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Abstract: Advanced persistent threat (APT) attacks take place every day, utilising stealthy and 
customised malware to disrupt the service or sabotage the network. Such advanced malware may 
subvert the defence mechanism by abusing process injection techniques provided by operating 
system and injecting malicious code into a benign process. Some process injection techniques 
may be identified by static analysis, but some can only be discovered at run time execution. This 
study adopts deep learning models and two malware analysis approaches to detect process 
injection malware. By applying transfer learning, this study proposes a CNN-based detection 
model with the features selected from static and dynamic analysis to identify process-injection 
malware. The experimental results demonstrate that the proposed method could detect  
process-injection malware efficiently as well as unknown malware. 
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1 Introduction 
Information technologies and networks offer unprecedented 
opportunities for businesses, industries, and governments, 
while the explosive expansion of using information 
technologies also attracts cybercrimes. Even though 
networks are protected with defence mechanisms such as 
anti-virus, spam filter, intrusion detection system, and 
firewall, organisations still suffer from cyberattacks. 
Cybercrimes have gone globally and become sophisticated 
and stealthy. 

Malware is a vehicle to compromise victim machines, 
steal sensitive data, disrupt services, or sabotage the 
network. Malware refers to malicious programs 
intentionally developed to infiltrate or compromise systems 
without the user’s consent. In order to bypass security 
safeguard, some malware developers make use of process 
injection techniques that injects and executes malicious 
code in the address space of a legitimate process. 

Process injection is a widespread defence evasion 
technique often employed within malware and fileless 
attacks (Hosseini, 2017), which entails running custom 
malicious code within the address space of a legitimate 
process. Such process-injection malware has caused 
disruptive targeted attacks (Gorelik, 2017; Kindlund, 2013), 
for example, Meterpreter DLL Injection, Poison Ivy, and 
Cyber Gate. Poison Ivy injects malware into the user’s 
default browser, such as explorer.exe, and plays a key role 
in high-profile advanced persistent threat (APT) attacks, 
like RSA SecureID and the Nitro assault against  
chemical makers, government offices, defence firms, and 
human-rights groups. 

Legitimate software adopts process injection as well for 
performing certain functionalities. For example, a debugger 
employs it to hook into a program so that the programmer 
can troubleshoot the program. Anti-virus software is another 
instance that injects itself into a browser to examine the 
browser’s behaviour and website content (Angelystor, 
2020). 

In general, programs invoke Windows API  
function calls to communicate with the operating system, so 
API function calls define program behaviours and  
could represent as features representing malware  
behaviours (Ngo et al., 2020). For illustration,  
API calls CreateRemoteThread, LoadLibrary, and 
WriteProcessMemory are invoked by process-injection 
malware to create a remote thread, load a DLL, and write it 
to the memory space of another process. 

Malware developers produce new and variants of 
malware constantly and rapidly. The study (Rosenquist, 
2015; Cesare et al., 2013) indicated that malware increased 
by the growth rate of 50% each year and 88% are variants 
of a malware sample. They apply stealthy techniques to 
customise malware for the target environments and adopt 
evasive techniques to circumvent detection mechanisms. 
Furthermore, tools are available for performing anti-virus 
evasion tasks (Srinivas, 2021). 

Based on MITRE ATT&CK (Mitre, 2021), there are 
several techniques for implementing process-injection 

malware. It is hard to detect as well as hard to mitigate with 
a preventive control since it is based on the abuse of an 
operating system design feature. This attack technique has 
been used by APT groups including APT3 and Cobalt 
Group. These attacks leverage known vulnerabilities and 
phishing campaigns to gain entry, run code in the memory 
space of a benign process. This attack technique is able to 
trick anti-virus software, as it is difficult to distinguish 
between legitimate and malicious program (Minerva, 2021). 
Infected programs can be disseminated through various 
channels such as email attachments or web links. 

