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Abstract: Green technology innovation (GTI) is commonly seen as an essential 
way to decrease carbon emissions (CE). However, its advancement may result 
in the so-called carbon rebound effect which may offset its emission-reducing 
efficacy. This study examines the overall effect of GTI on CE using a  
fixed-effect model and a large panel dataset comprising China’s 276 cities from 
2007–2017. The main research findings include: 1) there exist inverted  
U-shaped relationships between GTI and per capita as well as total CE for the 
entire data sample; 2) regional heterogeneity exists regarding the relationships 
between GTI and CE (CE per capita). The empirical results have important 
policy implications on GTI to contain CE. 
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1 Introduction 

The ongoing accumulation of carbon emissions (CE) has caused serious environmental 
problems like global warming and frequent extreme weather (Cai et al., 2021). Some 
nations, such as China, have realised these problems which are mainly caused by massive 
CE, and have been taking steps to minimise CE while boosting economic growth. China 
overtook the USA as the world’s biggest carbon emitter and energy consumer in 2006 
and 2009, respectively (BP, 2016). In the 75th United Nations General Assembly, China 
demonstrated its ambition by committing to achieve goals of carbon peaking and 
neutrality (i.e., the ‘double carbon’ goal) in this century. Carbon emission reduction has 
become an essential task for governments across the world (Töbelmann and Wendler, 
2020). 

Green technology innovation (GTI) is widely considered to be conducive to reducing 
CE (Paramati et al., 2020; Shan et al., 2021). GTI was initially defined as the technical 
process that produces goods with less pollution, raw materials, and energy consumption 
(Braun and Wield, 1994). Currently, over two-thirds of all the countries in the world are 
still seeking for the appropriate GTI to achieve both environmental and economic goals 
(Shan et al., 2021). In comparison to traditional technology innovation, the core feature 
of GTI is to consider the environmental impact, such as alternative energy production, 
energy conservation, carbon capture and storage, and reuse of waste materials (Xu et al., 
2021). Among these, a few empirical studies have paid serious attention to its influence 
on energy savings and carbon reduction. For instance, Shan et al. (2021) distinguished 
that GTI mainly improves energy efficiency while the technologies related to renewable 
energy help to develop clean energies. As a result, in this study, we define GTI as the 
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innovations conducive to energy conservation, paying special attention to the so-called 
carbon rebound effect. 

A substantial body of studies has examined the GTI’s impact on CE, but obtained 
mixed or even contradictory evidence. Some scholars claimed that GTI can significantly 
decrease CE by improving energy efficiency (e.g., Wang et al., 2012; Töbelmann and 
Wendler, 2020). Others argued that GTI expands the economic scale and production 
level, thereby consuming more energy and increasing CE, which is called the carbon 
rebound effect (Lin and Liu, 2012; Wu et al., 2018). It follows that the nonlinear and 
comprehensive effect of GTI on CE based on the carbon rebound effect remains an 
important research question that needs to be answered using appropriate techniques and 
data (Khattak et al., 2021), which is the focus of this paper. 

In response to the above problems, this study uses a fixed-effect model and a large 
panel dataset comprising all the Chinese prefecture-level cities with available 
observations for eleven years during 2007–2017 to evaluate how GTI influences CE. We 
focus on the Chinese cities for the data period due to the following considerations. First, 
China, the worldwide biggest carbon emitter and energy consumer, faces massive 
pressure of green transformation (Yao et al., 2022). It makes sense to study China’s 
efforts for carbon emission reduction. Second, the GTI level and carbon emission 
performance vary with cities, but cities at the prefectural level have obtained less 
attention in the literature. Third, we set the research period between the financial crisis of 
2008 and China’s proposal of the ‘double carbon’ goal in 2020 to avoid the shock of 
these two events. 

This article makes the following three contributions. First, this study contributes to 
the literature related to GTI’s impact on CE by simultaneously considering the carbon 
rebound effect that refers to a concurrent offset of energy savings during the 
technological advance (especially GTI) process. We observe an inverted U-shaped 
impact of GTI on CE, and illustrate that using the carbon rebound effect. Second, due to 
inadequate statistics on energy consumption inventories, there are still few empirical 
studies that investigate the role of GTI on CE in Chinese cities. This study thus 
contributes to a fine-grained understanding of the relationship between GTI and CE at the 
prefectural level. Third, because the GTI’s impact on CE varies with the economic level, 
we conduct a heterogeneity test to see whether the same relationship exists in all three 
main Chinese regions by dividing the entire sample into the eastern, central and western 
groups, and estimate the same model using different sub-samples. 

We organise the remaining paper as follows. Section 2 introduces the theoretical 
backdrop and hypotheses. Section 3 describes the variables and methods. The empirical 
findings and analyses are presented in Section 4. Section 5 concludes with policy 
implications. 

2 Theoretical background and hypotheses 

2.1 Role of GTI in carbon emission reduction 

Facing increasing pressure regarding climate change and resource scarcity, governments 
are recognising the potential benefits of GTI to carbon emission reduction. The 
International Patent Classification (IPC) proposed that GTI is defined as the innovation 
regarding environmentally friendly technologies and includes specifically alternative 
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clean energy, energy savings, carbon capture and storage, etc. (Xu et al., 2021). From an 
intuitive standpoint, GTI may contribute to lowering CE due to its low-carbon and  
low-energy usage qualities (Braun and Wield, 1994). However, scholars have yet to reach 
a consensus regarding the role of GTI in decreasing CE. 

