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Abstract: A single server Markovian queue with server breakdown has
been considered here. In addition, the server goes on two types of vacation
namely type-I and type-II. Type-I vacation is taken after the busy period of
non-zero duration and type-II vacation occurs, at the completion of type-I
vacation. When there are no customers in the system, both type-I and type-II
vacations are working vacations. Also, on type-I vacation, the server may
breakdown, and immediately the repair takes place. We analysed it as a
quasi-birth-and-death (QBD) process, and using the matrix geometric method,
the steady-state probability vector of the number of people in the queue and
the stability conditions were produced. There are some system performance
measures found. The effects of various parameters on the system performance
measures are illustrated numerically.

Keywords: single server; differentiated vacation; breakdown; repair; QBD
process.

Reference to this paper should be made as follows: Karthick, V., Suvitha, V.
and Kalyanaraman, R. (2024) ‘A single server Markovian differentiated
working vacation queue with server breakdown’, Int. J. Mathematics in
Operational Research, Vol. 27, No. 1, pp.105-120.

Biographical notes: V. Karthick received his Bachelor’s and Master’s in
Mathematics from University of Madras in 2015 and 2017, respectively. Also
he completed his Master of Philosophy in Mathematics from University of
Madras in 2018. After that, he served as an Assistant Professor for nearly
three years in engineering colleges. Currently, he is doing PhD as a Full Time
Research Scholar at SRM Institute of Science and Technology, Chennai.

Copyright © 2024 Inderscience Enterprises Ltd.



106 V. Karthick et al.

V. Suvitha is serving as an Assistant Professor at the Department of
Mathematics, SRM Institute of Science and Technology, Kattankulathur,
Chennai. Her areas of interest are stochastic processes and queueing theory.
She obtained her PhD in 2016. She has 6+ years of teaching experience.
She has published more than ten research papers in reputed national and
international journals.

Rathinasabapathy Kalyanaraman is a Professor at the Department of
Mathematics, Annamalai University, Tamilandu, India where his Doctorate
was defended in 1996. His research interests are in the areas of stochastic
processes and their applications. The applications under consideration are
focused on the queuing theory. Nine PhD’s procedures was done under
his advisory. He has published more than 100 research articles in reputed
journals.

1 Introduction

We can observe in real-time queueing scenarios that servers operate during rest period
if necessary. Because it results in a new class of queueing systems, these situations are
known as queueing systems with server working vacations. Server working vacation
models is mostly used in various types of sections like telecommunication systems and
manufacturing systems, industrial organisations, production system and many others.
Queueing system with server vacations has been analysed by many researchers and the
survey paper from Doshi (1986), and the monograph from Takagi (1991), should be
cited by readers.

Netus (1994) explore the matrix geometric method for the M /M /1 model under
repair. Laxmi and Kassahun (2020), Suganya and Sivakumar (2019) and Jeyakumar and
Rameshkumar (2019) are studied about the multiple vacations queing system. Agrawal
et al. (2021) discussed about M /M /1 queueing model with working vacation and
two type of server breakdown. Recently, Tian et al. (2021) analyse about a markovian
queues with single working vacations and Bernoulli interruptions. Vijayashree et al.
(2021) and Sampath and Jicheng (2018) talk about M /M /1 queueing model with
differentiated vacation and interruption. Kalyanaraman and Sundaramoorthy (2019)
analyse the working vacation queue with a server state dependent arrival rate and
partial breakdown. In the working vacation queueing system, the server which works
at a different rate, in particular with the lower service rate instead of a complete shut
down during vacation. An M /M /1 queue with multiple working vacations, where the
vacation times are exponentially distributed, was initially suggested by Servi and Finn
(2002). The work to M/G/1 queue is expanded in Wu and Takagi (2006), although
Joshi et al. (2021) discussed the M/G/1 queue length distribution with working
vacations.

