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Abstract: In this paper, we introduce a new family of heavy-tailed 
distributions called the type-I heavy-tailed exponentiated generalised-G 
(TIHTEG-G) family of distributions. A special model of the proposed 
family, namely the type-I heavy-tailed exponentiated generalised-log-logistic 
(TIHTEG-LLoG) model is studied in detail. Statistical properties of the new 
family of distributions are presented. These include, among others, the hazard 
rate function, quantile function, moments, distribution of order statistics and 
Rényi entropy. The maximum likelihood method of estimation is used for 
estimating the model parameters and Monte Carlo simulation is conducted to 
examine the performance of the model. Actuarial measures are also derived 
and simulation study for these measures is done to show that the proposed 
TIHTEG-LLoG model is a heavy-tailed model. Real datasets are analysed to 
illustrate the usefulness of the proposed model.
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1 Introduction

The use of traditional probability models to estimate real-life occurrences leads to
lack of satisfaction among applied practitioners. Most of these models do not fit and
predict data in several applied areas, therefore, generalised families of distributions
are considered for the improvements and extensions of classical distributions. Many
generalised families of distributions have been developed and applied to describe various
phenomena. This development is made by addition of one or more parameters to
the baseline distribution. Examples of recently generalised distributions include the
exponentiated half logistic exponential (EHLE) distribution by Abdullah et al. (2018),
the Odd exponentiated half-logistic-G (OEHL-G) distribution by Afify et al. (2017),
the Weibull-G family of distribution by Bourguignon et al. (2014), the Gompertz-G
(Gom-G) family of distributions by Alizadeh et al. (2017), the Marshall-Olkin
inverse Lomax (MO-ILD) distribution by Maxwell et al. (2019), the new power
generalised Weibull-G family of distributions by Oluyede et al. (2020), the Topp-Leone
odd log-logistic family of distributions by Brito et al. (2017), the Marshall-Olkin
extended inverse Weibull distribution by Pakungwati et al. (2018), generalised
beta-generated distributions by Alexander et al. (2012), the exponentiated half logistic
odd Lindley-G (EHLOL-G) family of distributions by Sengweni et al. (2021) and the
Zografos-Balakrishnan-G family of distributions by Nadarajah et al. (2015) just to name
a few.

The use of heavy-tailed distributions to model datasets in different areas of
research like risk management, financial sciences, reliability, engineering, economic
and actuarial science is of tremendous practical importance, since these data are
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in some cases positive, uni-modal shaped, right-skewed and heavier tailed. Hence,
there is need for the development of heavy-tailed distributions. Examples of recently
developed heavy-tailed distributions include the Weibull-Lomax distribution by Tahir
et al. (2015), heavy-tailed log-logistic distribution by Teamah et al. (2021), a new
family of heavy-tailed distributions by Ahmad et al. (2022), heavy-tailed beta-power
transformed-Weibull distribution by Zhao et al. (2021), the heavy-tailed exponential
distribution by Afify et al. (2020) and the type-I heavy tailed Weibull distribution by
Zhao et al. (2020).

The cumulative distribution function (cdf) and probability density function (pdf) of
the type-I heavy-tailed distribution introduced by Zhao et al. (2020) are given by

FHT−G(x; θ, ψ) = 1−
(

1−G(x;ψ)

1− (1− θ)G(x;ψ)

)θ
, (1)

and

fHT−G(x; θ, ψ) =
θ2g(x;ψ) (1−G(x;ψ))

θ−1

(1− (1− θ)G(x;ψ))
θ+1

, (2)

respectively, for θ > 0, x ∈ R and parameter vector ψ, where G(x;ψ) is the baseline
cdf. Cordeiro et al. (2013) introduced the exponentiated generalised-G class of
distributions with the cdf and pdf given by

FEG−G(x;α, β, ψ) =
(
1− Ḡα(x;ψ)

)β
, (3)

and

fEG−G(x;α, β, ψ) = αβg(x;ψ)Ḡα−1(x;ψ)
(
1− Ḡα(x;ψ)

)β−1
, (4)

respectively for α, β > 0, x ∈ R and parameter vector ψ, where Ḡ(x;ψ) = 1−
G(x;ψ).