Many empirical studies in the literature suggest that GTI is critical for reducing CE. 
At the national level, the GTI’s benefits on carbon emission reduction have been 
observed among all the developed countries (Dong et al., 2022), the EU member states 
(Töbelmann and Wendler, 2020), and OECD economics (Paramati et al., 2020). Using 
provincial-level data in China, Wang et al. (2012) found that innovations regarding  
low-carbon technology are conducive to decreasing CE across all the 30 sample 
provinces. Using prefectural-level city data in China, Xu et al. (2021) also found that GTI 
considerably reduces CE by improving energy and industrial structures. Liu et al. (2021) 
also found that GTI can help to reduce CE in Chinese 175 cities. 

Studies in the literature that is now available claim that the carbon rebound effect 
makes it uncertain how GTI will affect CE. Cai et al. (2021), for example, found that GTI 
has an insignificantly negative correlation with national CE and promotes CE in the 
western provinces. Additionally, many studies have explored the nonlinear effect of GTI 
on CE. Yin et al. (2018) claimed that technological advancement might lead to more 
energy consumption to have an inverted U-shaped effect in industrial enterprises. Using a 
panel dataset from Chinese 30 provinces, Gu et al. (2019) discovered an inverted  
U-shaped relationship between energy technology innovation and CE. Razzaq et al. 
(2021) applied the quantile regression approach to data from the BRICS member states 
and observed that the emissions-mitigating effect of GTI is only noticeable at the higher 
emission quantiles, whereas it is positively associated with CE at the lower emissions 
quantiles. 

The carbon rebound effect is analogous to the energy rebound effect. The energy 
rebound effect was first described by Khazzoom (1980). It refers to a phenomenon where 
technical improvement may generate a fall in real costs of consuming energy in addition 
to promoting energy conservation, thereby increasing energy consumption and partially 
offsetting some potential energy savings induced by the same technology (Sorrell and 
Dimitropoulos, 2008). Moreover, since CE is strongly associated with energy use, the 
energy rebound effect may affect CE and thereby results in the carbon rebound effect 
(Yang and Li, 2017). Santarius and Soland (2018) further claimed that the carbon 
rebound effect can be generated through both economic and psychological mechanisms. 
According to Li et al. (2020), carbon rebound occurs when a portion of potential carbon 
emission reduction is not realised owning to decreased effective prices and costs of 
energy consumption as a result of relative technological advancement. 

In summary, the carbon rebound effect complicates GTI’s impact on aggregate CE 
(Yang and Li, 2017). Although GTI is regarded widely to be a significant driver for 
reducing CE, many scholars agree that the advantages of GTI on increasing carbon 
emission performance would be hidden to some extent because of the carbon rebound 
effect (Druckman et al., 2011). If the carbon rebound effect is sufficiently large, it may 
undermine sharply the benefits of GTI in encouraging carbon emission reduction (Sorrel 
and Dimitropoulos, 2008), resulting in a positive effect between them. In addition, Li  
et al. (2020) suggested that when advances in energy technology (similar to GTI), the 
carbon rebound effect shows a general reducing trend. Hence, it is reasonable to 
speculate that the emission-reducing efficacy of GTI will become stronger as GTI 
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improves because of the diminished carbon rebound effect. Hence, we put forward the 
first hypothesis: 

H1 With the improvement of the GTI level, CE will show an inverted U-shaped 
association with GTI. 

2.2 Chinese regional GTI, carbon rebound effect and CE 

Owning to the economic level and location, regional heterogeneity can be seen at the GTI 
level. The National Bureau of Statistics of China suggested that China can be separated 
into three distinct regions, namely, the eastern, central, and western regions1 (Yao and 
Zhang, 2001). The eastern coastal provinces have absorbed a large amount of capital and 
talent necessary for GTI (Luo et al., 2021). Moreover, eastern China also closed down or 
moved several high-emission firms (Guo et al., 2019), improved investment in GTI (Gao 
et al., 2022), and introduced overseas green technologies (Luo et al., 2021) because of the 
early economic transition. Hence, it now becomes China’s main GTI area. The central 
and western inland areas are more restrained by financial resources and tend to have 
fewer environmental regulations than their eastern counterparts. Consequently, their 
primary objectives of economic development and innovations are relatively more 
intended for productivity improvement than for environmental protection (Gao et al., 
2022). Therefore, the GTI level in the central-western region is relatively lower than that 
in the eastern part of China (Liu and Nie, 2022). 

Tables 1 and 2 report the trend of the total green patents and green invention patents, 
respectively, in the above regions. It can be found that the total numbers of both of them 
increased quickly during the data period. In comparison to central-western China, eastern 
China has more green patents. Moreover, the GTI level of central China is slightly greater 
than that of western China (see Table A1). 

Due to varying GTI levels and industrial structures, the carbon rebound effect 
exhibits significant geographical variations (Wu et al., 2018). According to the discussion 
in Section 2.1, the eastern region has a lower carbon rebound effect due to its higher GTI 
level. Furthermore, high-energy and high-emission enterprises predominate in the 
industrial structure of the western section of China, where GTI may result in a stronger 
carbon rebound effect (Guo et al., 2019). Li et al. (2020) examined the Chinese carbon 
rebound effect and stated that it was generally on the decline due to improvements in 
energy technology, with the eastern-western section of the country experiencing a less 
severe carbon rebound impact than the central region. China’s average carbon rebound 
effects in the eastern, central, and western regions were 73.34%, 61.33%, and 88.84%, 
respectively. These arguments indicate that the western region is more vulnerable to the 
carbon rebound effect than the eastern-central region (Chen et al., 2019). 

Consequently, the GTI’s impact on CE has obvious regional heterogeneity because of 
varying GTI levels in three different Chinese regions. For instance, Gao et al. (2022) 
argued that GTI could effectively decrease CE in the eastern-central region, while its 
emission-mitigating effect is inconsiderable in the west of China. Cai et al. (2021) only 
found the GTI’s role in reducing eastern and central CE. This study discusses the 
nonlinear relationship between GTI and CE. Hence, we put forward our further 
hypothesis: 
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H2 The inverted U-shaped relationship between GTI and CE can be seen in the region 
with high-level GTI (eastern region), but not necessarily in the regions with  
low-level GTI (central and western regions). 

