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Abstract: There are mainly two problems with traditional k-shell centrality in complex 
networks. First, the traditional k-shell centrality divides many nodes into the same shell layer, 
which cannot accurately distinguish the propagation ability of nodes. Secondly, the network’s 
local attributes and global perspective cannot be effectively combined into the k-shell centrality, 
and most of the methods ignore the role of edge weight. Because of these problems, a new edge 
weight is introduced based on traditional k-shell centrality. The edge weight between any two 
nodes is defined from the local degree centrality and the global k-shell centrality. From the 
dynamics of information propagation, a new edge weight-based measure for k-shell centrality is 
put forward. The simulation results indicate that this improved centrality based on edge weight is 
good at ranking the key nodes in a complex network, and the influential spreaders identified by 
this method can obtain better performance in the susceptible-infected (SI) model and  
susceptible-infected-recovered (SIR) model of infectious diseases. 
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1 Introduction 
Mining and detecting influential nodes in complex networks 
has become a basic way to investigate the structure and 
dynamics of complex networks, so how to efficiently 
identify influential nodes has been one of the popular topics 
in complex networks. It has produced practical value in 
infectious disease control, information spreading in 
networks, market advertising, social network leaders, 
academic citation networks, etc. For example, in an 
industrial network, spreading information can be accelerated 
by identifying some key influential nodes, which can 
minimise the cost. On the other hand, cascading disasters in 
industrial networks can also be prevented by inhibiting 
(immunising) some specific nodes (Wang et al., 2022). 
Existing studies can be broadly classified into two parts: 
some works that analyse nodes based on the physical 
properties of the network and then rank the influence of the 
nodes based on their measure values, and other studies that 
focus on choosing a set of seeds to help maximise the 
spreading of influence from a complex network (Jiang et al., 
2019). 

Degree centrality (degree), betweenness centrality 
(betweenness), and closeness centrality (closeness) offer a 
foundation for the measure of influential nodes. Degree 
centrality (Bonacich, 1972; Zhao et al., 2020) uses 
connectivity to evaluate the nodes’ spreading influence, 
which applies to a star-shaped central node with many 
neighbours but ignores the global structure of complex 
networks. The paper (Shi, 2023) utilised the degree of 
correlation to investigate the controllability of component 
failure in complex networks. Betweenness centrality 
(Newman, 2005) and closeness centrality (Sabidussi, 1966) 
overcome this shortcoming of degree centrality, but these 
cannot be applied to large-scale networks due to their time 
complexity. From a global perspective, the paper (Zhao  
et al., 2021) proposed a hybrid mathematical model for 
measuring influential nodes by considering not only the 
local degree centrality of the nodes but also introducing the 
closeness centrality to other nodes in the network. The 
paper (Lv et al., 2019) proposed an improved betweenness 
centrality named mean shortest path centrality. The results 
demonstrated that this method outperformed the 
conventional measures, such as degree centrality, 
betweenness centrality, and closeness centrality. 

Recently, k-shell centrality (ks) (Kitsak et al., 2010) 
methods have been widely studied. As a global measure, 
many nodes will be split into various groups based on their 
network locations. The whole nodes in the same shell are 
shared the same ks-index. The most influential nodes are 
identified as those nodes in the core layer with the highest 
ks value. The disadvantage is that it is likely that a large 
number of nodes will be classified into the same shell, and 
thus, it is assumed that they all have the same spreading 
capacity. However, practical findings show that nodes in the 
same shell do not hold identical propagation capabilities. 
Given the coarse-grained aspect of using k-shell centrality 
for measuring node influence, many studies have introduced 
edge weights into the process of k-shell decomposition, 