In this paper, we propose a new family of distributions which has more flexibility
when fitted to real life data. Its pdf can be right-skewed, left-skewed, almost
symmetrical as well as bathtub shapes. The hazard rate function has shapes that
include decreasing, increasing, uni-modal, bathtub, and upside down bathtub, which
are applicable in real life situations. Another motivation for this paper is to construct
heavy-tailed distributions for modelling different types of real data.

The rest of the paper is organised as follows. In Section 2, we introduce the new
family of distributions and its sub-families. In Section 3, mathematical and statistical
properties of the new family of distributions are explored including expansion of the
pdf, quantile function, moments, generating function and Rényi entropy. The estimation
of the parameters are obtained using maximum likelihood estimation method in Section
4. Some special cases of the new family of distributions are given in Section 5. Also, in
this section, we plot the density function, hazard rate function and present 3D plots of
skewness and kurtosis. A Monte Carlo simulation study to examine the bias and mean
square error of the maximum likelihood estimates are presented in Section 6. Section 7
contains actuarial measures. Applications of a member the new family of distributions
to real datasets are given in section 8 and conclusions are given in Section 9.
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2 The new family of distributions

We propose a new family of distributions referred to as the type-I heavy tailed
exponentiated generalised-G (TIHTEG-G) family of distributions by using the
generalisations given in equations (1), (2), (3) and (4). Combining equations (1) and (2)
with equations (3) and (4), we get the cdf, pdf and hazard rate function (hrf) of the
proposed family of distributions given by

F (x; a, α, β, ψ) = 1−

[
1−

(
1− Ḡα(x;ψ)

)β
1−

(
1− a

)(
1− Ḡα(x;ψ)

)β
]a
, (5)

f(x; a, α, β, ψ) =
a2αβg(x;ψ)Ḡα−1(x;ψ)

(
1− Ḡα(x;ψ)

)β−1(
1−

(
1− a

)(
1− Ḡα(x;ψ)

)β)2
×

[
1−

(
1− Ḡα(x;ψ)

)β
1−

(
1− a

)(
1− Ḡα(x;ψ)

)β
]a−1

(6)

and

h(x; a, α, β, ψ) =
a2αβg(x;ψ)Ḡα−1(x;ψ)

(
1− Ḡα(x;ψ)

)β−1(
1−

(
1− a

)(
1− Ḡα(x;ψ)

)β)2
×

[
1−

(
1− Ḡα(x;ψ)

)β
1−

(
1− a

)(
1− Ḡα(x;ψ)

)β
]−1

,

(7)

respectively, for x > 0, a, α, β > 0 and parameter vector ψ.

2.1 Sub-families

Sub-families of the new family of distributions are presented in this subsection.

• When a = 1, we obtain the exponentiated generalised-G (EG-G) family of
distributions by Cordeiro et al. (2013) with cdf given by

F (x;α, β, ψ) =
(
1− Ḡα(x;ψ)

)β
,

for x > 0, α, β > 0, and parameter vector ψ.

• When α = 1, we obtain a new family of type-I heavy-tailed distributions with cdf
given by

F (x; a, β, ψ) = 1−

[
1−Gβ(x;ψ)

1−
(
1− a

)
Gβ(x;ψ)

]a
,

for x > 0, a, β > 0, and parameter vector ψ. This is a new family of distributions.
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• When β = 1, we obtain Type I heavy-tailed generalised-G (TIHTG-G) family of
distributions with cdf given by

F (x; a, α, ψ) = 1−

[
Ḡα(x;ψ)

1−
(
1− a

)(
1− Ḡα(x;ψ)

)]a,
for x > 0, a, α > 0 and parameter vector ψ. This is a new family of distributions.

• When a = α = 1, we obtain the exponentiated-G family of distributions with cdf
given by

F (x;β, ψ) = Gβ(x;ψ)

for x > 0, β > 0 and parameter vector ψ.

• When a = β = 1, we obtain a family of distributions with cdf given by

F (x;α,ψ) = 1− (1−G(x;ψ))
α

for x > 0, α > 0 and parameter vector ψ.

• When α = β = 1, we obtain the TIHT-G family of distributions with cdf given by

F (x; a, ψ) = 1−

[
Ḡ(x;ψ)

1−
(
1− a

)
G(x;ψ)

]a

for x > 0, a > 0 and parameter vector ψ (Zhao et al., 2020).

