5, with features 
having an AUC score greater than 0.5 considered more 
informative for classification. The flowchart of the entire 
OneR classifier process is depicted in Figure 2. 

And after constructing the OneR classifier, the study 
proceeds by inputting the samples, excluding Benign, into 
the classifier for each of the seven attack methods. 
The ROC curves are then generated based on the 
best-performing feature for each attack, as shown in 
Figure 3. 

Figure 3 Roc curve of OnerR classifier in botnet traffic 
(see online version for colours) 

  
The OneR classifier performs perfect ROC curves in attacks 
such as Bruteforce and Botnet. It indicates its ability to 
accurately identify most samples in these attack categories 
without additional learning. However, its effectiveness 
diminishes when dealing with Infiltration attacks, as it 
exhibits no discerning capability. The study then proceeds 
to use the metrics class from the sklearn library to compute 
and obtain the top-ranked 2-dimensional features for each 
attack, resulting in 14 features, as shown in Table 5. From 
these features, the most effective ones are selected as inputs 
for the detection model. 
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In the subsequent detection model training, feature 
selection is a crucial step in achieving high performance. 
Among the features selected by the classifier, since features 
17, 47, and 48 have appeared, and feature 8 (Bwd IAT Max) 
has shown poor performance, these four features are 
excluded. The remaining 10-dimensional features are 
chosen as the input for training the model. 

Table 5 AUC score for filtering features of various attack 
categories 

Attack 
means Number Feature AUC score 

DDoS 33 Fwd packet length 
max 

0.7279 

34 Avg Fwd segment 
size 

0.7257 

DoS 17 Bwd packets/s 0.8171 
38 Fwd seg size min 0.7846 

Bruteforce 7 Bwd header length 0.9638 
25 Fwd act data 

packets 
0.9587 

Portscan 47 Packet length Std. 0.8580 
48 Packet length 

variance 
0.8580 

Botnet 17 Bwd packets/s 0.8705 
14 Bwd packet length 

mean 
0.8610 

Webattack 48 Packet length 
variance 

0.8074 

47 Packet length Std. 0.8065 
Infiltration 2 Active min 0.5453 

8 Bwd IAT max 0.5324 

3.3 DQN detection model 
‘DRL’ was proposed by DeepMind in 2015. They combined 
the excellent performance of high-dimensional features in 
deep learning with the reward mechanism in reinforcement 
learning. They used the fused algorithm to complete the 
challenge of Atari games. According to their report, the 
performance of DRL after training is even stronger 
than some experts. The following will introduce the DRL 
algorithms used in this paper. 

3.3.1 Q-learning 
Q-learning is a value iteration-based reinforcement 
learning algorithm for solving Markov decision process 
(MDP) problems. The Q-learning algorithm aims to learn an 
optimal policy that maximises the long-term cumulative 
reward. In Q-learning, we learn a state-action value function 
(Q-function) representing the expected cumulative reward 
obtained by taking a particular action in a given state. The 
algorithm is shown as follows. 

( ) ( )
( ) ( )'

'
'

, ,
, ,max

a

t t t t

t t t t

Q s a Q s a

r Q s a Q s a

←

+  + − 
 

α γ  (2) 

In equation (2), ‘St’ represents the current state, ‘at’ 
represents the action taken in the current state, ‘r’ represents 
the immediate reward obtained after taking the action at, ‘s’ 
represents the next state reached after taking the action, and 
‘α‘ is the learning rate parameter. This calculation formula 
uses temporal difference learning to update the Q-value. It 
selects the maximum Q(St’, at’) from the next state ‘s’ and 
multiplies it by ‘γ‘, then adds the actual reward value ‘r’ to 
obtain the final true value of Q(St, at). Q-learning aims to 
learn an optimal state action-value function that maximises 
the cumulative return on taking actions in any state. During 
the learning process, we adopt a greedy strategy to select the 
optimal action in the current state: 

( )arg max ,at Q St at=  (3) 

In equation (3), Update the Q(St, at) value function by 
continuously using the Bellman equation until the value 
function converges to the optimal value function maxaQ(St, 
at). When the value function converges, the optimal strategy 
can obtain by selecting the action with the most significant 
value function in each state. 