A process-injection malware attack scenario is 
illustrated in Figure 1. Once a user opens the attachment or 
clicks the web link, the malicious code injects into the 
address space of a legitimate process. Many tools are 
available for generating such customised malware 
(ProcessInjectionTool, 2019; InjectProc, 2019; WinPIT, 
2018; Injection, 2019; dirty-needle, 2017; DLL-Inj3cti0n, 
2015; ProcessInjection, 2020), and a study (Granneman, 
2013) demonstrated that such stealthy attack technique can 
bypass anti-virus detection easily. 

Figure 1 An illustration of process injection (see online version 
for colours) 

 

Based on the real security incident case studies (TaNet, 
2021), in order to retain control over victim machines, 
adversaries may apply a process injection technique to 
inject malicious code into a normal process, such as svchost 
(Kaspersky, 2021; Chang, 2016) or explorer (Kindlund, 
2013). A lesson learned from the literature review and 
incident investigations is that an attacker could adopt the 
aforementioned evasion technique to craft malware 
customised for the target organisation and successfully 
subverted its defence mechanism. Therefore, detecting 
process-injection malware efficiently is critical to defending 
against APT attacks. 

Two approaches, static and dynamic analysis, are 
commonly used for detecting malware. Static analysis 
detects malware without executing the code, disassembles 
binary executables, extracts signatures or features, and 
employs a detection model to identify malware. Most static 
analysis methods detect misbehaviours by a set of sensitive 
API functions. However, some process injection techniques 
inject DLLs only during run time, for example fileless 
malware that injects malicious code without dropping itself 
in disk space (Gorelik, 2017), and would not be detected by 
static analysis. 

Dynamic analysis is an effective approach to overcome 
the above drawback. Most past works focused on detecting 
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malware (Angelystor, 2020; Sihwail et al., 2018) but rarely 
addressed detecting process-injection malware. To our best 
knowledge, this study is the first attempt for developing a 
hybrid malware analysis approach to identifying process-
injection malware, which cascades static analysis and then 
dynamic hooking technique to identify injected code. The 
first stage of static analysis examines if executable files 
invoke the sensitive API calls; the second stage applies 
dynamic hooking to capture injected DLLs and employs a 
CNN classification model to identify malicious DLLs. 

Inspired by the past research that a neural network 
detection model is efficient on malware detection 
(Kozachok and Kozachok, 2018) and that convolutional 
neural network (CNN) models are efficient on imaging 
recognition, this study applies transfer learning to transform 
an executable file into an image and develops a CNN-based 
detection model to identify process-injection malware. 

The rest of the paper is structured as follows. Section 2 
summarises the background knowledge of process injection 
techniques and the relevant related work. Section 3 
describes the proposed methodology. Section 4 presents the 
performance evaluation, followed by the concluding 
remarks and future work in Section 5. 

2 Related work 
2.1 Process injection 
Windows system is one of the most common desktop 
operating systems with over 77% market shares (Statista, 
2021). Process injection is a widespread detection evasion 
approach to inject malicious code into another process by 
applying legitimate functionalities provided by the 
operating system. Table 1 (Hosseini, 2017; Antoniewicz, 
2013) summarises the common process injection techniques 
and applied API functions. 

2.2 Malware detection 
A malware analysis guide (Sikorski and Honig, 2012) 
suggested the attributes from portable executable (PE) file, 
such as header, import table address, strings, and functions, 
are useful features for analysing malware. PE is a file 
format for executables and DLLs in Windows systems. 
Rezaei et al. (2016) extracted opcode strings from the code 
section of the executable file and applied Misha similarity 
and edit distance to identify malware. One of the process 
injection techniques is to inject malicious code into the 
holes (no-op areas) of a target PE file. A study (Chang, 
2016) adopted static analysis to detection such PE-infection 
malware, it extracts features from PE header and section 
addresses and identifies malware by distance discrepancy 
between the locations of the DLLs. 

Dynamic analysis examines code by executing it in a 
controlled environment (aka sandbox) and observes the 
actions, where the actions can be observed at different 
levels, such as instruction level to system level. Polino et al. 
(2015) proposed a dynamic analysis system that reports a 

descriptive summary for analysts querying the behaviours 
including invoked API function calls and data-flow 
dependencies. However, it requires security professions to 
verify the correctness of the generated semantic tagging. 