• When a = α = β = 1, we obtain the baseline cdf

F (x;ψ) = G(x;ψ)

for x > 0, and parameter vector ψ.

3 Some statistical properties

Statistical properties of the TIHTEG-G family of distributions are explored in this
section. The statistical properties considered include expansion of the density function
as well as the quantile function, moments, generating function, probability weighted
moments, Rényi entropy, and distribution of the order statistics.

3.1 Linear representation of the density function

In this subsection, we demonstrate that the TIHTEG-G density function can be expressed
as an infinite linear combination of exponentiated-G (exp-G) densities. Consider the
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generalised series expansion given by (1− x)
n
=
∑∞
i=0 (−1)

i (n
i

)
xi, |x| < 1. Now,

applying the following generalised binomial series expansions:

[
1−

(
1− a

)(
1− Ḡα(x;ψ)

)β]−(a+1)

=
∞∑
i=0

(
−(a+ 1)

i

)
(−1)

i

× (1− a)
i (
1− Ḡα(x;ψ)

)βi
,[

1−
(
1− Ḡα(x;ψ)

)β]a−1

=
∞∑
j=0

(−1)
j

(
a− 1

j

)(
1− Ḡα(x;ψ)

)βj
,

(
1− Ḡα(x;ψ)

)βj+βi+β−1
=

∞∑
k=0

(−1)
k

(
βj + βi+ β − 1

k

)
Ḡαk(x;ψ)

and

[1−G(x;ψ)]
αk+α−1

=
∞∑
l=0

(−1)
l

(
αk + α− 1

l

)
Gl(x;ψ),

we can write the pdf of the TIHTEG-G family of distribution as

f(x; a, α, β, ψ) = a2αβ

∞∑
i,j,k,l=0

(−1)
i+j+k+l

(
−(a+ 1)

i

)(
a− 1

j

)

×
(
βj + βi+ β − 1

k

)(
αk + α− 1

l

)
(1− a)

i
g(x;ψ)Gl(x;ψ)

= a2αβ
∞∑

i,j,k,l=0

(−1)
i+j+k+l

l + 1

(
−(a+ 1)

i

)(
a− 1

j

)

×
(
βj + βi+ β − 1

k

)(
αk + α− 1

l

)
× (1− a)

i
(l + 1) g(x;ψ)Gl(x;ψ)

=

∞∑
l=0

tl+1hl+1(x;ψ),

(8)

where hl+1(x;ψ) = (l + 1) g(x;ψ)Gl(x;ψ) is the exp-G density with power parameter
(l + 1) and parameter vector ψ, and

tl+1 = a2αβ

∞∑
i,j,k=0

(−1)
i+j+k+l

l + 1

(
−(a+ 1)

i

)(
a− 1

j

)(
βj + βi+ β − 1

k

)

×
(
αk + α− 1

l

)
(1− a)

i
.

(9)

The new density can be expressed as an infinite linear combination of exponentiated-g
(exp-G) densities. The mathematical and statistical properties of the new family of
distributions follow directly from those of exp-G family of distributions.
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3.2 Quantile function

The quantile function of the TIHTEG-G family of distributions is obtained by inverting
the nonlinear equation

FTIHTEG−G(x; a, α, β, ψ) = 1−

[
1−

(
1− Ḡα(x;ψ)

)β
1−

(
1− a

)(
1− Ḡα(x;ψ)

)β
]a

= u

for 0 ≤ u ≤ 1. Note that

1−
(
1− Ḡα(x;ψ)

)β
1− (1− a)

(
1− Ḡα(x;ψ)

)β = (1− u)
1
a ,

which simplifies to

G(x;ψ) = 1−

1− [ 1− (1− u)
1
a

1− (1− u)
1
a (1− a)

] 1
β


1
α

.

Consequently, the quantile function of the TIHTEG-G family of distributions is given
by

QG(u; a, α, β, ψ) = G−1

1−

1− [ 1− (1− u)
1
a

1− (1− u)
1
a (1− a)

] 1
β


1
α

 . (10)

Quantiles are obtained using equation (10) via a specified baseline cdf G using R
software.