The stochastic decomposition structure of the queue length and waiting time in an
M /M /1 working vacation queue is examined in Kim et al. (2003). The transformation
of the working vacation queue from M /M/1 to MX!/M/1 in Xu et al. (2009)
and Li et al. (2009) used the matrix analytic method to analyse an M/G/1 queue
with exponential working vacation under a specific assumption. At the same time a
multi-server queue with single working vacation consider in Lin and Ke (2009). But Jain
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and Jain (2008) examined a single working vacation model with the server breakdowns.
Recently, Dasa et al. (2022) analyse about the Markovian queueing system with server
failures and also Choudhary and Sharma (2022) studied about queueing model with
unreliable service station. In addition to these ideas in Ke et al. (2010), we have a brief
analysis of recent developments in vacation queueing models. A single-server queueing
model with heterogeneous arrival and service rate was described in Yechiali and Naor
(1971). The identical model was examined in Fond and Ross (1997) with the notion that
any arrival would result in the server queuing, with the arrival rate being depending on
server state (Shogan, 1979).

We take into account a M /M /1 queue with differentiated vacation and server
breakdown in this object. In these sense we have seen the service rate is different but
arrival rate is same for all the states. The model has been examined using the matrix
geometric model.

Our proposed model has several real-life time examples. For example, if we are
considering a bank with a single cashier, handling the customers is his primary job. If
there are no customers in the system, the cashier can go to his secondary job. That is, he
bundled the rupee notes into 100 numbers. After completing bundling the money again
if the system founds to be empty cashier go to another secondary job. That is to take
and proceed with the cheques from the cheque box. After completing cheque process,
if the system deducts a customer then the cashier is return back to his/her primary job.
That is handling the customers.

The remaining section of the paper is collected as follow. We give a model
description and explain a quasi-birth-death process in Section 2. In Section 3 using the
matrix geometric method, the solution of steady state is presented. In Sections 4 and 5,
we give some system performance measures and a numerical analysis. A conclusion has
been offered.

2 Model description

Here we are dealing M /M /1 queuing model with a differentiated working vacation and
server breakdown. The elementary assumptions are described as following:
1 Customers arrive according to a Poisson process with rate .

2 Service times in the regular busy period follows an exponentially distributed with
parameter p and the service is provided by a single server.

3 We assume that there are two types of working vacations namely type-I and
type-II respectively.

4  Type-I vacation taken after a busy period of non-zero duration, and type-II
vacation is taken when no customers are waiting in the system when the server it
returns from the vacation. Otherwise, the server switches to regular busy period.

5  During type-I (II) vacations, an arriving customers are served at a rates (i, (ty, ).

6  Assume that the durations of type-I (II) vacations are assumed to exponentially
distributed with parameters ~; and ~s.
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7  The server may getting breakdown during type-I vacation with rate S and « is
assumed to be a repair rate.

8  The model is presented schematically in Figure 1.

Figure 1 Transition diagram

2.1 The quasi-birth-and-death process

At time ¢, the number of customers in the systems is consider as H (t) and let I(t) be
the server state at time ¢ where I(t) is defined as follows

if the server is in busy period

0,
1) = 1, if the server is in type-I vacation
]2, if the server is in type-1I vacation
3,

if the server is in breakdown

Let Z(t)={H(t),I(t)}, then {Z(t):t >0} is a continuous time Markov chain
(CTMC) with state space 2 = {(i,n) : i > 0;n =0,1,2,3}, where (¢,0),7 > 1 denotes
the system is in regular busy state and (i,n),4 > 0;n = 1,2, 3 denotes the system is in
type-I vacation (type-II vacation, breakdown) states.
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Using lexicographical order for the states, the infinitesimal generator of MC @ is

given by,
—BOO BOl i
Biv B Ao
Q= D Ay A A
Ay Ay A
where
—A+B8+m) m B
Boo = 0 Y 0 ,
i o 0 —(a+X)
0 A 0 0 K 8 8
Bu=10 0 X 0|, Bjg=|" ,
00 0 A 0 pw, 0
L 0 0 0
—(\+p) 0 0 0
Bll _ Y1 _(Mm +71 + B + )‘) 0 ﬁ
Vo 0 —(A+ 72+ ) 0 ’
| 0 a 0 —(a+X)
[—(\ + ) 0 0 0
A= | M Tt 0 B
Yo 0 —(v2+ ) 0 ’
| 0 a 0 —(a+A)
(w0 0 0 A0 0 0
0 m, 0 0 ~lox o000
A=1) o, O]’ Ad=1g 0 x 0
0o 0 0 0 00 0 X

3 The steady state solution

In order for PQ) = 0 and Pe = 1, where e is a column vector of 1’s of the proper size,

let P = (p07p17p27

) be the stationary probability vector associated with Q.