Table 1 Process injection techniques and applied APIs 

Process injection API 

DLL injection CreateToolhelp32Snapshot, 
Process32First, Process32Next, 
OpenProcess, VirtualAllocEx, 

WriteProcessMemory, 
CreateRemoteThread, 
NtCreateThreadEx, 

RtlCreateUserThread, LoadLibrary 
PE injection CreateRemoteThread, VirtualAllocEx, 

WriteProcessMemory 
Process hollowing CreateProcess, 

ZwUnmapViewOfSection, 
NtUnmapViewOfSection, 

VirtualAllocEx, 
WriteProcessMemory, 

SetThreadContext, ResumeThread 
Thread execution 
hijacking 

CreateToolhelp32Snapshot, 
Thread32First, OpenThread, 

SuspendThread, VirtualAllocEx, 
WriteProcessMemory, 

SetThreadContext, (LoadLibrary) 
Hook injection LoadLibrary, GetProcAddress, 

CreateToolhelp32Snapshot, 
Thread32Next, SetWindowsHookEx 

Injection via registry 
modification 

RegCreateKeyEx, RegSetValueEx 

Asynchronous 
procedure call 
injection 

OpenThread, QueueUserAPC, 
(LoadLibraryA) 

Extra window 
memory injection 

GetWindowLong, SetWindowLong, 
SendNotifyMessage, 

(NTMapViewOfSection) 

Given the fact that static and dynamic analysis have their 
pros and cons. Researchers combine both to improve the 
performance. Choi et al. (2012) applied open source tools to 
extract features from static and dynamic analysis and adopt 
a machine learning classification model to identify malware. 
However, they proposed the idea with the lack of 
experiments. Ye et al. (2017) concluded that the detection 
process is divided into two stages: feature extraction and 
classification/clustering and summarised that static analysis 
features include DLLs, APIs, opcode sequences, control 
flow graph, and strings and dynamic ones include memory, 
network activities, API call sequence, and system calls. 

A study (Sun, 2020) built a signature-like profile for 
each benign program that records its DNS query behavior 
and detected malware-injected processes whose DNS 
activities deviate from the benign program. Another study 
(Hăjmăşan et al., 2017) implemented a minifilter driver to 
monitor kernel-mode actions of the running processes and 
applied a scoring mechanism to capture suspicious 
processes. The user needs to make decisions whether the 
captured actions are to be allowed or blocked. 
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A study (Ijaz et al., 2019) evaluated the detection 
efficiency of static and dynamic analysis features with 
thousands of malicious and benign executable files and 
concluded that dynamic malware analysis is not effective 
due to malware’s stealthy and intelligent behaviours. The 
dynamic analysis cannot analyse a target file completely 
due to the limited network access and controlled 
environment. Another study (Bolton and Anderson-Cook, 
2017) developed a random forest to classify malware 
families by applying blacklist, bigram instruction 
comparison, and call graph similarity comparison. The work 
(Rosenberg et al., 2017) argued that static analysis features 
extracted from reverse engineering require a large amount 
of pre-processing and hand-engineered domain-specific 
features to obtain relevant features. It applied a CNN model 
and the features extracted from dynamic analysis to classify 
malware authorship. 

2.3 Convolutional neural network 
A CNN (LeCun et al., 1999) is a fully connected 
multilayered artificial neural network, where each neuron is 
in a layer is connected to all neurons in the next layer. 
CNNs employed popularly for image recognition can 
recognise multiple objects without explicit segmentation of 
the objects from their surroundings. The work (Donahue  
et al., 2014) proposed a method of implementing deep 
convolutional activation features, and the proposed model 
can be considered as a deep architecture for transfer 
learning. The CNN learns a high-level hierarchy of the 
features during the training phase and the deeper the hidden 
layer is the higher the abstraction level of the features 
(Rosenberg et al., 2017). 

3 Proposed detection method 
The proposed detection method employs the following 
techniques to detect process-injection malware by using 
both static and dynamic analysis approaches. 

1 The static analysis approach examines if executable 
files invoke the sensitive API function calls used by 
process-injection malware. 

