

International Journal of Security and Networks

ISSN online: 1747-8413 - ISSN print: 1747-8405
https://www.inderscience.com/ijsn

A hybrid malware analysis approach for identifying process-
injection malware based on machine learning

Chia-Mei Chen, Ze-Yu Lin, Ya-Hui Ou, Jiunn-Wu Lin

DOI: 10.1504/IJSN.2024.10062787

Article History:
Received: 13 July 2021
Accepted: 19 July 2021
Published online: 12 March 2024

Powered by TCPDF (www.tcpdf.org)

Copyright © 2024 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijsn
https://dx.doi.org/10.1504/IJSN.2024.10062787
http://www.tcpdf.org

20 Int. J. Security and Networks, Vol. 19, No. 1, 2024

Copyright © 2024 Inderscience Enterprises Ltd.

A hybrid malware analysis approach for identifying
process-injection malware based on machine
learning

Chia-Mei Chen* and Ze-Yu Lin
Department of Information Management,
National Sun Yat-sen University, Taiwan
Email: cchen@mail.nsysu.edu.tw
Email: fm061j42k7bp6@gmail.com
*Corresponding author

Ya-Hui Ou
General Competency Center,
National Penghu University of Science and Technology, Taiwan
Email: yhou0603@gmail.com

Jiunn-Wu Lin
Kaohsiung Veterans General Hospital, Taiwan
Email: jiunnwu@vghks.gov.tw

Abstract: Advanced persistent threat (APT) attacks take place every day, utilising stealthy and
customised malware to disrupt the service or sabotage the network. Such advanced malware may
subvert the defence mechanism by abusing process injection techniques provided by operating
system and injecting malicious code into a benign process. Some process injection techniques
may be identified by static analysis, but some can only be discovered at run time execution. This
study adopts deep learning models and two malware analysis approaches to detect process
injection malware. By applying transfer learning, this study proposes a CNN-based detection
model with the features selected from static and dynamic analysis to identify process-injection
malware. The experimental results demonstrate that the proposed method could detect
process-injection malware efficiently as well as unknown malware.

Keywords: malware detection; process injection; machine learning.

Reference to this paper should be made as follows: Chen, C-M., Lin, Z-Y., Ou, Y-H. and
Lin, J-W. (2024) ‘A hybrid malware analysis approach for identifying process-injection malware
based on machine learning’, Int. J. Security and Networks, Vol. 19, No. 1, pp.20–30.

Biographical notes: Chia-Mei Chen has joined in the Department of Information Management,
National Sun Yat-Sen University since 1996. She was the Section Chef of Network Division and
Deputy Director, Office of Library and Information Services in 2009–2011. She had served
as a coordinator of Taiwan Computer Emergency Response Team/Coordination Center
(TWCERT/CC) during 1998 to 2013 and then serves as a consultant. Based on her expertise, she
established Taiwan Academic Network Computer Emergency Response Team (TACERT) in
2009. She is the Deputy Chair of TWISC@NCKU, a branch of Taiwan Information Security
Center. She continues working for the network security society. Her current research interests
include anomaly detection, malware analysis, network security, and cloud computing.

Ze-Yu Lin received his MS degree in Department of Information Management from the
Management College, National Sun Yet-sen University, Taiwan in 2018.

Ya-Hui Ou has joined in the National Penghu University of Science and Technology as an
assistant professor in 2020. She received her MS degree in Department of Information
Management from the College of Electrical and Information Engineering, I-Shou University, in
2009, and PhD in Department of Information Management from the National Sun Yat-sen
University of Taiwan in 2017. Her research interests include network security and statistical
analysis.

Jiunn-Wu Lin has joined the Kaohsiung Veterans General Hospital as a Network and Information
Security Engineer since 2003. He received his MS degree in the Department of information
Management from National Chi Nan University.in 2003 and PhD in the Department of
Information Management from National Sun Yat-sen University of Taiwan in 2020.

 A hybrid malware analysis approach for identifying process-injection malware based on machine learning 21

1 Introduction
Information technologies and networks offer unprecedented
opportunities for businesses, industries, and governments,
while the explosive expansion of using information
technologies also attracts cybercrimes. Even though
networks are protected with defence mechanisms such as
anti-virus, spam filter, intrusion detection system, and
firewall, organisations still suffer from cyberattacks.
Cybercrimes have gone globally and become sophisticated
and stealthy.

Malware is a vehicle to compromise victim machines,
steal sensitive data, disrupt services, or sabotage the
network. Malware refers to malicious programs
intentionally developed to infiltrate or compromise systems
without the user’s consent. In order to bypass security
safeguard, some malware developers make use of process
injection techniques that injects and executes malicious
code in the address space of a legitimate process.

Process injection is a widespread defence evasion
technique often employed within malware and fileless
attacks (Hosseini, 2017), which entails running custom
malicious code within the address space of a legitimate
process. Such process-injection malware has caused
disruptive targeted attacks (Gorelik, 2017; Kindlund, 2013),
for example, Meterpreter DLL Injection, Poison Ivy, and
Cyber Gate. Poison Ivy injects malware into the user’s
default browser, such as explorer.exe, and plays a key role
in high-profile advanced persistent threat (APT) attacks,
like RSA SecureID and the Nitro assault against
chemical makers, government offices, defence firms, and
human-rights groups.