3 Data and method 

To assess the influence of GTI on CE, we apply a panel dataset and fixed-effect model to 
capture unobserved heterogeneity and unobserved time effects. To overcome the omitted 
variable bias problem, we control as many factors as possible based on previous studies. 
In addition, we lag the key explanatory variables by one year and two years, respectively, 
to address the reverse causality problem (Zhu et al., 2019). Moreover, carbon emission 
data is replaced by energy consumption to further estimate consistency and explore the 
connection between carbon and energy rebound. Ultimately, two low-carbon policies are 
considered to further reduce the endogeneity problem. 

3.1 Sample and variables 

The dataset for this study covers 276 cities in China during 2007–2017. China has more 
than 330 prefecture-level or above (metropolitan as well as sub-provincial level) cities, 
but some of them do not have consistent data and have to be excluded from our dataset. 
However, the sample cities represent over 90% of the country’s population, GDP, energy 
consumption and CO2 emissions. 

3.1.1 Dependent variables 
The dependent variables are per capita CE (denoted as PCE) and total CE (denoted as 
CE) in the city. Given data availability, we derive directly CO2 emission data of each 
county from the carbon emission accounts and datasets and then combine them to 
generate city-level data at the prefecture level. This dataset was calculated by Chen et al. 
(2020) employing night-time light data and has been widely employed in related research 
(Liu et al., 2021). 

3.1.2 Independent variables 
The GTI level serves as the primary explanatory factor in the model. R&D expenditures 
and patent counts are two often used measurements of technological innovation (Guo  
et al., 2018). Because statistics on R&D expenditure for GTI are not available, the 
number of green patents is used as an indication of GTI for this study. The data is 
gathered by searching the website of the State Intellectual Property Office (SIPO) using 
the IPC code of green patents (Johnstone et al., 2010). 

China’s patent law distinguishes three sorts of patents: invention, utility model and 
appearance design. Invention patents are defined as the technological advancement of 
new products or methods. Utility model patents represent novel technological solutions 
for a product’s shape or structure. Appearance design patents simply safeguard a 
product’s appearance (SIPO, 2008). Generally, inventions involve more innovations 
compared to the other two kinds of patents (Tian et al., 2021). In addition, compared to 
the patent granted, the patent application serves better as the proxy for the actual 
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innovations. Because there is a delay in patents awarded owning to market monitoring 
and annual fees, patent applications can reflect the level of innovation (Lin and Ma, 
2022). Finally, to further prevent the impact of population size on innovation outcomes, 
we use the number of green (invention) patent applications per million people, denoted as 
GP (GIP), as the GTI variables (Zhao et al., 2021). 

3.1.3 Control variables 
The following control variables are selected for the study. All monetary values are 
calculated using the constant 2007 prices. First, since CE is determined by human 
activities and outputs, we thus involve the city’s population density (denoted as PD) in 
our models (Xu et al., 2021). 

Second, we utilise per capita GDP (denoted as PGDP) as another control variable 
(Lin and Ma, 2022). 

Third, energy consumption is also argued as one determination of CE (Lin and Ma, 
2022). Owning to the inadequate data on energy consumption in Chinese cities, we use 
the consumption data of natural gas, electricity, and liquefied petroleum gas provided in 
the China City Statistical Yearbook and China Urban Construction Yearbook to estimate 
energy consumption (denoted as EC) (Sheng et al., 2019). 

Fourth, the secondary (manufacturing) industry is usually more emission-intensive 
compared to other industries (Xu et al., 2021). The industrial structure (denoted as IS) is 
measured as the share of the secondary industry output in GDP. We expect its coefficient 
to be positive. 

Fifth, there is no certain connection between urbanisation and CE (Du et al., 2019). 
On the one hand, urbanisation may facilitate the development of urban infrastructure, 
consuming more energy. On the other hand, it will also cause a strong agglomeration 
effect which enables cities to benefit from the scale effect of energy consumption, thus 
lowering CE. We utilise the proportion of non-agricultural city residents to the city’s total 
residents to measure the urbanisation level (denoted as URB) (Xie et al., 2017). We 
collect the data from the China Population & Employment Statistics Yearbook. 

Sixth, the impact of foreign direct investment (FDI) on CE might also be uncertain. 
The pollution haven hypothesis said that FDI may cause the movement of high-emission 
firms to the host nation, thereby raising CE. The pollution halo effect claimed that FDI 
will absorb more advanced low-carbon technologies and thus reduce CE in the host 
nation (Xu et al., 2021). We quantify the FDI level (denoted as FDI) using the proportion 
of FDI to all investments in fixed assets. 

3.2 Descriptive statistics 

Tables 1 and 2 display the descriptive statistics and correlations, respectively. The 
standard errors of lnPCE and lnGP are 0.685 and 1.607, respectively, indicating that the 
GTI and CE levels vary greatly among cities, highlighting the need to empirically test the 
effect of GTI on CE. Although most variables are correlated, the values of most of the 
correlated coefficients are less than 0.7, implying that there are no serious 
multicollinearity problems between these variables. 
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Table 1 Descriptive statistics 

Var Observation Mean SD Min Max 
lnPCE 3,036 8.686 0.685 6.384 11.243 
lnCE 3,036 7.652 0.774 5.343 10.046 
lnGP 3,036 3.142 1.607 –1.333 8.282 
lnGIP 3,036 2.278 1.674 –1.797 7.628 
lnPD 3,036 5.747 0887 2.304 8.960 
lnPGDP 3,036 10.261 0.654 4.538 12.890 
lnEC 3,036 8.908 1.230 4.694 12.788 
lnIND 3,036 3.868 0.239 2.705 4.511 
lnURB 3,036 3.888 0.312 2.798 4.778 
lnFDI 3,036 0.406 1.434 –8.210 4.012 