2 The Windows hooking mechanism monitors running 
processes and captures injected DLLs. 

3 The CNN classification model examines if a captured 
DLL is malicious or not. 

Figure 2 outlines the system architecture. 

3.1 Static analysis 
According to the literature review (Christodorescu et al., 
2005; Idika and Mathur, 2007; Egele et al., 2012), this  
study concluded the sensitive API functions invoked by 
process-injection malware summarised in Table 2.  
For example, a malicious program invokes 
CreateRemoteThread(), SetWindowsHookEx(), and 

OpenProcess(), to inject a DLL into a victim program. The 
selected API functions cover the process injection attack 
techniques commonly used for DLL injection, remote 
execution, and registry modification. The proposed static 
analysis method disassembles executable files, extracts the 
invoked sensitive API calls, and applies an ML 
classification model to detect process-injection malware. 

Figure 2 The proposed system architecture (see online version 
for colours) 

 

Table 2 Sensitive API functions used in process injection 
techniques 

OpenProcess VirtualAlloc 
LoadLibrary VirtualAllocEx 
LoadLibraryE CreateProcess 
CreateRemoteThread CreateRemoteThreadEx 
WriteProcessMemory SetWindowsHookEx 
UnHookWindowsEx CallNextHookEx 
SetWindowEx UnHookWinEvent 
Shellexecute WinExec 
DLLFunctionCALL RegCreateKey 
RegSetValue  

3.2 Dynamic analysis 
By employing a process-injection technique, an attacker 
injects a malicious DLL into the memory space of a benign 
process, such as svchost, explorer, or other commonly used 
processes. As mentioned in the introduction, the intention of 
such injection depends on the injected code, not the 
technique, a benign program might adopt DLL injection to 
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invoke an updated library function, while malware injects a 
malicious DLL or shellcode for launching an attack. Both 
apply the same technique injecting a DLL, but each invokes 
a DLL with a different intention. Therefore, to improve 
detection efficiency, the proposed dynamic analysis method 
monitors process execution, captures injected DLLs, and 
examines if they are malicious or not. 

The proposed dynamic analysis method consists of the 
following two steps. The first step, DLL injection blocker 
(DIB) (Long, 2017), applies the hooking technique to 
capture injected DLLs; the second step applies a CNN 
classification model to examine if the captured code is 
malicious or not. Figure 3 outlines the proposed DIB 
algorithm employing the Windows hooking technique to 
monitor process execution and suspends the process 
execution if it injects a DLL into the address space of 
another process. 

Figure 3 The DIB flowchart (see online version for colours) 

 

3.3 DLL classification model 
Based on the literature review, CNNs have been 
successfully applied to image recognition and classification. 
The past research (Nataraj et al., 2011) converted malware 
binary files into images and demonstrated that malware in 
the same family retains similar features. Therefore, this 
study employs CNN to classify malicious DLLs by 
transforming binary executable files into images, where 
executable files are transformed (visualised) into Hilbert 
space-filling curves by utilising the Scurve tool (Cortesi, 
2015). 

The Hilbert curve (1891) (or Hilbert space-filling curve) 
is constructed as a limit of piecewise linear curves. The 
length of the nth curve is 2n – 1 / 2n. Therefore, the length 
grows exponentially with n, and each curve is contained  
in a square of area 1. It is useful for presenting a  
locality-preserved mapping between 1-dimensional and  
2-dimensional space (Moon et al., 2001), which implies that 
two data points that are close to each other in 1 dimension 
space are also close to each other after the transformation. 

Colours divide byte values into the following segments: 
low byte, ASCII code, and high byte, where 0X00 and 
0XFF are special colours, tab (0X09), line feed (0X0A), and 
enter (0X0D) are considered as characters. Figure 4 
illustrates the image of wininet.dll. 