Legitimate software adopts process injection as well for
performing certain functionalities. For example, a debugger
employs it to hook into a program so that the programmer
can troubleshoot the program. Anti-virus software is another
instance that injects itself into a browser to examine the
browser’s behaviour and website content (Angelystor,
2020).

In general, programs invoke Windows API
function calls to communicate with the operating system, so
API function calls define program behaviours and
could represent as features representing malware
behaviours (Ngo et al., 2020). For illustration,
API calls CreateRemoteThread, LoadLibrary, and
WriteProcessMemory are invoked by process-injection
malware to create a remote thread, load a DLL, and write it
to the memory space of another process.

Malware developers produce new and variants of
malware constantly and rapidly. The study (Rosenquist,
2015; Cesare et al., 2013) indicated that malware increased
by the growth rate of 50% each year and 88% are variants
of a malware sample. They apply stealthy techniques to
customise malware for the target environments and adopt
evasive techniques to circumvent detection mechanisms.
Furthermore, tools are available for performing anti-virus
evasion tasks (Srinivas, 2021).

Based on MITRE ATT&CK (Mitre, 2021), there are
several techniques for implementing process-injection

malware. It is hard to detect as well as hard to mitigate with
a preventive control since it is based on the abuse of an
operating system design feature. This attack technique has
been used by APT groups including APT3 and Cobalt
Group. These attacks leverage known vulnerabilities and
phishing campaigns to gain entry, run code in the memory
space of a benign process. This attack technique is able to
trick anti-virus software, as it is difficult to distinguish
between legitimate and malicious program (Minerva, 2021).
Infected programs can be disseminated through various
channels such as email attachments or web links.

A process-injection malware attack scenario is
illustrated in Figure 1. Once a user opens the attachment or
clicks the web link, the malicious code injects into the
address space of a legitimate process. Many tools are
available for generating such customised malware
(ProcessInjectionTool, 2019; InjectProc, 2019; WinPIT,
2018; Injection, 2019; dirty-needle, 2017; DLL-Inj3cti0n,
2015; ProcessInjection, 2020), and a study (Granneman,
2013) demonstrated that such stealthy attack technique can
bypass anti-virus detection easily.

Figure 1 An illustration of process injection (see online version
for colours)

Based on the real security incident case studies (TaNet,
2021), in order to retain control over victim machines,
adversaries may apply a process injection technique to
inject malicious code into a normal process, such as svchost
(Kaspersky, 2021; Chang, 2016) or explorer (Kindlund,
2013). A lesson learned from the literature review and
incident investigations is that an attacker could adopt the
aforementioned evasion technique to craft malware
customised for the target organisation and successfully
subverted its defence mechanism. Therefore, detecting
process-injection malware efficiently is critical to defending
against APT attacks.

Two approaches, static and dynamic analysis, are
commonly used for detecting malware. Static analysis
detects malware without executing the code, disassembles
binary executables, extracts signatures or features, and
employs a detection model to identify malware. Most static
analysis methods detect misbehaviours by a set of sensitive
API functions. However, some process injection techniques
inject DLLs only during run time, for example fileless
malware that injects malicious code without dropping itself
in disk space (Gorelik, 2017), and would not be detected by
static analysis.

Dynamic analysis is an effective approach to overcome
the above drawback. Most past works focused on detecting

22 C-M. Chen et al.

malware (Angelystor, 2020; Sihwail et al., 2018) but rarely
addressed detecting process-injection malware. To our best
knowledge, this study is the first attempt for developing a
hybrid malware analysis approach to identifying process-
injection malware, which cascades static analysis and then
dynamic hooking technique to identify injected code. The
first stage of static analysis examines if executable files
invoke the sensitive API calls; the second stage applies
dynamic hooking to capture injected DLLs and employs a
CNN classification model to identify malicious DLLs.

Inspired by the past research that a neural network
detection model is efficient on malware detection
(Kozachok and Kozachok, 2018) and that convolutional
neural network (CNN) models are efficient on imaging
recognition, this study applies transfer learning to transform
an executable file into an image and develops a CNN-based
detection model to identify process-injection malware.

The rest of the paper is structured as follows. Section 2
summarises the background knowledge of process injection
techniques and the relevant related work. Section 3
describes the proposed methodology. Section 4 presents the
performance evaluation, followed by the concluding
remarks and future work in Section 5.

2 Related work
2.1 Process injection
Windows system is one of the most common desktop
operating systems with over 77% market shares (Statista,
2021). Process injection is a widespread detection evasion
approach to inject malicious code into another process by
applying legitimate functionalities provided by the
operating system. Table 1 (Hosseini, 2017; Antoniewicz,
2013) summarises the common process injection techniques
and applied API functions.

2.2 Malware detection
A malware analysis guide (Sikorski and Honig, 2012)
suggested the attributes from portable executable (PE) file,
such as header, import table address, strings, and functions,
are useful features for analysing malware. PE is a file
format for executables and DLLs in Windows systems.
Rezaei et al. (2016) extracted opcode strings from the code
section of the executable file and applied Misha similarity
and edit distance to identify malware. One of the process
injection techniques is to inject malicious code into the
holes (no-op areas) of a target PE file. A study (Chang,
2016) adopted static analysis to detection such PE-infection
malware, it extracts features from PE header and section
addresses and identifies malware by distance discrepancy
between the locations of the DLLs.