The advantage of the Q-learning algorithm is that it can 
handle continuous state and action space and does not need 
models (model-independent methods). Even if we do not 
know the model of the environment, we can use Q-learning 
to learn the optimal strategy. 

3.3.2 Deep Q network 
DQN is an algorithm based on DRL, an extension of the 
Q-learning algorithm in deep learning. DQN uses a neural 
network to approximate the Q-value function, which can 
learn in high-dimensional and complex state spaces and has 
a certain degree of generalisation ability. 

Figure 4 DQN neural network structure (see online version 
for colours) 

  
DQN consists of four main modules: the model, agent, 
memory, and DQN algorithm. Each agent’s decision affects 
the environment’s changes, and the model processes this 
feedback and stores the data in memory. The model 
provides the agent with a reward value based on the 
information, allowing the agent to update its decision 
continually. The memory releases data to allow the agent to 
undergo multiple training sessions, preventing problems 
with the expected Q-value being too large. Sample and 
memory data are passed back and forth to the agent for 
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training until the model converges and completes the 
training. 

The DQN algorithm starts by providing an environment 
states to the agent, who then utilises the value function 
network to obtain all Q(s, a) values associated with states. 
The agent decides by employing the ε-greedy strategy to 
select an action a. The environment responds to the action 
by providing a reward value ‘r’ and the following 
environment states’. This completes one epoch. The 
parameters of the value function network are then updated 
based on the reward value ‘r,’ and the process proceeds to 
the next epoch. This cycle continues until a converged value 
function network is trained, concluding the loop. The 
workings of one epoch are depicted in Figure 4. 

At the algorithm level, DQN extends the Q-learning 
algorithm. However, since DQN approximates the Q-values 
using a neural network, determining the ‘θ’ weights of the 
neural network becomes crucial in the entire process. In this 
study, the gradient descent algorithm is employed to 
minimise the loss function, continuously adjusting the θ 
weights. The algorithm for the loss function is depicted as 
equation (4). 

[ ]2( , , , ') ~ ( )( ) ( , ; ))i i s a r s U D i iL θ E y Q s a θ= −  (4) 

In equation (4), s represents the state, a represents the 
action, r represents the immediate reward, s’ represents the 
next state, θi represents the parameters of the neural 
network in the i-th iteration, Q(s, a, θi) represents the 
Q-value function for taking action a in states with θi, U(D) 
represents the uniformly sampled experience set from the 
experience replay pool, and D represents the target Q-value, 
which is the representation of the experience pool itself. yi 
calculated as follows: 

( )max , ;i i
a

y r Q s a θ
′

−′ ′= +  (5) 

In equation (5), iθ−  represents the parameters of the target 
neural network at the i-th iteration. ( )', '; iQ s a θ−  represents 
the output of the target network. By introducing the target 
network, the target Q-values remain unchanged for a certain 
period of time, reducing the correlation between the current 
Q-values and the target Q-values to some extent, thereby 
improving the stability of the algorithm, which helps 
prevent overfitting. 

Performing botnet detection using DQN mainly consists 
of three steps. Firstly, the Q-network is trained to identify 
the features of a large amount of network traffic and store 
multiple predicted results into the experience replay buffer. 
Then, the model is continuously trained through self-play. 
Finally, the trained model is used to detect anomalous 
traffic. 

PARL is a classic framework based on DRL, which is 
widely used in various fields such as unmanned driving and 
game control using DRL algorithms. The DQN model 
architecture used in this article is built on the PARL 
framework and the PaddlePaddle library of PaddlePaddle, 

and has been specifically improved for traffic detection 
based on the general model. 