which allowed for classifying nodes at a fine-grained level. 
The paper (Garas et al., 2012) proposed a k-shell 
decomposition technique for weighted networks, which 
considered both the degrees and the edge weights of nodes, 
filling the gap in this area for identifying the influential 
nodes in weighted networks. The weighted LeaderRank 
algorithm (Li et al., 2014) was applied to directed weighted 
graphs, and experiments showed that the presented method 
could exactly and effectively identify the influential 
spreaders as long as they possess better robustness 
compared to degree centrality. The paper (Wei et al., 2015) 
used the degrees of two end nodes of an edge in unweighted 
networks to define the weight of the edge and improved the 
conventional k-shell decomposition method. This method 
not only takes the degree but also the edge weight into 
account during k-shell decomposition. The paper (Yang  
et al., 2017) proposed a novel centrality method with a 
second-order neighbourhood by introducing the local 
neighbourhood structure of nodes based on k-shell 
centrality, which integrated the global attributes of k-shell 
centrality and the local attributes of a second-order 
neighbourhood but did not take the edge weight into 
account. The paper (Yang et al., 2021) analysed a novel 
neighbourhood coreness method using path diversity based 
on information entropy to identify the influential spreaders. 

In summary, as a global measure, k-shell centrality has 
significant advantages in identifying influential nodes. To 
improve the accuracy of this method, integrating the local 
and global attributes of networks is very necessary. The 
paper (Zhang et al., 2022) proposed a novel gravity 
centrality that combines a node’s local and global 
information to properly describe the interaction between 
nodes. This work will propose a new edge weight-based  
k-shell centrality (ksew). This method takes the local 
attributes (degree) and global attributes (ks) to define the 
weight of an edge between any two network nodes, 
allowing for measuring and ranking node influences in a 
fine-grained way. The proposed method is also available for 
large-scale complex networks due to a low linear time 
complexity in degree centrality and k-shell decomposition. 

The rest of the paper is organised as follows. Section 2 
reviews the related works. Some related centrality methods 
are discussed in this section. The details about the new edge 
weight-based k-shell centrality are followed in Section 3. 
The dataset description and experimental simulation in real 
networks are shown in Section 4. Finally, the paper is 
concluded in Section 5. 

2 Related works 
To address the shortcoming of the conventional k-shell 
centrality methods that only focus on intra-shell node 
connectivity but ignore extra-shell node connectivity, the 
paper (Zeng and Zhang, 2013) proposed a mixing degree 
decomposition algorithm for node influence identification. 
Let kr be the remaining connectivity of node i, ke be the 
connectivity between node i and the removed extra-shell 
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nodes, and λ be an adjustable parameter; the mixing degree 
km of node i is defined as follows: 

m r ek k λk= +  (1) 

When λ = 0, this formula is the conventional k-shell 
decomposition process; when λ = 1, this formula is the 
conventional degree centrality measure. 

The paper (Liu et al., 2013) used the distance to the 
nodes in the largest shell to optimise the traditional k-shell 
centrality method. It proposed that the closer the distance to 
the core layer, the greater the importance. The k-shell 
distance centrality can discriminate the nodes’ influence 
from the same shell. ksd(vi) represents the influence of node 
i in the ks shell. ksmax denotes the largest shell of the 
network. Γ stands for all nodes in the largest shell ksmax, and 
dij indicates the shortest distance between node i and node j. 
The larger ksd(vi) represents, the longer distance from node i 
to the core layer and the smaller influence of i. The k-shell 
distance centrality of any node i is calculated as in  
equation (2): 

( ) ( )max Γ
1

i

d
i ijV

ks v ks ks d
∈

= − +   (2) 

The paper (Bae and Kim, 2014) proposed a neighbourhood 
coreness (nc) measure based on the assumption that a node 
with more neighbours in the core layer has a more 
influential capacity. Γi denotes the neighbours of any node i. 
The k-shell index of the neighbour node j of i is denoted as 
ks(vj), then the neighbourhood coreness measure ksnc(vi) is 
calculated as in equation (3): 

( ) ( )
Γi i

nc
i jV

ks v ks v
∈

=  (3) 

The paper (Wei et al., 2015) argued that most existing 
studies ignored the role of edges in measuring influential 
nodes and supposed that all edges hold the same weights in 
unweighted networks. To improve the performance, he 
proposed a weighted k-shell decomposition method using 
the degrees of the two end nodes for an edge to define the 
edge weight in unweighted networks. The weight wij of any 
edge eij is defined as shown in equation (4): 

( ) ( )ij i jw k v k v= +  (4) 

where k(vi) and k(vj) denote the connectivity values of the 
two end nodes vi and vj of edge eij, respectively. Once the 
weights of all edges are computed, the value of the weighted 
k-shell influence can be calculated as in equation (5), where 
α ∈ [0, 1] is an adjustable parameter and Γi is the 
neighbourhood set of the node i. 