This study adopts an improved CNN model, the 
Inception V3 architecture (Szegedy et al., 2016) as it applies 
factorised convolutions and aggressive regularisation to 
improve computation efficiency and to reduce overfitting 
risk. It outperforms several modern models including 

VGGNet (Simonyan and Zisserman, 2015), GooLeNet 
(Szegedy et al., 2015), and PReLU-nets (He et al., 2015). 
The reduction of feature dimension can be viewed as a 
special case of factorising convolutions in a computationally 
efficient way. Based on the observation that the outputs of 
nearby activations are highly correlated, it develops smaller 
convolutions for factorisation. For example, a 5 × 5 
convolution is replaced by two 3 × 3 convolutions; a 3 × 3 
is replaced by one 3 × 1 and one 1 × 3 convolutions.  
Figure 5 illustrates the basic Inception V3 architecture. 

Figure 4 Visualised wininet.dll (see online version for colours) 
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Transfer learning is efficient on model training with limited 
training data and allows you to retrain the final layer of an 
existing model. One of the most famous models used for 
transfer learning is Inception V3 (Milton-Barker, 2019). 
Based on the transfer learning property that the knowledge 
of solving one type of problem can be used to solve a 
similar problem (Donahue et al., 2014), this study visualises 
binary executables into Hilbert curve images and adopts the 
CNN classification model based on inception V3 
architecture to identify malicious DLLs. 

Figure 5 The basic architecture of inception V3 

 
Source: Nguyen et al. (2018) 

The training data set consists of benign and malicious 
DLLs, where the benign DLLs are obtained from a clean 
Windows 10 64-bit system and a Windows 10 64-bit system 
installed with anti-virus and commonly used software and 
the malicious DLLs are from the NCHC malware 
knowledge base. Based on our preliminary study, benign 
DLLs obtained from a clean Windows 10 64-bit system 
without installing any popular applications are not enough 
for training an effective malware classification model, as 
such a system might miss some common benign DLLs. 

4 Performance evaluation 
As the proposed solution combines static and dynamic 
analysis and ML classification models, therefore, this study 
designs four experiments to evaluate the efficiency of each 
adopted technique. Exp 1 is to validate the performance of 
the proposed static analysis method; Exp 2 is to examine 
how to train an effective CNN classification model; Exp 3 is 
to evaluate the efficiency of detecting unknown process 
injection malware; Exp 4 is to evaluate the detection 
efficiency of the proposed solution by comparing with 
VirusTotal. 

The test data sets primarily consist of two parts: 
malicious samples and benign programs, where the 1,500 
malware samples and 5,000 malicious DLLs are obtained 
from the NCHC malware knowledge base, Our preliminary 
study observes that the benign samples obtained from a 
clean Windows 10 64-bit system are limited and could not 
achieve good performance. Therefore, the benign programs 
and DLLs are extracted from a Windows 10 64-bit system 
installed with anti-virus and commonly used software. 

Depending on the purpose of evaluation, an experiment 
would apply a data set suitable for its need. 

The performance measurements applied in this study are 
defined below. Detection rate or true positive rate (TPR) 
measures the proportion of actual malware that are correctly 
identified; true negative rate (TNR) measures the proportion 
of actual benign that are correctly identified; false negative 
(FNR) measures the proportion of actual malware that are 
misclassified; false positive (FPR) measures the proportion 
of actual benign that are misclassified. Accuracy (ACC) and 
TPR are used for evaluating the detection models as 
expressed below. 

( ) ( )
( ) ( ) ( ) ( )

TP TNACC
Tp TN Fp FN

+=
+ + +

 

( )
( ) ( )

TPTPR
TP FN

=
+

 

4.1 Exp 1: evaluation of static analysis detection 
The evaluation data set of Exp 1 consists of 1,500 malware 
samples and the same amount of benign programs. The 
experiment applies ten-fold evaluation with 6:4 ratio of 
training and testing, and the results are outlined in Table 3. 
Among different ML models, random forest yields the best 
detection performance. 

4.2 Exp 2: training the detection model 
Exp 2 evaluates the impact of the training data on model 
training. The detection performance of an ML-based model 
depends on the quantity and quality of the data set. Figure 6 
shows the impact of a small data set, where the data set 
consists of 1,000 benign and 719 malicious. Figure 7 
indicates the impact of imbalanced data with 2,038 benign 
and 719 malicious. The experimental results demonstrate 
that a small-sized data set or imbalanced data affects model 
training. Even though both trained models reach high 
precision, their validation data yields poor detection 
performance. 