To achieve this, we first construct the framework and 
core algorithms of the model using Model and Agent 
classes. The Model class uses the PaddlePaddle layers 
module to create three fully connected layers, with ReLU 
activation functions in the first two layers and no activation 
function in the last layer, whose output dimension is the 
action space. The value function is then defined to output 
the state value function Q by processing the input state obs. 
through the fully connected layers. In the Agent class, we 
define the functions build_program, sample, predict, and 
learn to enable the agent to make decisions based on the 
maximum Q value as much as possible and to converge by 
slowly decreasing the ε-greedy value to prevent continuous 
exploration. 

In the botnet traffic detection model, to facilitate agent 
learning, when the agent selects an action to classify the 
traffic type, it receives a reward value ‘r’. The reward 
function is defined as follows: 

5,
5,

0.1,    1 

True
False

Not judged every ms
r



−
= −




 (6) 

When the agent makes a correct selection, positive feedback 
of 5 scores is rewarded. On the other hand, when the agent 
makes an incorrect selection, negative feedback of −5 scores 
is given. Additionally, to prevent the agent from avoiding 
making decisions indefinitely, a penalty of 0.1 scores is 
deducted every 1 ms. This approach improves the model’s 
accuracy rate and enhances its decision-making speed. 

Figure 5 Working principle of re-memory pool (see online 
version for colours) 

 

In addition, DQN introduces the replay memory 
mechanism. Traditional Q-learning algorithms interact and 
improve based on the current policy, discarding samples 
generated from each model’s utilisation interaction after 
learning. This approach is inefficient in utilising data 
samples but also leads to correlated data samples. If the 
model assumes the presence of correlations between data 
samples that do not exist, its decision-making ability will be 
significantly compromised. Therefore, in DQN, a quadruple 
(st, at, rt, st′) is added to the experience replay memory as a 
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data sample. During model learning, these samples are 
interleaved with new data samples to change the model’s 
policy and update the Q-network parameters. Collected 
samples are sequentially stored in the experience replay 
memory according to their time order. If the memory is full, 
new samples will overwrite the oldest samples in the 
memory. The experience replay memory uniformly and 
randomly sample a batch of samples from the cached 
samples for the model to learn. This approach ensures that 
each training sample typically comes from multiple 
interaction sequences, reducing data correlations and 
improving sample utilisation. The working principle of the 
experience pool on the DQN model is shown in Figure 5. 

After the model is constructed, 20,000 randomly 
selected samples from the pre-processed botnet dataset are 
inputted for training until convergence. The entire working 
principle of the DQN botnet traffic detection model is 
illustrated in Figure 6. 

Figure 6 DQN botnet detection model (see online version 
for colours) 

 

The overall Pseudocode of the DQN detection model is as 
follows: 

Botnet detection based on DQN model 

Input: state s, action a, discount factor γ, learning rate α, greedy 
factor ε 
1 Initialise replay memory D to capacity N; 
2 Random initialise Q network weight θ.  
3 Initialise target Q network weight θ– so that θ– = θ 
4 for epoch = 1, M do: 
5 Initialise start state ； 
6 for t =1, T do: 
7 In state s,select action at through the ε-

greedy;  
8 Execute action a, observe the judgement 

results, and receive immediate rewards r 
and a new state s′. 

9 Push (s, a, r, s′) into the replay memory D; 
10 sampling st, at, rt, st′ from D; 
11 '

'

,            
( , 'ma )  x ,  t a θ

t tr s in a resting ra
Q

r
te

st a l eQ e s−


=  +

 

12 Using (y–Qe(s, a))2 as loss function to train Q 
network; 

13 Update status, which is s ← s′; 

14 Every C steps, Update target network 
weight, which is θ– ← θ ; 

15 When s is in the termination state, end for; 
16 When ∀s, a, Qe(s, a) convergence, end for; 
Output: DQN model training completed. 

4 Experimental process and results 
4.1 Experimental environment 
This experiment using the computer operating system about 
Windows 10, with an i7-7200 CPU and 16G of memory. 
The development environment includes Python 3.6.5 and 
Pycharm, and the DQN detection model is built using the 
PaddlePaddle and PARL frameworks. 

4.2 Data 
In Section 3.1, the dataset has been processed in this study. 
A random sample of 20,000 data samples was selected 
according to the proportion for the experiments. The 
quantity and labels of the selected dataset are shown in 
Table 6. 