Dynamic analysis examines code by executing it in a
controlled environment (aka sandbox) and observes the
actions, where the actions can be observed at different
levels, such as instruction level to system level. Polino et al.
(2015) proposed a dynamic analysis system that reports a

descriptive summary for analysts querying the behaviours
including invoked API function calls and data-flow
dependencies. However, it requires security professions to
verify the correctness of the generated semantic tagging.

Table 1 Process injection techniques and applied APIs

Process injection API

DLL injection CreateToolhelp32Snapshot,
Process32First, Process32Next,
OpenProcess, VirtualAllocEx,

WriteProcessMemory,
CreateRemoteThread,
NtCreateThreadEx,

RtlCreateUserThread, LoadLibrary
PE injection CreateRemoteThread, VirtualAllocEx,

WriteProcessMemory
Process hollowing CreateProcess,

ZwUnmapViewOfSection,
NtUnmapViewOfSection,

VirtualAllocEx,
WriteProcessMemory,

SetThreadContext, ResumeThread
Thread execution
hijacking

CreateToolhelp32Snapshot,
Thread32First, OpenThread,

SuspendThread, VirtualAllocEx,
WriteProcessMemory,

SetThreadContext, (LoadLibrary)
Hook injection LoadLibrary, GetProcAddress,

CreateToolhelp32Snapshot,
Thread32Next, SetWindowsHookEx

Injection via registry
modification

RegCreateKeyEx, RegSetValueEx

Asynchronous
procedure call
injection

OpenThread, QueueUserAPC,
(LoadLibraryA)

Extra window
memory injection

GetWindowLong, SetWindowLong,
SendNotifyMessage,

(NTMapViewOfSection)

Given the fact that static and dynamic analysis have their
pros and cons. Researchers combine both to improve the
performance. Choi et al. (2012) applied open source tools to
extract features from static and dynamic analysis and adopt
a machine learning classification model to identify malware.
However, they proposed the idea with the lack of
experiments. Ye et al. (2017) concluded that the detection
process is divided into two stages: feature extraction and
classification/clustering and summarised that static analysis
features include DLLs, APIs, opcode sequences, control
flow graph, and strings and dynamic ones include memory,
network activities, API call sequence, and system calls.

A study (Sun, 2020) built a signature-like profile for
each benign program that records its DNS query behavior
and detected malware-injected processes whose DNS
activities deviate from the benign program. Another study
(Hăjmăşan et al., 2017) implemented a minifilter driver to
monitor kernel-mode actions of the running processes and
applied a scoring mechanism to capture suspicious
processes. The user needs to make decisions whether the
captured actions are to be allowed or blocked.

 A hybrid malware analysis approach for identifying process-injection malware based on machine learning 23

A study (Ijaz et al., 2019) evaluated the detection
efficiency of static and dynamic analysis features with
thousands of malicious and benign executable files and
concluded that dynamic malware analysis is not effective
due to malware’s stealthy and intelligent behaviours. The
dynamic analysis cannot analyse a target file completely
due to the limited network access and controlled
environment. Another study (Bolton and Anderson-Cook,
2017) developed a random forest to classify malware
families by applying blacklist, bigram instruction
comparison, and call graph similarity comparison. The work
(Rosenberg et al., 2017) argued that static analysis features
extracted from reverse engineering require a large amount
of pre-processing and hand-engineered domain-specific
features to obtain relevant features. It applied a CNN model
and the features extracted from dynamic analysis to classify
malware authorship.

2.3 Convolutional neural network
A CNN (LeCun et al., 1999) is a fully connected
multilayered artificial neural network, where each neuron is
in a layer is connected to all neurons in the next layer.
CNNs employed popularly for image recognition can
recognise multiple objects without explicit segmentation of
the objects from their surroundings. The work (Donahue
et al., 2014) proposed a method of implementing deep
convolutional activation features, and the proposed model
can be considered as a deep architecture for transfer
learning. The CNN learns a high-level hierarchy of the
features during the training phase and the deeper the hidden
layer is the higher the abstraction level of the features
(Rosenberg et al., 2017).

3 Proposed detection method
The proposed detection method employs the following
techniques to detect process-injection malware by using
both static and dynamic analysis approaches.

1 The static analysis approach examines if executable
files invoke the sensitive API function calls used by
process-injection malware.

2 The Windows hooking mechanism monitors running
processes and captures injected DLLs.

3 The CNN classification model examines if a captured
DLL is malicious or not.

Figure 2 outlines the system architecture.

3.1 Static analysis
According to the literature review (Christodorescu et al.,
2005; Idika and Mathur, 2007; Egele et al., 2012), this
study concluded the sensitive API functions invoked by
process-injection malware summarised in Table 2.
For example, a malicious program invokes
CreateRemoteThread(), SetWindowsHookEx(), and

OpenProcess(), to inject a DLL into a victim program. The
selected API functions cover the process injection attack
techniques commonly used for DLL injection, remote
execution, and registry modification. The proposed static
analysis method disassembles executable files, extracts the
invoked sensitive API calls, and applies an ML
classification model to detect process-injection malware.