Let po = (po1,po2,po3) and if 7> 1 then p; = (pio, i1, pi2, pi3). The following
equations produce the sub vectors p; if the steady state requirement is met

poBoo + p1B1o =0
poBo1 + p1B11 +p2A42 =0
PiAo + pit141 + Dit2As =0 fori>1

D = le(Fl) fori > 2

(1
2)
A3)
“4)
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where R is the rate matrix is the minimal non-negative solution of the matrix quadratic
equation (see Netus, 1994).

R*As+ RA1 + Ay =0 ©)
Substituting the (4) in (2) we have

poBo1 + p1(B11 + RA2) =0 (6)
and the normalising condition is

poe —|—p1(I—R)_le= 1 @)

S . A
Theorem 1: The above section is stable iff p < 1 where p = —. Proof: Let
I

0 0 0 0
a- | —m+B) 0B

V2 0 72 0

0 « 0 —«a

Consider the row vector 7 = (my, o, w3, m4) which satisfies the conditions 7A = 0,
e = 1.

Following Netus (1994), the system is stable if and only if mAge < wAge. That is
the system is stable if and only if p < 1. O

Lemma 2:

1 w2 —A+p)ri+A=0
The above quadratic equation has 2 real roots ], 1 with conditions r; =1,

ry = p, where p = —

=

2 py (P34 rarr) = r3(pey F 1A+ B) Fars FA=0

The above quadratic equation has 2 real roots 73 < 3 with conditions 0 < r3 < 1,
r3 > 1, where

(o + 7+ A+ 8) £ V(o + 71+ A+ )2 — Ay,
240,

*
7“3,7"3 =

3 /,var%_(’}/2+)\+/,6v2)7a6+)\:0

The above quadratic equation has two real roots rg < rg§ with conditions
0 <re <1, r§ > 1, where

A+ 72 + foy) £/ N+ 72 + Hay)2 — 4\,
2ft0,

*
Te,T6 =
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Theorem 3: If p < 1, the matrix equation (5) has the minimal non-negative solution as
follows:

p 0 0 0
_ |2 3 0 1y
R - Trs 0 Te 0
0 7 0 g
where
py = —7371
ury + prs — (A +p)
py — o1 FA+8) = /(o 71+ A+ B)2 — 4y,
240,
1
YT + A
rg = —7672
(ury + pre — A+ p)
T = (>\+’72 -|-,U,v2) — \/(>\+’72 +/1’U2>2 — 4\,
2y,
rT = 0
e — A
ST a+A
Proof: Let
rn 0 0 O
e 3 0 1y
R= Ts 0 T6 0 (8)
0 7 0 rs
prt 0 0 0
+713) o, (13 +Tar7) 0 0
R2A, — pra(r (73 9
27 s (r1 4 16) 0 Jos7g 0 ©)
prerY o, (T3r7 +7778) 00
-(A+pm 0 0 0
_ 4 —r3Vi + ary 0 r3B—ra(a+ )
RA, = Va 0 “r6(A + Y2+ 10, 0 (10)
71 —(fy, + 71+ A+ B)rr + ars 0 —r7Bra(a+ \)

where V; = —(/\—F,Ll)’l“g + 7371, Vi=po +71 + A+ B and Vo = —()\—l—,u)r5 + 1672
Substituting (9), (10) and Aq into (5) gives the following set of equations

pur? — (A + )+ A =0 (11)

ura(ry +r3) — A+ p)ra +1r371 =0 (12)
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fro, (13 4+ 14r7) — 73(lo, + 71+ A+ B) Farg +A=0 (13)
r3f—(a+ A)ry =0 (14)
urs(ry + 1) — A+ p)rs + 1672 =0 (15)
fosT8 — (32 + A+ froy )6 + A =0 (16)
w(rars) +r7v2 =0 17)
Loy (1377 +7778) — (o, + 71+ A+ B)r7 +arg =0 (18)
r7B—rs(a+A)+A=0 (19)

From equations (11)—(19) we get the results of Theorem 3.
The non-negative solution must be minimal, since equation (5) has unique
non-negative solution. O