Table 2 Correlation matrix 

Var lnPCE lnCE lnGP lnGIP lnPD lnPGDP lnEC lnIND lnURB lnFDI 
lnPCE 1.000          
lnCE 0.554 1.000         
lnGP 0.481 0.527 1.000        
lnGIP 0.460 0.510 0.967 1.000       
lnPD –0.176 0.306 0.382 0.361 1.000      
lnPGDP 0.679 0.516 0.800 0.767 0.199 1.000     
lnEC 0.442 0.645 0.755 0.730 0.457 0.703 1.000    
lnIND 0.262 0.137 0.086 0.054 0.163 0.315 0.176 1.000   
lnURB 0.557 0.347 0.716 0.681 0.214 0.755 0.669 0.132 1.000  
lnFDI 0.204 0.336 0.308 0.281 0.381 0.334 0.360 0.0830 0.335 1.000 

3.3 Model specifications 

To investigate the factors driving environmental pressure, Ehrlich and Holdren developed 
the IPAT model in 1971: I = PAT. Here, I, P, A, and T represent environmental impact, 
population, affluence, and technology, respectively. Dietz and Rosa then modified it to be 
a stochastic form in 1994, namely the STIRPAT model: ,b c d

i ii i iI aP A T e=  where 
corresponding parameters stand for the same variables as in the original form. In addition 
to estimating coefficients as parameters, this updated model helps to decompose various 
factors (Fan et al., 2006). The STIRPAT model is thereby applied to a variety of study 
scenarios (Xie et al., 2017). 

Reformulating factor T is important in the IPAT and STIRPAT models (Dietz and 
Rosa, 1994). Currently, two main ways are used to measure the T in the STIRPAT model. 
One is using the residual term in this model, which includes all components except P and 
A, to interpret T. The other is interpreting it as one or several variables theorised to reflect 
the technological level. According to Vélez-Henao et al. (2019), few studies use the error 
term to represent T, while more studies used a series of variables to quantify T. In this 
study, we follow the second way to regard GTI as the most important technological part 
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of affecting CE. Hence, we replace T with GP and GIP in the STIRPAT model, 
respectively. To test the inverted U-shaped relationship, we added a quadratic component 
of lnGP (or lnGIP) to the model after taking the logarithms of variables. Additionally, we 
use the population density and per capita GDP as proxies for parameters A and T, 
respectively. The models take the following forms: 

2
1 2 3 4ln + ln + ln + ln + ln +it it it it ititI GP GP PD PGDP ε= α β β β β  (1) 

2
1 2 3 4ln + ln + ln + ln + ln +it it it it ititI GIP GIP PD PGDP ε= α β β β β  (2) 

In this study, we focus on both per capita and total CE as our environmental impact I. To 
adequately investigate the factors affecting CE, we extend the model as follows: 

2
1 2 3

4 5 6

7 8

ln + ln + ln + ln
+ ln + ln + ln
+ ln + ln + + +

it it itit

it it it

it it i t it

PCE GP GP PD
PGDP EC IS
URB FDI λ μ ε

= α β β β
β β β
β β

 (3) 

2
1 2 3 4

5 6 7 8

ln + ln + ln + ln + ln
+ ln + ln + ln + ln + + +

it it it itit

it it it it i t it

CE GP GP PD PGDP
EC IS URB FDI λ μ ε

= α β β β β
β β β β

 (4) 

2
1 2 3 4

5 6 7 8

ln + ln + ln + ln + ln
+ ln + ln + ln + ln + + +

it it it itit

it it it it i t it

PCE GIP GIP PD PGDP
EC IS URB FDI λ μ ε

= α β β β β
β β β β

 (5) 

2
1 2 3 4

5 6 7 8

ln + ln + ln + ln + ln
+ ln + ln + ln + ln + + +

it it it itit

it it it it i t it

CE GIP GIP PD PGDP
EC IS URB FDI λ μ ε

= α β β β β
β β β β

 (6) 

where all variables like PCEit, GPit, PDit, and PGDPit, have been defined as above. In 
addition, λi and μt refer to the individual and time fixed effects, respectively. εit refers to 
the residual term. 

4 Empirical results and analysis 

4.1 Basic regressions 

Table 3 lists the basic regression results for four combinations of two dependent variables 
and two independent ones. As shown in columns (1)–(4), the quadratic terms (lnGP2 and 
lnGIP2) are significantly negative at the 0.001 significant levels, implying the nonlinear 
effects, while the coefficients of lnGP and lnGIP are considerably positive. Hence, these 
results support that the GTI has an inverted U-shaped influence on CE, verifying H1. 

This study interprets the notions of the GTI elasticity and the turning point to further 
assess the influence of GTI on CE (Gu et al., 2019). For instance, the GTI elasticity value 
may be determined by calculating the first partial derivative with regard to lnGP in 
column (1), namely, β1 + β2 lnGP. And the turning point is equal to –β1/2β2 in column 
(3), namely, the vertices of the quadratic function. The turning point can be understood as 
the threshold at which GTI begins to help to reduce CE (Gu et al., 2019). 