Figure 2 The proposed system architecture (see online version
for colours)

Table 2 Sensitive API functions used in process injection
techniques

OpenProcess VirtualAlloc
LoadLibrary VirtualAllocEx
LoadLibraryE CreateProcess
CreateRemoteThread CreateRemoteThreadEx
WriteProcessMemory SetWindowsHookEx
UnHookWindowsEx CallNextHookEx
SetWindowEx UnHookWinEvent
Shellexecute WinExec
DLLFunctionCALL RegCreateKey
RegSetValue

3.2 Dynamic analysis
By employing a process-injection technique, an attacker
injects a malicious DLL into the memory space of a benign
process, such as svchost, explorer, or other commonly used
processes. As mentioned in the introduction, the intention of
such injection depends on the injected code, not the
technique, a benign program might adopt DLL injection to

24 C-M. Chen et al.

invoke an updated library function, while malware injects a
malicious DLL or shellcode for launching an attack. Both
apply the same technique injecting a DLL, but each invokes
a DLL with a different intention. Therefore, to improve
detection efficiency, the proposed dynamic analysis method
monitors process execution, captures injected DLLs, and
examines if they are malicious or not.

The proposed dynamic analysis method consists of the
following two steps. The first step, DLL injection blocker
(DIB) (Long, 2017), applies the hooking technique to
capture injected DLLs; the second step applies a CNN
classification model to examine if the captured code is
malicious or not. Figure 3 outlines the proposed DIB
algorithm employing the Windows hooking technique to
monitor process execution and suspends the process
execution if it injects a DLL into the address space of
another process.

Figure 3 The DIB flowchart (see online version for colours)

3.3 DLL classification model
Based on the literature review, CNNs have been
successfully applied to image recognition and classification.
The past research (Nataraj et al., 2011) converted malware
binary files into images and demonstrated that malware in
the same family retains similar features. Therefore, this
study employs CNN to classify malicious DLLs by
transforming binary executable files into images, where
executable files are transformed (visualised) into Hilbert
space-filling curves by utilising the Scurve tool (Cortesi,
2015).

The Hilbert curve (1891) (or Hilbert space-filling curve)
is constructed as a limit of piecewise linear curves. The
length of the nth curve is 2n – 1 / 2n. Therefore, the length
grows exponentially with n, and each curve is contained
in a square of area 1. It is useful for presenting a
locality-preserved mapping between 1-dimensional and
2-dimensional space (Moon et al., 2001), which implies that
two data points that are close to each other in 1 dimension
space are also close to each other after the transformation.

Colours divide byte values into the following segments:
low byte, ASCII code, and high byte, where 0X00 and
0XFF are special colours, tab (0X09), line feed (0X0A), and
enter (0X0D) are considered as characters. Figure 4
illustrates the image of wininet.dll.

This study adopts an improved CNN model, the
Inception V3 architecture (Szegedy et al., 2016) as it applies
factorised convolutions and aggressive regularisation to
improve computation efficiency and to reduce overfitting
risk. It outperforms several modern models including

VGGNet (Simonyan and Zisserman, 2015), GooLeNet
(Szegedy et al., 2015), and PReLU-nets (He et al., 2015).
The reduction of feature dimension can be viewed as a
special case of factorising convolutions in a computationally
efficient way. Based on the observation that the outputs of
nearby activations are highly correlated, it develops smaller
convolutions for factorisation. For example, a 5 × 5
convolution is replaced by two 3 × 3 convolutions; a 3 × 3
is replaced by one 3 × 1 and one 1 × 3 convolutions.
Figure 5 illustrates the basic Inception V3 architecture.

Figure 4 Visualised wininet.dll (see online version for colours)

 A hybrid malware analysis approach for identifying process-injection malware based on machine learning 25

Transfer learning is efficient on model training with limited
training data and allows you to retrain the final layer of an
existing model. One of the most famous models used for
transfer learning is Inception V3 (Milton-Barker, 2019).
Based on the transfer learning property that the knowledge
of solving one type of problem can be used to solve a
similar problem (Donahue et al., 2014), this study visualises
binary executables into Hilbert curve images and adopts the
CNN classification model based on inception V3
architecture to identify malicious DLLs.

Figure 5 The basic architecture of inception V3

Source: Nguyen et al. (2018)

The training data set consists of benign and malicious
DLLs, where the benign DLLs are obtained from a clean
Windows 10 64-bit system and a Windows 10 64-bit system
installed with anti-virus and commonly used software and
the malicious DLLs are from the NCHC malware
knowledge base. Based on our preliminary study, benign
DLLs obtained from a clean Windows 10 64-bit system
without installing any popular applications are not enough
for training an effective malware classification model, as
such a system might miss some common benign DLLs.

4 Performance evaluation
As the proposed solution combines static and dynamic
analysis and ML classification models, therefore, this study
designs four experiments to evaluate the efficiency of each
adopted technique. Exp 1 is to validate the performance of
the proposed static analysis method; Exp 2 is to examine
how to train an effective CNN classification model; Exp 3 is
to evaluate the efficiency of detecting unknown process
injection malware; Exp 4 is to evaluate the detection
efficiency of the proposed solution by comparing with
VirusTotal.