Table 6 Randomly selected botnet dataset samples 

Botnet traffic class Samples number Select label 

Benign 13,998 1 
DDos 2,928 2 
Dos 1,104 3 
Botnet 556 4 
Bruteforce 460 5 
Infiltration 444 6 
Webattack 264 7 
Portscan 264 8 
Total 20,000  

4.3 Model assessment 
In this study, two approaches were employed for feature 
classification: one using the OneR classifier and the other 
randomly selecting 10-dimensional features. Apply two sets 
of features to DQN and LSTM and CNN+RNN models 
compared to DQN, and compare their experimental results 
in the test set. Select accuracy rate and precision rate as the 
evaluation criteria. The formulas for accuracy rate and 
precision rate are shown in equations (7) and (8): 

TP TNAccuracy
TP TN FP FN

+=
+ + +

 (7) 

TPPrecision
TP FP

=
+

 (8) 

In equation (7) and (8), TP represents the number of 
positive samples predicted as positive, FP represents the 
number of negative samples predicted as positive, TN 
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represents the number of positive samples predicted as 
negative, and FN represents the number of negative samples 
predicted as negative.  

4.4 Analysis of experimental results 
In this section, we will conduct three sets of comparative 
experiments: training the DQN detection model, LSTM 
detection model, and CNN + RNN(CR) detection model 
using the features filtered by the OneR classifier and 
randomly selected features, respectively, to verify the 
excellent ability of OneR classifier to filter features; Using 
the same pre-processed CIC-ISD2017 dataset instead of the 
CIC-collection test set, the detection ability of three types of 
models in unfamiliar datasets are tested to verify the high 
adaptability of DRL. 

4.4.1 Model comparison with randomly selected 
features 

In this experiment, 10-dimensional features were randomly 
selected using the random function and used for training in 
two models. The comparison of accuracy rate and precision 
rate obtained is shown in Figures 7 and Figure 8. 

Figure 7 Accuracy rate comparison of three models (see online 
version for colours) 

 
Based on Figures 4 and 5, it shows that the accuracy rate of 
the DQN detection model is very high in the early 
oscillation frequency, which is caused by the ε-greedy of the 
DQN detection model. This result is that the accuracy rate 
of the DQN continues to decrease in the early training. 
During the training process, as each of the three models 
converges, the e-discount factor decreases from the initial 
set of 0.1 to 0.01, ultimately allowing the model to complete 
the training. Both in terms of accuracy rate and precision 
rate, the DQN detection model is superior to the LSTM and 
CR detection models. The randomly selected features 
prevented all three models from achieving good detection 
performance in the test set, and even the best-performing 
DQN only achieved an accuracy rate of 63.74%, with an 
accuracy rate at most 80%. These results are not qualified 

for a detection model. Therefore, we will add a OneR 
classifier to filter features and complete the second 
comparative experiment. 

Figure 8 Precision rate comparison of three models (see online 
version for colours) 

 

Figure 9 Accuracy rate comparison of three models (see online 
version for colours) 

 

4.4.2 Model comparison with OneR Classifier 
The 10 features selected by the OneR classifier, as 
mentioned in Section 3.2, are used for training. These 
features include 17th Bwd. Packets/s, 47th Packet Length 
Std., 48th Packet Length Variance, and others. The 
comparison of accuracy rate and precision rate obtained is 
shown in Figures 9 and Figure 10. Since all data of the three 
models are higher than 0.5, the ordinate range of the line 
chart in Figures 9 and Figure 10 is set between 0.5–1. After 
observing the Figures 9 and 10, it can be observed that 
using the features provided by the OneR classifier for 
training, the accuracy rate and precision rate of the three 
models have been greatly improved, indicating that the 
feature selection ability of the OneR classifier is excellent in 
completing the task. Unlike when LSTM and CR 
approaching converge at less than 500 epochs at the 
beginning, the DQN detection model slowly converges after 
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8,000 epochs, indicating that DQN places great emphasis on 
early exploration and sacrifices its accuracy rate. After the 
model slowly converged, the judgment ability of the DQN 
detection model began to show, ultimately surpassing the 
LSTM and CR detection models. In terms of precision rate, 
DQN inherits its performance in random feature selection 
experiments, and exploration not only slows down its 
precision rate improvement but also reduces its accuracy 
rate. However, as the model converges, the precision rate 
difference between the three models is slight, but DQN 
detection is still slightly better. 