Because of the similarity of results among columns (1)-(4), it is briefer and more 
effective to focus on the results of columns (1) and (2). According to column (1) of  
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Table 3, lnGP belongs to [–1.333, 8.282], β1 = 0.063 and β2 = –0.009. Hence, we can 
estimate the GTI elasticity ([–0.086, 0.087]) and the turning point (3.483) in the  
lnGP-lnPCE linkage. In column (1), the GTI elasticity remains positive until it reaches 
the turning point, where it turns negative and rapidly declines. In other words, in some 
developed cities, the GTI’s impact on urban CE has passed the turning point and started 
to reduce CE. 
Table 3 Basic estimation results 

 (1) (2) (3) (4) 
DV lnPCE lnCE lnPCE lnCE 
lnGP 0.063*** 0.049***   

(0.009) (0.008)   
lnGP2 –0.009*** –0.006***   

(0.002) (0.001)   
lnGIP   0.032*** 0.022*** 

  (0.007) (0.005) 
lnGIP2   –0.007*** –0.004*** 

  (0.002) (0.001) 
lnPD –0.049 0.098 –0.055 0.092 

(0.103) (0.075) (0.106) (0.074) 
lnPGDP 0.054** 0.034** 0.060** 0.039** 

(0.026) (0.017) (0.027) (0.018) 
lnEC 0.000 0.001 0.003 0.012 

(0.008) (0.007) (0.008) (0.008) 
lnIND 0.043 0.088* 0.058 0.100** 

(0.051) (0.045) (0.053) (0.047) 
lnURB 0.166*** 0.141*** 0.186*** 0.165*** 

(0.057) (0.040) (0.057) (0.042) 
lnFDI –0.007 –0.009** –0.008* –0.009** 

(0.004) (0.004) (0.005) (0.004) 
Constant 7.343*** 5.481*** 7.214*** 5.347*** 

(0.694) (0.420) (0.704) (0.416) 
Year FE Yes Yes Yes Yes 
City FE Yes Yes Yes Yes 
Sample 3,036 3,036 3,036 3,036 
R2(within) 0.731 0.817 0.724 0.811 

Notes: DV refers to dependent variable. The robust standard errors are shown in 
parentheses. *p < 0.1, **p < 0.05, ***p < 0.01. 

As shown in column (2) of Table 3, β1 = 0.049 and β2 = –0.006. Therefore, we are able to 
calculate the GTI elasticity ([–0.047, 0.064]) and the turning point (4.207) in the  
lnGP-lnCE relationship. Because 3.483 is smaller than 4.207, it is also found that the 
turning point of the lnGP-lnPCE relationship in general takes place before the turning 
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point of the lnGP-lnCE nexus. This is because of the scale effect of population growth 
and agglomeration, which contributes to carbon emission reduction through sharing 
transportation infrastructure (Xie et al., 2017) and attracting human capital (Lin and Ma, 
2022). It emphasises greater pressure in reducing total CE than per capita CE and the 
continued effort of promoting greatly GTI to reach the two turning points. 

In addition, the lnPGDP’s coefficients are positive and significant in all columns, 
indicating economic development will enhance CE. As expected, the coefficients of 
lnIND also keep significantly positive in columns (2) and (4), suggesting that the 
increasing ratio of secondary industry output to GDP is not helpful for reducing CE. The 
coefficients of lnURB are considerably positive in different columns as well, showing the 
positive impact of urbanisation on CE, which is supported by Du et al. (2019). The 
lnFDI’s coefficients are negative and largely significant. It confirms the pollution halo 
effect and the result echoes Xu et al. (2021). Other variables’ coefficients are not 
significant, showing their insignificant effects on CE in our sample. 

4.2 Heterogeneity analysis 

Because cities differ greatly in terms of GTI in different regions, there is a need for this 
study to divide the sample into three groups (Liu and Nie, 2022). 
Table 4 First set of heterogeneity estimation results 

 (1) (2) (3) (4) (5) (6) 
Region Eastern Eastern Central Central Western Western 
DV lnPCE lnPCE lnPCE lnPCE lnPCE lnPCE 
lnGP 0.075***  0.042**  0.013  

(0.022)  (0.017)  (0.012)  
lnGP2 –0.010***  –0.006*  –0.001  

(0.003)  (0.003)  (0.003)  
lnGIP  0.033***  0.021**  0.007 

 (0.013)  (0.009)  (0.010) 
lnGIP2  –0.007***  –0.006**  –0.001 

 (0.002)  (0.002)  (0.003) 
Control Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes 
City FE Yes Yes Yes Yes Yes Yes 
Sample 1,089 1,089 1,056 1,056 891 891 
R2 (within) 0.693 0.681 0.753 0.754 0.837 0.836 

Notes: DV refers to dependent variable. The robust standard errors are shown in 
parentheses. For brevity, the estimated intercept and control variables are not 
reported. *p < 0.1, **p < 0.05, ***p < 0.01. 

Table 4 displays the first set of findings with lnPCE as the dependent variable. Columns 
(1) to (4) show that an inverted U-shaped association between GTI and per capita CE 
exists in the eastern-central area but not in the western region, partly verifying H2. 
Similarly, the elasticity of lnGP ([–0.085, 0.077]) and the turning point (3.887) can be 
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calculated from the estimated results shown in column (1). It appears that the impact of 
GTI on urban per capita CE has passed the turning point in the eastern-central region. 
This may be due to the fact that GTI has reached a relatively high level in these two 
regions in comparison to their western counterpart. This finding echoes (Cai et al., 2021) 
that GTI in the eastern-central area can significantly decrease CE. 