The test data sets primarily consist of two parts:
malicious samples and benign programs, where the 1,500
malware samples and 5,000 malicious DLLs are obtained
from the NCHC malware knowledge base, Our preliminary
study observes that the benign samples obtained from a
clean Windows 10 64-bit system are limited and could not
achieve good performance. Therefore, the benign programs
and DLLs are extracted from a Windows 10 64-bit system
installed with anti-virus and commonly used software.

Depending on the purpose of evaluation, an experiment
would apply a data set suitable for its need.

The performance measurements applied in this study are
defined below. Detection rate or true positive rate (TPR)
measures the proportion of actual malware that are correctly
identified; true negative rate (TNR) measures the proportion
of actual benign that are correctly identified; false negative
(FNR) measures the proportion of actual malware that are
misclassified; false positive (FPR) measures the proportion
of actual benign that are misclassified. Accuracy (ACC) and
TPR are used for evaluating the detection models as
expressed below.

() ()
() () () ()

TP TNACC
Tp TN Fp FN

+=
+ + +

()
() ()

TPTPR
TP FN

=
+

4.1 Exp 1: evaluation of static analysis detection
The evaluation data set of Exp 1 consists of 1,500 malware
samples and the same amount of benign programs. The
experiment applies ten-fold evaluation with 6:4 ratio of
training and testing, and the results are outlined in Table 3.
Among different ML models, random forest yields the best
detection performance.

4.2 Exp 2: training the detection model
Exp 2 evaluates the impact of the training data on model
training. The detection performance of an ML-based model
depends on the quantity and quality of the data set. Figure 6
shows the impact of a small data set, where the data set
consists of 1,000 benign and 719 malicious. Figure 7
indicates the impact of imbalanced data with 2,038 benign
and 719 malicious. The experimental results demonstrate
that a small-sized data set or imbalanced data affects model
training. Even though both trained models reach high
precision, their validation data yields poor detection
performance.

Table 3 The detection performance of static analysis

Classification model ACC TPR ROC area

Naïve Bayes 82.49% 90.5% 0.943
J-48 93.46% 90.0% 0.964
Random forest 94.74% 91.0% 0.985
SVM 93.90% 91.6% 0.926

After several attempts of the adjustment, the evaluation data
set of this experiment contains 5 K malicious samples and
5 K benign programs, and the experiment is performed by
splitting it in 8:1:1 (training: testing: validation). Figure 8
plots the performance of the trained CNN detection model.

26 C-M. Chen et al.

Figure 6 Precision drops in case of a small training dataset (see online version for colours)

Figure 7 Precision drops in imbalanced data (see online version for colours)

Figure 8 The performance of the trained CNN detection model (see online version for colours)

 A hybrid malware analysis approach for identifying process-injection malware based on machine learning 27

Figure 9 Malicious DLL is blocked (see online version
for colours)

Figure 10 The attributes of the malicious DLL are recorded
(see online version for colours)

4.3 Exp 3: detecting unknown malware
In order to evaluate if the proposed method could identify
unknown process-injection malware, this experiment
mimics a hacker utilising a DLL injector (Apponic, 2021) to
create new malware injecting an unknown malicious DLL.
The results show that the proposed system blocked it when
it attempted to access the address space of another process
and alerted the user if s/he wants to grant such access as
shown in Figure 9. In addition, the system records the
attributes of the blocked DLL as shown in Figure 10 and
produces the associated activity records in the event log file
as shown in Figure 11. In summary, this experiment
demonstrates that the proposed system could successfully
identify unknown malware and block its execution.

4.4 Exp 4: performance comparison
This experiment selects 52 malicious DLLs that have a low
detection rate in VirusTotal in order to evaluate if the
proposed system can identify them efficiently. The rationale
of the malware selection is to validate if the proposed
solution could outperform most of the commercial anti-virus
software on detecting process-injection malware. Table 4
summarises the detection results of both systems. The

results show that the proposed CNN-based detection system
identifies 43 out of 52 with the recall of 82.7% and can
detect malicious DLLs efficiently, while most commercial
anti-virus software might not be able to.

Figure 11 The associated activities are recorded in the event log
file (see online version for colours)