( ) ( )
Γ

(1 )
i i

w
i i ijV

ks v ak v a w
∈

= + −   (5) 

2021 a hybrid measure (Zhao et al., 2021) for influential 
nodes is proposed. They suggested that a node’s influence 
depends on its degree and is closely determined by the 
neighbours’ influence. The proposed hybrid measure 
consisted of the degree k(vi) of node i itself, the degree k(vj) 
of the neighbour j, and the distance dij between i and j. The 

formula for the hybrid measure GIN(vi) of node vi is as 
follows: 

( ) ( )1 ( )

Γ

i

j i

k v a jni V ij

k v δ
GIN v e

d
∗ ∗

∈

∗
= ×  (6) 

where α and δ are adjustable parameters. When α increases, 
the model is more biased towards the degree of the node 
itself. When δ increases, the model is more biased towards 
the degrees of the neighbours and the distance between two 
nodes. 

From those mentioned above, it can be seen that most 
works only employ the degree centrality or k-shell centrality 
to define the weight of an edge to identify the influential 
nodes. The paper’s contributions are summarised as 
follows: 

• A new edge weight combining the degree centrality and 
k-shell centrality is proposed. Instead, it can be well 
applied in non-connected networks (loose networks) 
and fully-connected networks (dense networks). 

• Using the SI and SIR epidemic model evaluation, the 
similar ranking and indefinite correlation are improved 
with a high monotonicity value. The proposed method 
is compared with other state-of-the-art techniques. 

• There is a low linear time complexity in degree 
centrality and k-shell centrality. The proposed method 
can be well suited for the time requirements in  
large-scale complex networks. 

3 The new edge weight-based k-shell centrality 
Degree centrality typically exhibits good measurement 
performance in non-connected graphs and loose networks, 
as this method only calculates the number of neighbours and 
excludes neighbours’ connections. The paper (Kitsak et al., 
2010) demonstrated that nodes with a large degree of 
centrality located at the periphery of networks are not 
necessarily influential spreaders, and nodes located at the 
core layer after k-shell decomposition in densely connected 
networks have a significant impact. It was proposed that 
core-layer nodes typically have a large degree of centrality, 
while nodes with a large degree of centrality located at the 
periphery of networks are not necessarily located at the 
core. Notably, when a network significantly collapses, and 
large-scale non-connected areas are generated, the 
effectiveness of k-shell centrality would degrade drastically. 
The degree centrality measure is highly suitable for such 
cases. 

The edge weights play a key role in the identification of 
influential nodes. For instance, roads connecting two 
metropolitan areas tend to be more important than roads 
connecting two small cities in transportation networks (Du 
et al., 2020); meanwhile, nodes connected by backbone 
transportation lines indicate that the city itself has 
influenced. Hence, introducing edge weight into the 
measure of node influences is of great significance. 
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To address the drawbacks of the previous works, this 
study introduces both local attributes (degree centrality) and 
global attributes (k-shell centrality) of nodes to define the 
edge weights between two nodes. In our proposed method, 
the edges in the network have varying importance. Both 
degree centrality and k-shell centrality are introduced into 
the influence measurement, in which both non-connected 
networks (loose networks) and fully-connected networks 
(dense networks) are compatible. Unlike previous studies 
limited by high time complexity where the measure of 
global influence was achieved based on the distance 
between two nodes (Lv et al., 2019), there is a low linear 
time complexity in degree centrality and k-shell centrality. 
Therefore, the proposed method can satisfy the time 
requirements in large-scale complex networks. The weight 
wij of edge eij between nodes i and j is defined by: 

( ) ( ) ( ) ( )ij i i j jw a k v δ ks v a k v δ ks v= ∗ × ∗ + ∗ × ∗  (7) 

where α, δ ∈ (0, 1] are tunable parameters that regulate the 
importance of degree centrality or k-shell centrality, 
respectively. The value named edge weight-based k-shell 
centrality can be achieved with the degree (k) and k-shell 
index (ks) of the two end nodes of an edge. The degree 
represents a node’s local impact, and ks compensates for the 
global influence. When α increases, the model is more 
biased towards the local impact of the node; when δ 
increases, the model is more biased towards the global 
influence of the connected nodes. For the convenience of 
calculation, α and δ are set to 1 in this experiment. k(vi) and 
k(vj) indicate the connectivity of the end nodes vi and vj, 
respectively. The k-shell centrality of vi and vj is represented 
as ks(vi) and ks(vj), respectively. ksew is calculated as in 
equation (8), where Γi is the neighbourhood of node i. 