Theorem 4: If p <1, the stationary probability vectors py = (po1,Ppo2,Po3) and
bi = (PomPu,Piz,Pis) are

—_— (a+ )\)p
01 =
3 03
_ tl’}/l (Oé + )\)
Po2 7)\&1 Pos3
t3
P1o = —Po3
ty
_ tolapy — pts
Pu1 = ——F——DPo3
t4,LLU
Pro = Yi(a+ )\)p
12 = —F—F—Po3
t13
_ tepwpo3 — tsppio
P13 =
Ko
a—+ A t a+ A t
s = |14 &N amlat ) 3
B 13 ta(1—11)
toty — v)t
+(24 (1) p)t3) 14 T2 I T4
t4(1—r3) 1—r 1—rg
i [ (a+ M7 } {1 LT } tate — t5(p/ 1o )t3
ﬁtl(l — 7“6) 1-— 1 Oét4<1 — ’r‘g)
where

ti = A+ v2 + rofiy,
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(a+NA+B8+v)—af

ty =
o3

R

ty =N+ p— pry + (u/py) (1 + pr2)

t3 = (71 + pra)ta + [y2 + prs) [

t5:Mv1+71+5+)\_T3Mv

AMa+ A
te = tots — %
Proof: po1, poz2, Pos, P10, P11, P12, P13 follows from equations (1), (6) and (7). O

4 Performance measures

By using the normal calculations, performance measures have been calculated as
follows:

1 Mean system length when the server is an

oo}

e busy: E(L) =} ipio
i=1

&)

e type-I vacation: E(L,,) = Y ipi1
i=0
(o)
e type-Il vacation: E(L,,) = > ip;o
i=0
e breakdown: E(Ly) = > ip;s.
i=0

2 The probability that the server is in

e regular busy: P, = > pio
i=1
e type-I vacation: P,, = > pi1
i=0
[ee]
e type-II vacation: P,, = > p;o
i=0

o
e  breakdown state: P, = > p;3.
i=0

5 Numerical analysis

In this section, we have presented some numerical illustrations in order to validate
our analytical results by graphs and tables. In table 1, arrival rate A = 0.18. The other
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input parameters are taken as « = 0.3, 8 = 0.2, u = 2.4, py, = 1, fy, = 0.8, 71 = 0.4,
2 = 0.5. The description of Table 1 is given as follows:

e first column represents the number of customers in the system

e second column represents the probability that there are n customers in the system
and the server is in busy

e third column represents the probability that there are n customers in the system
and the server is on type-I vacation

e  fourth column represents the probability that there are n customers in the system
and the server is on type-I vacation

e fifth column represents the probability that there are n customers in the system
and the server is in breakdown.

Table 1 Performance measures

.

Dio Pi1 Di2 Di3
0 - 0.11630368639 0.61785439510 0.04845986933
1 0.02320863691 0.02047818600 0.08086539570 0.04437467832
2 0.00468929624 0.00220410402 0.01058374315 0.00091837668
3 0.00072804853 0.00023723168 0.00138521080 0.00009884654
4 0.00010283076 0.00002553367 0.00018129776 0.00001063903
5 0.00001391345 0.00000274824 0.00002372843 0.00000114510
6 0.00000184319 0.00000029580 0.00000310560 0.00000012325
7 0.00000024162 0.00000003184 0.00000040646 0.00000001327
8 0.00000003151 0.00000000343 0.00000005320 0.00000000143
9 0.00000000410 0.00000000037 0.00000000696 0.00000000015
10 0.00000000053 0.00000000004 0.00000000091 0.00000000002
11 0.00000000007 0.00000000000 0.00000000012 0.00000000000
12 0.00000000001 0.00000000000 0.00000000002 0.00000000000
Table 2 Performance measures
A ey P, P, P, Py,
0.18 0.30 0.035265311 0.139251821 0.710897344 0.093863693
0.32 0.035567889 0.140435178 0.718331206 0.088758552
0.34 0.035826501 0.141445609 0.724799246 0.084149944
0.185 0.30 0.036387627 0.142050353 0.703626605 0.095790606
0.32 0.036713827 0.143311789 0.711260653 0.090616177
0.34 0.036992756 0.144389391 0.717903421 0.085939806
0.19 0.30 0.037515667 0.144790575 0.696403949 0.097679888
0.32 0.037866593 0.146132424 0.704235885 0.092440118
0.34 0.038166810 0.147279277 0.711051609 0.087699311