Table 4 Detection comparison with VirusTotal

Malware MD5 Virus
total

Our
method

0000ae2d955e1c0cd7374f931f5d88d0 2 / 56 Malicious
0001e298ef8bd956d03e688d101679e0 5 / 55 Malicious
00021589be9f0b8d7accb832446e5ae0 2 / 53 Malicious
000292d36ea2553188704fd524fe9e60 4 / 55 Malicious
00038620771ed92cd79d5269319b6a20 5 / 57 Malicious
0003e418265806944a84e7a9c54efa90 2 / 53 Benign
0004653825e92f2ab46bf023d7d80280 3 / 57 Malicious
010d661a35d42b5972bfd711d37cd0c0 12 / 53 Malicious
010e4e76d9674306a1cdf06de3484650 4 / 56 Malicious
010e6700f90558e84bcf1094908c2a30 9 / 54 Malicious
010e756d193f31537d9f974263170a90 5 / 56 Malicious
0110b9390d4bdad2186b6e76496c31b0 8 / 57 Benign
01136628fca38fe5ed0fb413bd410ea0 8 / 57 Benign
0113abf63083cbfe11282742884ab7e0 17 / 57 Malicious
0115d80c30f6ea75264cfb63c5f7f240 18 / 57 Malicious
0115fb83ac30a7dff67fd3feda006440 2 / 56 Malicious
01164f964969e1cd218b9e50cc78be70 16 / 56 Malicious
01177f6812e7b84f70ef8305fb9bbed0 11 / 53 Malicious
011aa50f69a124827376a30fb37dca50 10 / 54 Malicious
011f33a59eeaccd107e5dd679607e500 18 / 57 Malicious
0120d67c9e9e2e9d59a04a58778b06c0 13 / 56 Benign
01249c46fb111b390a48f75338a9c590 14 / 55 Malicious
01268a82e47909cc012343f29a4dcbf0 2 / 54 Malicious
013139d855f3a6ac60701f08a7e00370 9 / 56 Malicious
013190175ad11f71ffb49448104c6e30 8 / 55 Malicious
013342eadd62900cf9ba8d5cb46761a0 9 / 57 Benign
0139b85d75a7cb38bd833c073630ff20 19 / 56 Malicious
013a0da8ad277266f1ebe1595a2aea90 10 / 64 Malicious
013ce98a968c90b5a0056140ffa8f030 2 / 55 Benign
0141b4983a69de9dbfa6b326c8464720 2 / 55 Malicious
0141ec6335cf120275d9073c08c40ee0 3 / 55 Malicious
014b77afb6c0f89cdb51e39ec85acda0 5 / 57 Benign
014cb9f67365cba19087129152cd1530 4 / 56 Malicious

28 C-M. Chen et al.

Table 4 Detection comparison with VirusTotal (continued)

Malware MD5 Virus
total

Our
method

014ed968d05aecef92a0c7e888de0a80 2 / 56 Benign

015006ffe06f1fa250f1bc80438f99d0 9 / 57 Malicious

0151eba491d1049e40a933ca3a988210 4 / 53 Malicious

01525f3479ddad7de03e9ffc2b584720 11 / 54 Malicious

0153fa7457e860acb60261b3a0b05140 13 / 55 Malicious

01585b80d4bbb920f9567c065e62ac70 6 / 56 Malicious

015a30f1820ed04d7dd2cb544a7020e0 4 / 56 Malicious

015b28d5279db3bf15ae578b375a13a0 3 / 56 Malicious

015f2e599caea9c733a407d44d4ad430 4 / 53 Benign

0161ff82af4921885fa3badab3877bf0 4 / 52 Malicious

01639510ad6999aa9284a3352eede8d0 4 / 55 Malicious

016504076f6f5ca83dfb49a508f38870 5 / 56 Malicious

01655948f1028f906004085e589138e0 4 / 54 Malicious

0166d6e6eedb409a6c059ce5c2c44630 10 / 55 Malicious

016903a9bac7a6dff37528f82bcd2a40 9 / 57 Malicious

016c89ad2736e4df10610928489aa6d0 8 / 55 Malicious

0172c674da767ef1a4acbf5ee5cf0570 2 / 53 Malicious

0176d6fbd3f0ab30a5f8e81acaa89b90 3 / 55 Malicious

01771b93232c44f5bee57a69f6d17240 6 / 55 Malicious

5 Conclusions

Several process-injection techniques to create such
malware. Some perform the injection behavior during
execution, which can be captured only at run time; some can
be identified through static analysis. To improve detection
performance and time efficiency, this study proposes a
process-injection malware detection approach that combines
dynamic and static analysis as well as ML techniques.

This study summarises the sensitive API functions used
by process-injection malware. The experimental results
prove that the static analysis approach by using the sensitive
API functions is effective in detecting process-injection
malware and random forest yields the best detection
performance. The proposed static analysis approach can be
used for large scan, such as disk scan to inspect if process-
injection malware exists in the disk.

Attackers can utilise injector tools to create new
process-injection malware to evade detection. Furthermore,
the detection rate of malicious DLLs is not high in most
commercial AV software. By utilising transfer learning, the
proposed system transforms binary executable files into
images and applies a CNN classification model to identify
malicious DLLs. The experimental results demonstrate that
the proposed detection method could capture new process-
injection malware and outperforms most AV software.

The proposed approach also can be considered as two-
layer protection, where the first layer applies static analysis
to perform disk scan and the second layer applies dynamic
analysis to monitor and capture if any malware injects DLL
during execution.

References

Angelystor (2020) Process Injection Techniques Used by Malware
[online] https://medium.com/csg-govtech/process-injection-
techniques-used-by-malware-1a34c078612c (accessed 1 June
2021).

Antoniewicz, B. (2013) Windows DLL Injection Basics, Open
Security Research [online] http://blog.opensecurityresearch.
com/2013/01/windows-dll-injection-basics.html (accessed
15 February 2021).

Apponic (2021) Injector [online] http://injector.apponic.com/
(accessed 1 June 2021).

Bolton, A.D. and Anderson-Cook, C.M. (2017) ‘APT malware
static trace analysis through bigrams and graph edit distance’,
Statistical Analysis and Data Mining, Vol. 10, No. 3,
pp.182–193.