Table 3 The detection performance of static analysis 

Classification model ACC TPR ROC area 

Naïve Bayes 82.49% 90.5% 0.943 
J-48 93.46% 90.0% 0.964 
Random forest 94.74% 91.0% 0.985 
SVM 93.90% 91.6% 0.926 

After several attempts of the adjustment, the evaluation data 
set of this experiment contains 5 K malicious samples and  
5 K benign programs, and the experiment is performed by 
splitting it in 8:1:1 (training: testing: validation). Figure 8 
plots the performance of the trained CNN detection model. 
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Figure 6 Precision drops in case of a small training dataset (see online version for colours) 

 

Figure 7 Precision drops in imbalanced data (see online version for colours) 

 

Figure 8 The performance of the trained CNN detection model (see online version for colours) 
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Figure 9 Malicious DLL is blocked (see online version  
for colours) 

 

Figure 10 The attributes of the malicious DLL are recorded 
(see online version for colours) 

 

4.3 Exp 3: detecting unknown malware 
In order to evaluate if the proposed method could identify 
unknown process-injection malware, this experiment 
mimics a hacker utilising a DLL injector (Apponic, 2021) to 
create new malware injecting an unknown malicious DLL. 
The results show that the proposed system blocked it when 
it attempted to access the address space of another process 
and alerted the user if s/he wants to grant such access as 
shown in Figure 9. In addition, the system records the 
attributes of the blocked DLL as shown in Figure 10 and 
produces the associated activity records in the event log file 
as shown in Figure 11. In summary, this experiment 
demonstrates that the proposed system could successfully 
identify unknown malware and block its execution. 

4.4 Exp 4: performance comparison 
This experiment selects 52 malicious DLLs that have a low 
detection rate in VirusTotal in order to evaluate if the 
proposed system can identify them efficiently. The rationale 
of the malware selection is to validate if the proposed 
solution could outperform most of the commercial anti-virus 
software on detecting process-injection malware. Table 4 
summarises the detection results of both systems. The 

results show that the proposed CNN-based detection system 
identifies 43 out of 52 with the recall of 82.7% and can 
detect malicious DLLs efficiently, while most commercial 
anti-virus software might not be able to. 

Figure 11 The associated activities are recorded in the event log 
file (see online version for colours) 

 

Table 4 Detection comparison with VirusTotal 

Malware MD5 Virus 
total 

Our 
method 

0000ae2d955e1c0cd7374f931f5d88d0 2 / 56 Malicious 
0001e298ef8bd956d03e688d101679e0 5 / 55 Malicious 
00021589be9f0b8d7accb832446e5ae0 2 / 53 Malicious 
000292d36ea2553188704fd524fe9e60 4 / 55 Malicious 
00038620771ed92cd79d5269319b6a20 5 / 57 Malicious 
0003e418265806944a84e7a9c54efa90 2 / 53 Benign 
0004653825e92f2ab46bf023d7d80280 3 / 57 Malicious 
010d661a35d42b5972bfd711d37cd0c0 12 / 53 Malicious 
010e4e76d9674306a1cdf06de3484650 4 / 56 Malicious 
010e6700f90558e84bcf1094908c2a30 9 / 54 Malicious 
010e756d193f31537d9f974263170a90 5 / 56 Malicious 
0110b9390d4bdad2186b6e76496c31b0 8 / 57 Benign 
01136628fca38fe5ed0fb413bd410ea0 8 / 57 Benign 
0113abf63083cbfe11282742884ab7e0 17 / 57 Malicious 
0115d80c30f6ea75264cfb63c5f7f240 18 / 57 Malicious 
0115fb83ac30a7dff67fd3feda006440 2 / 56 Malicious 
01164f964969e1cd218b9e50cc78be70 16 / 56 Malicious 
01177f6812e7b84f70ef8305fb9bbed0 11 / 53 Malicious 
011aa50f69a124827376a30fb37dca50 10 / 54 Malicious 
011f33a59eeaccd107e5dd679607e500 18 / 57 Malicious 
0120d67c9e9e2e9d59a04a58778b06c0 13 / 56 Benign 
01249c46fb111b390a48f75338a9c590 14 / 55 Malicious 
01268a82e47909cc012343f29a4dcbf0 2 / 54 Malicious 
013139d855f3a6ac60701f08a7e00370 9 / 56 Malicious 
013190175ad11f71ffb49448104c6e30 8 / 55 Malicious 
013342eadd62900cf9ba8d5cb46761a0 9 / 57 Benign 
0139b85d75a7cb38bd833c073630ff20 19 / 56 Malicious 
013a0da8ad277266f1ebe1595a2aea90 10 / 64 Malicious 
013ce98a968c90b5a0056140ffa8f030 2 / 55 Benign 
0141b4983a69de9dbfa6b326c8464720 2 / 55 Malicious 
0141ec6335cf120275d9073c08c40ee0 3 / 55 Malicious 
014b77afb6c0f89cdb51e39ec85acda0 5 / 57 Benign 
014cb9f67365cba19087129152cd1530 4 / 56 Malicious 
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Table 4 Detection comparison with VirusTotal (continued) 