Table 5 presents the second set of results using lnCE as the dependent variable, 
showing some different findings. The results in columns (1) and (2) indicate an inverted 
U-shaped effect of GTI on total CE in the eastern region but not in the other two regions, 
verifying H2. According to the results in column (1), we can estimate the elasticity of 
lnGP ([–0.062, 0.061]) and the turning point (4.048), indicating that the impact of GTI on 
total CE has also reached the turning point in the eastern region. Because 3.887 is smaller 
than 4.048, it suggests that more pressure is encountered in mitigating total CE than in 
reducing per capita carbon reduction. Interestingly, the GTI level demonstrates distinct 
geo-economic tiers as it moves from the east (high) to the west (low) of China. 
Consequently, the GTI’s role in decreasing CE demonstrates a three tiers effect on the 
eastern (potent), to the central (less potent) and the western (least potent) region. 
Table 5 Second set of heterogeneity estimation results 

 (1) (2) (3) (4) (5) (6) 
Region Eastern Eastern Central Central Western Western 
DV lnCE lnCE lnCE lnCE lnCE lnCE 
lnGP 0.059*** 

(0.018) 
 0.008 

(0.011) 
 0.013 

(0.011) 
 

lnGP2 –0.007*** 
(0.002) 

 0.002 
(0.002) 

 –0.000 
(0.002) 

 

lnGIP  0.021** 
(0.010) 

 0.001 
(0.006) 

 0.005 
(0.008) 

lnGIP2  –0.005*** 
(0.002) 

 0.001 
(0.001) 

 0.001 
(0.002) 

Control Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes 
City FE Yes Yes Yes Yes Yes Yes 
Sample 1,089 1,089 1,056 1,056 891 891 
R2 (within) 0.775 0.769 0.870 0.869 0.872 0.872 

Notes: DV refers to dependent variable. The robust standard errors are shown in 
parentheses. For brevity, the estimated intercept and control variables are not 
reported. *p < 0.1, **p < 0.05, ***p < 0.01. 

To facilitate comparison, nine provincial capital cities (excluding autonomous regions, 
three north-eastern provinces and several main provinces along the Yangtze River 
Economic Belt) were selected from the three regions to demonstrate their scatter plots 
and quadratic function fitting plots of lnGP and lnPCE in Figure 1 and Figure 2, 
respectively. It is obvious that most of the eastern and central provincial capital cities 
have passed their turning points in contrast to the western region. 
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Figure 1 The scatter plots of lnGP and lnPCE in the eastern region (see online version  
for colours) 

 

Note: Red line refers to the quadratic function fitting plots of lnGP and lnPCE. 

Figure 2 The scatter plots of lnGP and lnPCE in the central and western regions (see online 
version for colours) 

 

Note: Red line refers to the quadratic function fitting plots of lnGP and lnPCE. 
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Different levels of lnGP are most likely responsible for the differences in lnGP-lnPCE 
relationships across three distinct regions. As shown in Table A2, the average value of 
lnGP in the east of China is considerably larger than in the other two regions. The former 
is 3.901 and the latter is 2.717 (see Table A2). According to Li et al. (2020), the eastern 
area saw less carbon rebound than the central region because of lower emission intensity 
linked with improved GTI. Hence, a low level of GTI correlates to a relatively strong 
carbon rebound effect, which may result in a positive correlation between GTI and CE. 

4.3 Robustness check 

4.3.1 Lagged measurement of independent variables 
The delay between patent applications and their information disclosure will affect the 
timing for collecting patent data in examining its impact on CE. The time lag is typically 
thought to be around 18 months (Zhu et al., 2019). Moreover, there is an endogeneity 
concern due to the possible existence of two-way linkages between GTI and CE (Razzaq 
et al., 2021). 

To overcome these concerns, the independent variables (GP and GIP) are replaced by 
green technology patent applications and green invention patent applications lagged by 
one year (namely, GPt–1 and GIPt–1). The new estimated results in Table 6 are in line with 
those of the fundamental regressions. Because we use two different independent 
variables, the values of the estimated coefficients fluctuate somewhat differently, such as 
β1 = 0.048 and β2 = –0.009 in column (1), β1 = 0.023 and β2 = –0.007 in column (3), but 
the degrees of significance and signs remain unaltered, implying that the benchmark 
conclusions remain unchanged. Furthermore, patent application data lagged by two years 
are also used, and the estimated results are robust (see Table A3). 
Table 6 Results for replacing independent variables 

 (1) (2) (3) (4) 
DV lnPCE lnCE lnPCE lnCE 
lnGPt–1 0.048*** 0.037***   

(0.008) (0.007)   
lnGPt–12 –0.009*** –0.006***   

(0.002) (0.001)   
lnGIPt–1   0.023*** 0.016*** 

  (0.006) (0.005) 
lnGIPt–12   –0.007*** –0.003*** 

  (0.002) (0.001) 
Control Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 
City FE Yes Yes Yes Yes 
Sample 3,036 3,036 3,036 3,036 
R2 (within) 0.729 0.814 0.722 0.810 

Note: DV refers to dependent variable. The robust standard errors are shown in 
parentheses. For brevity, the estimated intercept and control variables are not 
reported. *p < 0.1, **p < 0.05, ***p < 0.01. 
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4.3.2 Replacement of dependent variables 
As mentioned in section 2, the energy rebound can result in a carbon rebound and thus 
bring in the inverted U-shaped linkage between GTI and CE. Hence, expecting the same 
linkage between GTI and energy use may be reasonable. Based on this logic, we further 
test the robustness by substituting two dependent variables (PCE and CE) with per capita 
and total energy consumption (donated as PEC and EC), respectively. The same control 
variables are selected here as in the above basic regression, excluding energy 
consumption (see Table 7). Table 7 presents the new regression results. An inverted  
U-shaped relationship is obviously identified between lnGP-lnPEC but not between 
lnGP-lnEC. One possible explanation is that the turning point of the lnGP-lnEC 
relationship occurs later than the lnGP-lnPEC linkage which has yet to take place. 
Table 7 Results for replacing dependent variables 