Cesare, S., Xiang, Y. and Zhou, W. (2013) Malwise – an effective
and efficient classification system for packed and
polymorphic malware’, IEEE Transactions on Computers,
Vol. 62, No. 6, pp.1193–1206.

Chang, T.C. (2016) Detecting Malware with DLL Injection and PE
Infection, MS thesis, MIS of NSYSU, Kaohsiung.

Chang, Y.H. and Singh, S. (2016) APT Group Sends Spear
Phishing Emails to Indian Government Officials [online]
https://www.fireeye.com/blog/threat-research/2016/06/apt_
group_sends_spea.html (accessed 15 February 2021).

Choi, Y.H., Han, B.J., Bae, B.C., Oh, H.G. and Sohn, K.W. (2012)
‘Toward extracting malware features for classification using
static and dynamic analysis’, Paper presented at the 2012 8th
International Conference on Computing and Networking
Technology (ICCIS).

Christodorescu, M., Jha, S., Seshia, S.A., Song, D. and
Bryant, R.E. (2005) ‘Semantics-aware malware detection’,
Paper presented at the 2005 IEEE Symposium on Security and
Privacy (S&P’05).

Cortesi, A. (2015) Scurve [online] https://github.com/cortesi/
scurve (accessed 12 October 2020).

dirty-needle (2017) [online] https://github.com/lillypad/dirty-
needle (accessed 12 October 2020).

DLL-Inj3cti0n (2015) [online] https://github.com/nyx0/DLL-
Inj3cti0n (accessed 12 October 2020).

Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N.,
Tzeng, E. and Darrell, T. (2014) ‘Decaf: a deep convolutional
activation feature for generic visual recognition’, Paper
presented at the 31st International Conference on Machine
Learning, pp.647–655.

Egele, M., Scholte, T., Kirda, E. and Kruegel, C. (2012) ‘A survey
on automated dynamic malware-analysis techniques and
tools’, ACM Computing Surveys, Vol. 44, No. 2, pp.1–42.

Gorelik, M. (2017) Fileless Malware Attack Trend Exposed
[online] https://www.morphisec.com/hubfs/wp-content/
uploads/2017/11/Fileless-Malware_Attack-Trend-
Exposed.pdf (accessed 15 February 2021).

 A hybrid malware analysis approach for identifying process-injection malware based on machine learning 29

Granneman, J. (2013) ‘Antivirus evasion techniques show ease in
avoiding antivirus detection’ [online] https://searchsecurity.
techtarget.com/feature/Antivirus-evasion-techniques-show-
ease-in-avoiding-antivirus-detection (accessed 15 February
2021).

Hăjmăşan, G., Mondoc, A. and Creţ, O. (2017) ‘Dynamic behavior
evaluation for malware detection’, Paper presented at the
2017 5th International Symposium on Digital Forensic and
Security (ISDFS).

He, K., Zhang, X., Ren, S. and Sun, J. (2015) ‘Delving deep into
rectifiers: Surpassing human-level performance on imagenet
classification’, Paper presented at the 2015 IEEE
International Conference on Computer Vision (ICCV).

Hilbert, D. (1891) Ueber die stetige Abbildung einer Linie auf ein,
Mathematische Annalen.

Hosseini, A. (2017) ‘Ten process injection techniques: a technical
survey of common and trending process injection techniques’
[online] https://www.elastic.co/blog/ten-process-injection-
techniques-technical-survey-common-and- trending-process
(accessed 15 February 2021).

Idika, N. and Mathur, A. (2007) A Survey of Malware Detection
Techniques, Purdue University, p.48.

Ijaz, M., Durad, M. H. & Ismail, M. (2019). Static and Dynamic
Malware Analysis Using Machine Learning. Paper presented
at the 2019 16th

Injection (2019) [online] https://github.com/theevilbit/injection
(accessed 15 February 2021).

InjectProc (2019) [online] https://github.com/secrary/InjectProc
(accessed 15 February 2021).

Kaspersky (2021) Dealing with Svchost.exe Virus’ Sneak Attack,
Kaspersky [online] https://www.kaspersky.co.uk/resource-
center/threats/dealing-with-svchost-exe-virus-sneak-attack
(accessed 1 June 2021).

Kindlund, D. (2013) POISON IVY: Assessing Damage and
Extracting Intelligence [online] https://www.fireeye.com/
content/dam/fireeye-www/global/en/current-threats/pdfs/rpt-
poison-ivy.pdf (accessed 1 June 2021).

Kozachok, A.V. and Kozachok, V.I. (2018) ‘Construction and
evaluation of the new heuristic malware detection mechanism
based on executable files static analysis’, Journal of
Computer Virology and Hacking Techniques, Vol. 14,
pp.225–231.

LeCun, Y., Haffner, P., Bottou, L. and Bengio, Y. (1999) ‘Object
recognition with gradient based learning’, Springer LNCS,
Vol. 1681, pp.319–345.

Long, J.S. (2017) DLL Injection Detection in Runtime, MS thesis,
MIS of NSYSU, Malware Knowledge Base, Kaohsiung.