However, more is needed to improve the detection 
model, so the next experiment will use an unfamiliar dataset 
to test the testing ability of these three detection models that 
have already been trained through the OneR classifier and 
compare which model has more robust adaptability. 

Figure 10 Precision rate comparison of three models (see online 
version for colours) 

 

Figure 11 Accuracy rate comparison of three models (see online 
version for colours) 

 

4.4.3 Model comparison with other datasets 
In order to ensure the consistency of the labels, this 
experiment used CIC-ID2017, one of the original datasets of 
CIC-Collection, as the test set. After data pre-processing in 
Section 3.1, 20,000 data samples were randomly selected, 
and three detection models that had already been trained in 
the previous experiment were used to observe their accuracy 
and precision in this dataset. The comparison of accuracy 

rate and precision rate obtained is shown in Figures 11 and 
Figure 12. Since all data of the three models are higher than 
0.5, the ordinate range of the line chart in Figures 11 and 
Figure 12 is set between 0.5–1. 

From Figures 11 and 12, it can be observed that the 
detection ability of the DQN detection model in the new 
dataset is more robust than that of the LSTM detection 
model and the CR detection model. Although the DQN 
detection model converges last every time it is trained, and 
the accuracy and precision of the initial model are not as 
good as the other two models, with the increase of epochs, 
the accuracy and precision of the DQN detection model can 
still be improved, rather than stabilising like LSTM and CR. 
Whether in terms of accuracy or precision, the DQN 
detection model can still reach over 90% in the later stage, 
but the LSTM detection model and CR detection model fell 
by 90%. Although the detection ability of all three models 
in unfamiliar datasets has decreased, the decrease in the 
DQN detection model is acceptable, as it still has sufficient 
detection ability for unfamiliar datasets. This experiment 
demonstrates the strong adaptability of the DQN detection 
model. 

Figure 12 Precision rate comparison of three models (see online 
version for colours) 

 

However, the DQN detection model is not perfect either. In 
each comparative experiment, the training and judgment 
time of the DQN detection model is always the longest, with 
only 20,000 samples. The LSTM detection model and CR 
detection model only took 3−5 minutes to complete the 
training. However, for the DQN detection model, it takes 8 
minutes to complete the training, which may vary due to 
differences in computer CPU and memory. However, it 
cannot be denied that the training time of the DQN 
detection model is longer than that of the LSTM and CR 
detection models. 

5 Conclusions 
This paper proposes a DQN algorithm detection model 
based on DRL by designing a botnet traffic detection model. 
Compared with existing LSTM and CR detection models, 
the DQN model improves judgment ability and reuses 
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sample resources by accumulating Q-values and using 
experience pools. The experimental results show that the 
feature selection using OneR classifier improves the 
detection ability of the model. In addition, the stability of 
the DQN model enables it to better adapt to changes in 
different datasets. Regardless of whether the OneR classifier 
using for feature selection, the detection model constructed 
using DQN outperforms LSTM and CR detection models in 
terms of accuracy and accuracy. However, due to the 
presence of not only neural networks but also Q value 
prediction and experience pool storage in DQN, the model 
becomes more complex and requires more time and space 
costs than LSTM and CR algorithms. Moreover, the DQN 
model is sensitive to parameters, and unsuitable features can 
lead to poor performance. 

Future research could explore other DRL algorithms that 
can improve over time and reduce the time cost of model 
construction. It may also be necessary to adopt other 
classifiers to analyse and train new models from the 
perspective of multiple features. Despite its limitations, our 
proposed method represents a significant step forward in 
botnet network detection. It can potentially contribute to 
developing more accurate and efficient detection methods. 
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