 (1) (2) (3) (4) 
DV lnPEC lnEC lnPEC lnEC 
lnGP 0.121*** 0.108***   

(0.035) (0.035)   
lnGP2 –0.011** –0.008   

(0.005) (0.005)   
lnGIP   0.063** 0.055** 

  (0.025) (0.026) 
lnGIP2   –0.010** –0.007 

  (0.005) (0.005) 
lnPD 0.090 0.239 0.089 0.239 

(0.133) (0.173) (0.133) (0.173) 
lnPGDP 0.134* 0.115 0.147* 0.127 

(0.080) (0.076) (0.082) (0.078) 
lnIND 0.060 0.105 0.084 0.127 

(0.156) (0.154) (0.156) (0.154) 
lnURB 0.616*** 0.597*** 0.653*** 0.639*** 

(0.171) (0.172) (0.179) (0.180) 
lnFDI 0.008 0.007 0.006 0.005 

(0.016) (0.016) (0.016) (0.017) 
Constant –1.927* 3.149** –2.161* 2.908** 

(0.127) (1.255) (1.143) (1.260) 
Year FE Yes Yes Yes Yes 
City FE Yes Yes Yes Yes 
Sample 3036 3036 3036 3036 
R2 (within) 0.585 0.603 0.582 0.600 

Notes: DV refers to dependent variable. The robust standard errors are shown in 
parentheses. For brevity, the estimated intercept and control variables are not 
reported. *p < 0.1, **p < 0.05, ***p < 0.01. 
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4.3.3 Impact of relative policies on CE 
Many studies have demonstrated that the Chinese ‘low-carbon pilot cities’ policy (LCPC) 
(Zhu and Lee, 2022) and ‘CE trading scheme pilots’ policy (ETS) (Zhu et al., 2019), 
would influence both urban GTI and CE. Hence, to prevent spurious regressions, these 
policies must be taken into account in the empirical models for the estimation of GTI’s 
impact on CE. 

During the research period of 2007–2017, the LCPC program was executed in three 
batches in 2010, 2012, and 2017, covering six provinces and 81 cities. This program 
encouraged cities to advocate low-carbon production and lifestyle in the industrialisation 
and urbanisation processes. More specifically, the government required pilot areas to set 
regional greenhouse gas emission targets and distribute corresponding tasks for emission 
reduction to different sectors (Feng et al., 2021). 
Table 8 Results for adding control variables 

 (1) (2) (3) (4) 
DV lnPCE lnPCE lnPCE lnPCE 
lnGP 0.063***  0.059***  

(0.009)  (0.008)  
lnGP2 –0.009***  –0.008***  

(0.002)  (0.002)  
lnGIP  0.032***  0.030*** 

 (0.006)  (0.006) 
lnGIP2  –0.007***  –0.007*** 

 (0.002)  (0.001) 
LCPC –0.002 –0.001   

(0.013) (0.014)   
ETS   –0.092*** –0.098*** 

  (0.015) (0.015) 
Control Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 
City FE Yes Yes Yes Yes 
Sample 3,036 3,036 3,036 3,036 
R2 (within) 0.731 0.724 0.742 0.736 

Notes: DV refers to dependent variable. The robust standard errors are shown in 
parentheses. For brevity, the estimated intercept and control variables are not 
reported. *p < 0.1, **p < 0.05, ***p < 0.01. 

The ETS allows for purchasing or selling additional carbon emission quotas set by the 
government on the market (Zhang et al., 2021). This plan allows participants to profit 
economically by selling any excess quota saved in the production process, thereby 
encouraging them to decrease CE (Gao et al., 2020). During 2007–2017, two batches of 
the ETS program were also implemented in 2013 (seven provinces) and 2016 (Fujian 
province), with the program being extended across the country after 2017. 

Both the variable LCPCit and the variable ETSit are dummy variables that equal 1 
when the corresponding policy was conducted in city i and year t, otherwise, they equal 
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0. To avoid any possible serious multicollinearity problem, we add two policy variables 
into the model one by one. For brevity, we here focus on lnPCE. 

Table 8 displays the results, showing the evidence consistent with that provided in the 
basic regressions. The results reaffirm the key conclusions drawn from the basic 
regression models, suggesting that the basis results remain robust even when the external 
policy shocks are properly accounted for in the sample period. The results also suggest 
that government carbon-reducing policies, particularly the ETS, have also contributed to 
the green economic development process. 

5 Conclusions and policy recommendations 

Reducing CE efficiently calls for a comprehensive understanding of the effect of GTI on 
CE. This study employs a fixed-effect model and calculates the GTI elasticity and the 
turning points to analyse the overall impact of GTI on total and per capita CE. Some key 
findings are summarised as followed. First, the empirical results suggest that the GTI has 
an inverted U-shaped effect on total (per capita) CE using the whole sample comprising 
276 Chinese cities during 2007–2017. One probable explanation is that these years with 
relatively low GTI levels have a higher carbon rebound effect, resulting in a positive 
impact of GTI on CE. After the GTI level reaches a certain level, GTI starts to effectively 
decrease CE. Similarly, Gu et al. (2019), using data from Chinese 30 provinces during 
2005–2016, discovered an inverted U-shaped impact of advances in energy technology 
on CE. Our dataset provides an updated condition and a fine-grained view. Furthermore, 
we observe that the turning point in the lnGP-lnPCE relationship comes up earlier than in 
the lnGP-lnCE relationship, which implies more pressure in containing total CE than in 
reducing per capita carbon reduction. 

Second, the above inverted U-shaped relationship shows a significant degree of 
regional heterogeneity, which is in line with Wang et al. (2012). Regional heterogeneity 
of this inverted U-shaped relationship reflects the heterogeneous development of GTI in 
different Chinese regions, implying that only the economically and technologically more 
advanced region, (i.e., the eastern region) have clearly benefited from GTI development 
to contain carbon emission. It also implies that to effectively reduce CE across the entire 
country, GTI has to be encouraged across different regions and cities in the country and 
new technologies should be rapidly diffused and adopted everywhere possible. 