From Table 1, we conclude if the number of customers increases then the probability
values are decrease. From Table 2, we observed that if the repair rate («) increases
then the steady state probabilities increases all the states except breakdown state. And
Table 3 tells us if the breakdown rate () increases then the steady state probabilities
decreases all the states except breakdown state.
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A « Pb Pvl PvQ Pbr
0.18 0.30 0.035265311 0.139251821 0.710897344 0.093863693
0.32 0.035567889 0.140435178 0.718331206 0.088758552
0.34 0.035826501 0.141445609 0.724799246 0.084149944
0.185 0.30 0.036387627 0.142050353 0.703626605 0.095790606
0.32 0.036713827 0.143311789 0.711260653 0.090616177
0.34 0.036992756 0.144389391 0.717903421 0.085939806
0.19 0.30 0.037515667 0.144790575 0.696403949 0.097679888
0.32 0.037866593 0.146132424 0.704235885 0.092440118
0.34 0.038166810 0.147279277 0.711051609 0.087699311

Figure 2 )\ versus mean number of customers for different o (see online version for colours)
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The effect of arrival rate (\) on mean queue length for different values of « is shown in
Figure 2. That is if )\ increases then the mean queue length are increases. And also we
can notice that if « increase then the mean queue length is increase in regular busy state
and type-II vacation state. If a increases then the mean queue length is decreases in
type-I vacation state and breakdown state. The effect of arrival rate (A) on mean queue
length for different values of 3 is shown in Figure 3. That is if A\ increases then the
mean queue length are increases. And also we can notice that if 3 rate increase then
the mean queue length is decreases in regular busy state and type-II vacation state. If 3
rate increases the mean queue length is increases in type-I vacation state and breakdown
state.

In Figure 4, we shows the effect of the service rate in type-I vacation (y,,) on mean
queue length for different values of a. We observed that if z,, increases then the mean
queue length is increases in regular busy state and type-II vacation state, and decreases
in type-I vacation state and breakdown state. Also we notice that if « increase then the
mean queue length is also increase in regular busy state and type-II vacation state, and
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mean queue length is decrease in type-I vacation state and breakdown state. In Figure 5,
we shows the effect of the service rate in type-I vacation (u,,) on mean queue length
for different values of 8. We observed that if 4, increase then the mean queue length is
increase in regular busy state and type-II vacation state, and decrease in type-I vacation
state and breakdown state. Also we notice that if 5 increase then the mean queue length
is also decreases in regular busy state and type-II vacation state, and mean queue length
is increases in type-I vacation state and breakdown state.

Figure 3 )\ versus mean number of customers for different 5 (see online version for colours)
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Figure 4 1, versus mean number of customers for different o (see online version
for colours)
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Figure 5 1, versus mean number of customers for different 5 (see online version
for colours)
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Figure 6 (i,, versus mean number of customers for different o (see online version
for colours)
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In Figure 6, we shows the effect of the service rate in type-II vacation (y,,) on mean
queue length for different values of a. We observed that if x,, increases then the mean
queue length is decreases in all the states. Also we notice that if « increases then the
mean queue length is also increases in regular busy state and type-II vacation state, and
mean queue length is decrease in type-I vacation state and breakdown state. In Figure 7,
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we shows the effect of the service rate in type-II vacation (y,,) on mean queue length
for different values of 5. We observed that if yu,, increases then the mean queue length
is decreases in all the states. Also we notice that if J increases then the mean queue
length is also increase in regular busy state and type-II vacation state, and mean queue
length is decrease in type-I vacation state and breakdown state.

Figure 7 1, versus mean number of customers for different 5 (see online version
for colours)
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6 Conclusions

In this work we investigated a single server Markovian queue with server breakdown.
Also we considered two types vacations, in addition both of these vacation are a working
vacation. The performance measures of mean for the four states of the system are
presented through the graphs and the steady state probabilities are presented through the
table. In the future, the work could progress to a multi-server, differentiated working
vacation queueing system with server breakdown.
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