( )
Γj i

ew
i ijV

ks v w
∈

=  (8) 

It is shown that the degree centrality (degree), k-shell 
centrality (ks), k-shell distance centrality (ksd), weighted  
k-shell centrality (ksw), and ksew are used to rank node 
influences in a toy network in Figure 1. Table 1 shows the 
values of the influential nodes obtained by different 
methods. As observed, the conventional methods of k-shell 
centrality (ks) and k-shell distance centrality (ksd) cannot 
distinguish the nodes a, b, c, and d in the highest shell in 
terms of influence. Both nodes a and b have two extra-shell 
neighbour nodes outside the highest shell (ksmax = 3); hence, 
their influences differ from those of the intra-shell nodes c 
and d. Although degree centrality (degree) could distinguish 
the nodes a, b, c, and d to a certain extent, it still assumes 
the same influence between the nodes e, f, g, and h. It shows 
that the nodes e, f, g, and h are outside the highest shell 
(ksmax = 3). According to the single node spreading principle 
proposed in the susceptible-infectious-removed (SIR) model 
of infectious diseases (Newman, 2002), since the nodes a, e, 
and f are closely connected to form a cluster structure 
(Kartun-Giles and Bianconi, 2019), even if the nodes have 
only one chance (in the SIR model, immunisation rate γ = 1) 
to infect its neighbours, the individual nodes e or f are also 

more likely to spread information through the cluster  
(ks = 2) into the highest shell (ksmax = 3) and spread the 
information throughout the whole network. Similarly, node 
g or h only attempts to infect node b through the edges ebg 
or ebh. Once the infection fails, node g or h loses the 
opportunity to spread the information throughout the 
network. Hence, nodes e and f are significantly more 
influential than g and h. Fortunately, the k-shell centrality 
and k-shell distance centrality can distinguish. 

As shown in Table 1, weighted k-shell centrality (ksw) 
and ksew exhibit an effective ranking. Since the weighted  
k-shell centrality (ksw) only considers the local attributes of 
end nodes (degree centrality) in calculating edge weights, 
nodes a and b have the same influence. Unlike the ksw, ksew 
considers both the local attributes (degree) and the global 
attributes (k-shell) of end nodes in calculating edge weights, 
allowing for a more fine-grained ranking of a and b. 
Although nodes a and b have two neighbours outside the 
highest shell (ksmax = 3) and the degree centrality of nodes e, 
f, g, and h is the same, the cluster structure of the  
above-mentioned makes the nodes e and f more influential 
than g and h. Thus, ksew suggests that the node a is more 
influential than the node b. 

Table 1 Measure values of influential nodes for different 
methods 

Node Degree ks ksd ksw (α = 0) ksew 

a 5 3 3 40 116 
b 5 3 3 40 112 
c 3 3 3 22 66 
d 3 3 3 22 66 
e 2 2 14 11 27 
f 2 2 14 11 27 
g 2 1 21 10 20 
h 2 1 21 10 20 
i 1 1 33 3 3 
j 1 1 33 3 3 

Figure 1 An example network with the edge weight-based  
k-shell measure (see online version for colours) 
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Figure 2 Relationship between the methods and the real spreading capacities of nodes, (a) degree, Jazz network (b) ks, Jazz network  
(c) ksw, Jazz network (d) ksew, Jazz network (e) degree, e-mail network (f) ks, e-mail network (g) ksw, e-mail network (h) ksew,  
e-mail network 

  
(a)     (b) 

  
(c)     (d) 

  
(e)     (f) 

  
(g)     (h) 