Milton-Barker, A. (2019) Inception V3 Deep Convolutional
Architecture for Classifying Acute Myeloid/Lymphoblastic
Leukemia [online] https://software.intel.com/content/www/
us/en/develop/articles/inception-v3-deep-convolutional-
architecture-for-classifying-acute- myeloidlymphoblastic.html
(accessed 1 June 2021).

Minerva (2021) Memory Injection Prevention, Prevent Fileless
and Other in Memory Attacks [online] https://minerva-
labs.com/memory-injection (accessed 1 June 2021).

Mitre (2021) Process Injection, MITRE ATT&CK [online]
https://attack.mitre.org/techniques/T1055/ (accessed 1 June
2021).

Moon, B., Jagadish, H.V., Faloutsos, C. and Saltz, J.H. (2001)
‘Analysis of the clustering properties of the Hilbert
space-filling curve’, IEEE Transactions on Knowledge and
Data Engineering, Vol. 13, No. 1, pp.124–141.

Nataraj, L., Karthikeyan, S., Jacob, G. and Manjunath, B.S. (2011)
‘Malware images: visualization and automatic classification’,
Paper presented at the 8th International Symposium on
Visualization for Cyber Security.

Ngo, Q.D., Nguyen, H.T., Le, V.H. and Nguyen, D.H. (2020) ‘A
survey of IoT malware and detection methods based on static
features’, ICT Express, Vol. 6, No. 4, pp.280–286.

Nguyen, L.D., Lin, D., Lin, Z. and Cao, J. (2018) ‘Deep CNNs for
microscopic image classification by exploiting transfer
learning and feature concatenation’, Paper presented at the
2018 IEEE International Symposium on Circuits and Systems
(ISCAS).

Polino, M., Scorti, A., Maggi, F. and Zanero, S. (2015) ‘Jackdaw:
towards automatic reverse engineering of large datasets of
binaries’, Paper presented at the International Conference on
Detection of Intrusions and Malware, and Vulnerability
Assessment, 2015, Springer, pp.121–143.

ProcessInjection (2020) [online] https://github.com/3xpl01tc0d3r/
ProcessInjection (accessed 15 February 2021).

ProcessInjectionTool (2019) [online] https://github.com/Lexsek/
ProcessInjectionTool (accessed 15 February 2021).

Rezaei, S., Afraz, A., Rezaei, F. and Shamani, M.R. (2016)
‘Malware detection using opcodes statistical features’, Paper
presented at the 2016 8th International Symposium on
Telecommunications (IST), IEEE.

Rosenberg, I., Sicard, G. and David, E. (2017) ‘DeepAPT:
nation-state APT attribution using end-to-end deep neural
networks’, Paper presented at the International Conference on
Artificial Neural Networks (ICANN), Springer LNCS,
Vol. 10614, pp.91–99.

Rosenquist, M. (2015) Malware Trend Continues Relentless Climb
[online] https://www.linkedin.com/pulse/malware-trend-
continues-its-relentless-climb-matthew-rosenquist (accessed
15 February 2021).

Sihwail, R., Omar, K. and Ariffin, K.A.Z. (2018) ‘A survey on
malware analysis techniques: static, dynamic, hybrid and
memory analysis’, International Journal on Advanced
Science Engineering and Information Technology, Vol. 8,
Nos. 2–4, p.1662.

Sikorski, M. and Honig, A. (2012) Practical Malware Analysis:
The Hands-On Guide to Dissecting Malicious Software, No
Starch Press, US.

Simonyan, K. and Zisserman, A. (2015) ‘Very deep convolutional
networks for large-scale image recognition’, Paper presented
at the 3rd International Conference on Learning
Representations.

Srinivas (2021) Antivirus Evasion Tools [online] https://resources.
infosecinstitute.com/antivirus-evasion-tools/#gref (accessed
15 February 2021).

Statista (2021) Desktop PC Operating System Market Share
Worldwide, from January 2013 to July 2020 [online]
https://www.statista.com/statistics/218089/global-market-
share-of-windows-7/#:~:text=Desktop%20PC%20OS%
(accessed 1 June 2021).

30 C-M. Chen et al.

Sun, Y., Jee, K., Sivakorn, S., Li, Z., Lumezanu, C.,
Korts-Parn, L., Wu, Z., Rhee, J., Kim, C.H., Chiang, M. and
Mittal, P. (2020) ‘Detecting malware injection with
program-DNS behavior’, Paper presented at the 2020 IEEE
European Symposium on Security and Privacy (EuroS&P).

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D,
Erhan, D., Vanhoucke, V. and Rabinovich, A. (2015) ‘Going
deeper with convolutions’, Paper presented at the IEEE
Conference on Computer Vision and Pattern Recognition,
pp.1–9.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. and Wojna, Z.
(2016) ‘Rethinking the inception architecture for computer
vision’, Paper presented at the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

TaNet (2021) TANet Computer Emergency Response Team
[online] https://cert.tanet.edu.tw/prog/Document.php
(accessed 1 June 2021).

WinPIT (2018) [online] https://github.com/m4mm0n/WinPIT
(accessed 15 February 2021).

Ye, Y., Li, T., Adjeroh, D. and Iyengar, S.S. (2017) ‘A survey on
malware detection using data mining techniques’, ACM
Computing Surveys (CSUR), Vol. 50, No. 3, pp.1–40.