Third, one interesting finding is that the GTI has an inverted-U impact on per capita 
energy use as well, suggesting the existence of the energy rebound effect and the 
potential association between energy and carbon rebound (Druckman et al., 2011). 
Ultimately, the empirical results also show that the per capita GDP level can increase CE, 
as well as the secondary industry share and urbanisation level. The FDI is found to have 
reduced CE, implying a pollution halo effect rather than a pollution paradigm effect. 

Hence, to achieve a low-carbon economy and carbon emission reduction as soon as 
possible, this research proposes the following policy recommendations. First, China 
should greatly encourage national and regional investment in the development of GTI to 
enhance its positive role in decreasing CE. Moreover, it is also necessary for China to 
absorb more foreign investments regarding low-carbon technologies and promote 
international communications of GTI. 
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Second, because of the exclusivity and competitiveness of GTI, the east of China as a 
GTI centre may find it difficult to transfer its GTI to the other two regions. Hence, China 
has to strengthen regional cooperation and technology exchanges to realise the spill-over 
effect of green technology from the advanced regions (i.e., the eastern region) to the less 
developed areas (i.e., the central-western region) in terms of GTI. 

Third, the government can also improve available low-carbon policies, such as the 
above ETS and LCPC policies, which may help to induce GTI and thus reduce CE. 

Although our empirical results support the role of ETS in reducing CE, the policy is 
only implemented in some large firms and its effect on carbon emission reduction is 
rather limited. Broader program coverage is thus needed to increase the effectiveness of 
the ongoing policy. Moreover, the benefits of LCPC on carbon emission reduction are 
still insignificant, suggesting that it may have yet had a policy-induced GTI effect. One 
possible explanation is that regulated firms may not have enough incentive to invest in 
GTI to meet the requirements of low CE. The government can provide some green 
subsidies and technical guidance to promote low-carbon production. 
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Appendix 

Figure A1 Trend of green patent in different regions of China from 2007 to 2017 (see online 
version for colours) 
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Figure A2 Trend of green invention patent in different regions of China from 2007 to 2017  
(see online version for colours) 
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Table A1 The amount of green patent and green invention patent in different regions of China 
from 2007 to 2017 

Green patent 
Year Nation Eastern Central Western 
2007 25,417 18,928 3,880 2,609 
2008 35,398 26,492 5,370 3,536 
2009 49,664 36,742 7,459 5,463 
2010 62,823 46,364 9,326 7,133 
2011 83,645 61,469 12,615 9,561 
2012 105,534 76,184 15,382 13,968 
2013 122,478 88,971 17,703 15,804 
2014 141,641 100,150 22,812 18,679 
2015 189,830 132,000 31,304 26,526 
2016 250,523 173,271 43,957 33,295 
2017 324,209 220,476 58,353 45,380 

Green invention patent 
2007 14,066 10,772 1,943 1,351 
2008 18,992 14,583 2,658 1,751 
2009 25,623 19,342 3,503 2,778 
2010 32,413 24,565 4,210 3,638 
2011 41,690 31,129 5,671 4,890 
2012 53,244 39,216 6,780 7,248 
2013 66,834 49,497 8,551 8,786 
2014 78,613 55,681 12,109 10,823 
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Table A1 The amount of green patent and green invention patent in different regions of China 
from 2007 to 2017 (continued) 

Green invention patent 
Year Nation Eastern Central Western 
2015 99,683 68,821 16,182 14,680 
2016 137,895 93,257 25,100 19,538 
2017 173,866 115,213 32,638 26,015 

Table A2 Descriptive statistics for the eastern region and the central and western regions 

The eastern region 
Var Observation Mean SD Min Max 
lnPCE 1,089 8.876 0.520 7.390 10.184 
lnCE 1,089 8.011 0.722 5.343 10.046 
lnGP 1,089 3.901 1.578 –0.095 8.282 
lnGIP 1,089 2.971 1.726 –1.245 7.628 
lnPD 1,089 6.205 0.639 4.530 8.960 
lnPGDP 1,089 10.586 0.579 9.039 12.890 
lnEC 1,089 9.494 1.121 6.577 12.788 
lnIND 1,089 3.871 0.203 2.915 4.338 
lnURB 1,089 4.000 0.272 3.107 4.605 
lnFDI 1,089 1.045 1.076 –4.996 3.167 

The central and western regions 
lnPCE 1,947 8.579 0.742 6.384 11.243 
lnCE 1,947 7.451 0.729 5.522 9.641 
lnGP 1,947 2.717 1.459 –1.333 6.952 
lnGIP 1,947 1.890 1.511 –1.797 6.609 
lnPD 1,947 5.490 0.903 2.304 7.273 
lnPGDP 1,947 10.079 0.621 4.538 12.255 
lnEC 1,947 8.581 1.166 4.694 12.130 
lnIND 1,947 3.866 0.256 2.705 4.511 
lnURB 1,947 3.825 0.315 2.798 4.778 
lnFDI 1,947 0.048 1.485 –8.210 4.012 
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Table A3 Results for replacing GP and GIP with GPt–2 and GIPt–2, respectively 

 (1) (2) (3) (4) 
DV lnCE lnPCE lnCE lnPCE 
lnGPt–2 0.033*** 0.0244***   

(0.008) (0.0065)   
lnGPt–22 –0.010*** –0.0055***   

(0.002) (0.0013)   
lnGIPt–2   0.010* 0.006 

  (0.006) (0.005) 
lnGIPt–22   –0.007*** –0.003** 

  (0.002) (0.001) 
Control Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 
City FE Yes Yes Yes Yes 
Sample 3036 3036 3036 3036 
R2(within) 0.730 0.813 0.721 0.809 

Notes: DV refers to dependent variable. The robust standard errors are shown in 
parentheses. For brevity, the estimated intercept and control variables are not 
reported. *p < 0.1, **p < 0.05, ***p < 0.01. 