6 Y. Xiong and Y. Cheng  

Figure 3 The spreading influence of the methods in the SI model and SIR model for the e-mail network, (a) ksew vs. ks, SI model (b) ksew 
vs. degree, SI model (c) ksew vs. ksw, SI model (d) ksew vs. ks, SIR model (e) ksew vs. degree, SIR model (f) ksew vs. ksw, SIR model 
(see online version for colours) 

  
(a)     (b) 

  
(c)     (d) 

  
(e)     (f) 

 

Table 2 shows the nodes ranking with centrality values 
calculated by different methods. As observed, there are so 
many nodes with the same rank in degree centrality 
(degree), k-shell centrality (ks), and k-shell distance 
centrality (ksd). It is not easy to distinguish the nodes’ 
influence. Compared to the weighted k-shell centrality (ksw), 
ksew can obtain a more accurate ranking of influential nodes. 

Table 2 discussion shows that each classical centrality is 
highly coarse-grained, resulting in many indistinguishable 
nodes with the same centrality value. Therefore, it is very 
necessary to distinguish the role of nodes with the new edge 
weight-based k-shell centrality at a fine-grained level. 
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Table 2 Ranking of influential nodes by measure values for 
different methods 

Rank Degree ks ksd ksw (α = 0) ksew 

1 a, b a, b, c, d a, b, c, d a, b a 
2 c, d e, f e, f c, d b 
3 e, f, g, h g, h, i, j g, h e, f c, d 
4 i, j  i, j g, h e, f 
5    i, j g, h 
6     i, j 

4 Experimental simulation 
4.1 Datasets 
The Jazz network (Gleiser and Danon, 2003) and e-mail 
network (Guimera et al., 2003) datasets are used in this 
experiment. E-mail is a popular dataset used in social 
networks and widely applied in CRAN R-package. Jazz is 
the classical small-world network in musical networks and 
is usually used to study the dynamics of small-world 
networks due to its small size. The topological parameters 
of the two networks are shown in Table 3. The number of 
nodes is defined as V, and the number of edges is marked as 
E. The network clustering coefficient is C. kmax is the 
maximum degree, <k> is the mean network degree, and 
ksmax is the maximum number of shells during k-shell 
decomposition. 

Table 3 Topological parameters 

Network V E C kmax <k> ksmax 

Jazz 198 2,742 0.63 100 27.7 29 
E-mail 1,133 5,451 0.22 71 9 12 

It is shown that the number of nodes in the e-mail network 
is nearly six times that of the Jazz network. However, the 
number of edges is only twice that of the Jazz network. The 
clustering coefficient C and the maximum number of shells 
ksmax are smaller than the Jazz networks. This indicates that 
the nodes of the Jazz network are more clustered to each 
other, which could be explained by the social grouping 
phenomenon in the musical business. 

4.2 Analysis 
The susceptible-infectious (SI) model and SIR model are 
applied to analyse the results for identifying the influential 
nodes: 

1 The SI model is applied to compute the practical 
capacity of each node in both networks to analyse the 
relationship between the methods and the real capacity 
of each node. 

2 The experiments are compared by using the nodes with 
varying spreading capacities in different methods as the 
spreading source, in which the accuracy is evaluated 
separately in SI model and SIR model. 

4.2.1 Relationship between measure methods and 
spreading capacities of nodes 

Since the SI model does not consider the immunisation 
mechanism, all network nodes will eventually get infected 
with saturated spreading, making it impossible to identify 
the spreading capacities of nodes. Hence, in this experiment, 
a specific time (e.g., t = 5) is used to sequentially determine 
the number of nodes each origin can spread to. Figure 2 
shows the scatterplots of the four measures (degree, ks, ksw, 
and ksew) and the practical spreading capacities of nodes in 
the case of infection probability β = 0.6 in the SI model. 