Malware MD5 Virus 
total 

Our 
method 

014ed968d05aecef92a0c7e888de0a80 2 / 56 Benign 

015006ffe06f1fa250f1bc80438f99d0 9 / 57 Malicious 

0151eba491d1049e40a933ca3a988210 4 / 53 Malicious 

01525f3479ddad7de03e9ffc2b584720 11 / 54 Malicious 

0153fa7457e860acb60261b3a0b05140 13 / 55 Malicious 

01585b80d4bbb920f9567c065e62ac70 6 / 56 Malicious 

015a30f1820ed04d7dd2cb544a7020e0 4 / 56 Malicious 

015b28d5279db3bf15ae578b375a13a0 3 / 56 Malicious 

015f2e599caea9c733a407d44d4ad430 4 / 53 Benign 

0161ff82af4921885fa3badab3877bf0 4 / 52 Malicious 

01639510ad6999aa9284a3352eede8d0 4 / 55 Malicious 

016504076f6f5ca83dfb49a508f38870 5 / 56 Malicious 

01655948f1028f906004085e589138e0 4 / 54 Malicious 

0166d6e6eedb409a6c059ce5c2c44630 10 / 55 Malicious 

016903a9bac7a6dff37528f82bcd2a40 9 / 57 Malicious 

016c89ad2736e4df10610928489aa6d0 8 / 55 Malicious 

0172c674da767ef1a4acbf5ee5cf0570 2 / 53 Malicious 

0176d6fbd3f0ab30a5f8e81acaa89b90 3 / 55 Malicious 

01771b93232c44f5bee57a69f6d17240 6 / 55 Malicious 

5 Conclusions 

Several process-injection techniques to create such 
malware. Some perform the injection behavior during 
execution, which can be captured only at run time; some can 
be identified through static analysis. To improve detection 
performance and time efficiency, this study proposes a 
process-injection malware detection approach that combines 
dynamic and static analysis as well as ML techniques. 

This study summarises the sensitive API functions used 
by process-injection malware. The experimental results 
prove that the static analysis approach by using the sensitive 
API functions is effective in detecting process-injection 
malware and random forest yields the best detection 
performance. The proposed static analysis approach can be 
used for large scan, such as disk scan to inspect if process-
injection malware exists in the disk. 

Attackers can utilise injector tools to create new 
process-injection malware to evade detection. Furthermore, 
the detection rate of malicious DLLs is not high in most 
commercial AV software. By utilising transfer learning, the 
proposed system transforms binary executable files into 
images and applies a CNN classification model to identify 
malicious DLLs. The experimental results demonstrate that 
the proposed detection method could capture new process-
injection malware and outperforms most AV software. 

 

The proposed approach also can be considered as two-
layer protection, where the first layer applies static analysis 
to perform disk scan and the second layer applies dynamic 
analysis to monitor and capture if any malware injects DLL 
during execution. 
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