As shown in Figure 2(b) and 2(f), k-shell centrality (ks) 
distributes the same value to many nodes with varying 
spreading capacities, making it unable to determine the real 
spreading influence of nodes. Figures 2(a) and 2(e) shows 
that although degree centrality addresses the shortcomings 
of k-shell centrality to some extent, differences between the 
neighbour nodes regarding spreading capacity are still large, 
especially in areas with small degree centrality. The 
spreading capacity of many nodes does not show a 
monotonically increasing trend with degree centrality. 
Figures 2(c) and 2(g) shows the weighted k-shell centrality 
measure (ksw) results. As can be observed, the spreading 
capacity of nodes shows an overall increasing trend with 
measure values. However, in areas with small ksw, 
especially in areas with many overlapping nodes with 
varying spreading capacities, it is shown in Figure 2(g), and 
the scatterplot is relatively divergent. It is seen from  
Figure 2(d) and 2(h) that the ksew method scatterplot shows 
a monotonically increasing trend, the neighbours have 
similar spreading capacities, and the scatterplot is relatively 
clustered. This phenomenon reveals that our method can 
effectively measure and rank influential nodes. 

4.2.2 Analysis of the spreading performance 
Given the limited scale of the Jazz network, this experiment 
uses the SI and SIR models to analyse the performance in 
the large-scale e-mail network to reflect the spreading 
dynamics better. Since the SI model does not consider the 
immunisation mechanism, all network nodes eventually get 
infected with saturated spreading. For this reason, the 
spread speed of influential nodes is typically evaluated in 
the SI model. In this experiment, the infection probability β 
is set to 0.6, and the spreading time t is set to 20 (for the 
convenience of observing the saturated infection of the 
network). Also, the proposed ksew is compared with degree 
centrality (degree), k-shell centrality (ks), and weighted  
k-shell centrality (ksw). The nodes that appeared either in 
ksew or the other three methods among the top 20 are 
selected as the spreading sources in SI. Without the 
common nodes in ranking lists, the comparison can be 
clearly distinguished from these methods. The spreading 
speed of the selected influential nodes is then observed. 

According to Figures 3(a), 3(b) and 3(c), the source 
nodes selected by the ksew spread information faster, and all 
nodes are infected with saturated spreading at t = 15.  
Figure 3(a) shows that the source nodes selected by the ks 
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method only infect 93% of nodes at t = 20, which can be 
attributed to the fact that the source nodes selected by the ks 
method have overlapping spreading areas. Figures 3(b) and 
3(c) reveals that the degree and ksw methods infect all nodes 
at t = 18 and t = 16, respectively, indicating that introducing 
the local attributes of nodes in multi-source spreading 
benefits the selection of dispersed nodes. 

According to Figures 3(d), 3(e) and 3(f), the spreading 
performance in the SIR model is compared. The infection 
probability β is set to 0.1, and the immunity recovery 
probability γ is set to 1. It is indicated that any node has 
only one chance to infect neighbour nodes when γ = 1. 
Hence, it is meaningful to highlight the role of the node’s 
location in selecting influential nodes by reducing the 
infection probability (β = 0.1). It should be noted that this 
experiment only selects the first different node ranked in the 
top 20 nods between two methods as the single origin, 
which can avoid the problem of overlapping areas of 
multiple source nodes. It will better reflect the accuracy of 
the methods. Figures 3(d), 3(e) and 3(f) shows that the ksew 
achieves the best spreading performance, indicating that this 
method combining local attributes and global attributes can 
generate a more accurate ranking for influential nodes. 
Notably, Figures 3(d) and 3(e) shows that the ks method 
outperforms the degree method in the case of single origin, 
which verifies the superiority of the k-shell centrality in the 
measure for a single influential node. 

5 Conclusions 
The ksew measure was proposed to mitigate the limitations 
of conventional methods for k-shell decomposition. The 
shortcomings of the k-shell centrality method that classifies 
many nodes into the same shell are addressed in this novel 
method. The method uses degree centrality (the local 
attributes) and k-shell centrality (the global attributes) to 
define the weight of the edge between any two nodes, 
greatly improving the accuracy of identifying influential 
spreaders. Compared to the degree centrality, k-shell 
centrality, and weighted k-shell centrality, the experimental 
results from two real networks demonstrated that the 
proposed method could rank the key nodes more effectively, 
and the influential nodes identified by this method had a 
greater spreading speed and propagation range in the SI 
model and SIR model. 

The proposed method measures influential spreaders by 
merging the degree centrality and k-shell centrality for two 
end nodes of an edge to define the edge weight. Further 
work is required to extend the definition of edge weight to 
make it applicable to weighted networks. 
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