3.3 Moments and probability weighted moments

In this section, we present the moment, moment generating functions and probability
weighted moments (PWMs) of the TIHTEG-G family of distributions. Using
equation (8), we can obtain the rth moment of the TIHTEG-G family of distributions as
follows

E(Xr) =

∫ ∞

−∞
xrf(x; a, α, β, ψ)dx =

∞∑
l=0

tl+1E(Y rl+1), (11)

where E(Y rl+1) is the rth moment of Yl+1 which follows exp-G distribution with power
parameter l + 1 and tl+1 is defined as equation (9). The moment generating function is
given by

MX(t) = E(etX) =

∞∑
l=0

tl+1E(etYl+1),
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where E(etYl+1) is the moment generating function of the exp-G distribution with power
parameter l + 1 and tl+1 is given by equation (9). The PWMs of a random variable X
are defined by

ωa,r = E
(
Xa[F (X)]r

)
=

∫ ∞

−∞
xa[F (x)]rf(x)dx.

From equations (5) and (6), we can write

f(x)[F (x)]r =
a2αβg(x;ψ)Ḡα−1(x;ψ)

(
1− Ḡα(x;ψ)

)β−1(
1−

(
1− a

)(
1− Ḡα(x;ψ)

)β)2
×

[
1−

(
1− Ḡα(x;ψ)

)β
1−

(
1− a

)(
1− Ḡα(x;ψ)

)β
]a−1

×

[
1−

(
1−

(
1− Ḡα(x;ψ)

)β
1−

(
1− a

)(
1− Ḡα(x;ψ)

)β
)a]r

.

Using the generalised binomial series expansion,(
1−

[
1−

(
1− Ḡα(x;ψ)

)β
1−

(
1− a

)(
1− Ḡα(x;ψ)

)β
]a)r

=
∞∑
i=0

(−1)
i

(
r

i

)[
1−

(
1− Ḡα(x;ψ)

)β
1−

(
1− a

)(
1− Ḡα(x;ψ)

)β
]ai

,

we can write

f(x)[F (x)]r = a2αβg(x;ψ)Ḡα−1(x;ψ)
(
1− Ḡα(x;ψ)

)β−1
∞∑
i=0

(−1)
i

(
r

i

)

×

[
1−

(
1− Ḡα(x;ψ)

)β]ai+a−1

[
1−

(
1− a

) (
1− Ḡα(x;ψ)

)β]ai+a−1
.

Considering the following generalised binomial series expansions:

[
1−

(
1− a

) (
1− Ḡα(x;ψ)

)β]−(ai+a−1)

=
∞∑
j=0

(
−(ai+ a− 1)

j

)
× (−1)

j
(1− a)

j (
1− Ḡα(x;ψ)

)βj
,[

1−
(
1− Ḡα(x;ψ)

)β]ai+a−1

=
∞∑
k=0

(−1)
k

(
ai+ a− 1

k

)(
1− Ḡα(x;ψ)

)βk
,

(
1− Ḡα(x;ψ)

)βk+βj+β−1
=

∞∑
l=0

(−1)
l

(
βk + βj + β − 1

l

)
Ḡαl(x;ψ)
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and

[1−G(x;ψ)]
αl+α−1

=
∞∑
m=0

(−1)
m

(
αl + α− 1

m

)
Gm(x;ψ),

we have

f(x)[F (x)]r = a2αβ

∞∑
j,j,k,l,m=0

(−1)
i+j+k+l+m

(
r

i

)(
−(ai+ a− 1)

j

)

×
(
ai+ a− 1

k

)
×
(
βk + βj + β − 1

l

)(
αl + α− 1

m

)
× (1− a)

j
g(x;ψ)Gm(x;ψ)

=
∞∑
m=0

Um+1hm+1(x;ψ),

where hm+1(x;ψ) = (m+ 1)g(x;ψ)Gm(x;ψ) and

Um+1 = a2αβ
∞∑

i,j,k,l=0

(−1)
i+j+k+l+m

m+ 1

(
r

i

)(
−(ai+ a− 1)

j

)(
ai+ a− 1

k

)

×
(
βk + βj + β − 1

l

)(
αl + α− 1

m

)
(1− a)

j
.

Consequently, the PWMs of TIHTEG-G family of distributions is given by

ωa,r =
∞∑
m=0

Um+1

∫ ∞

−∞
xahm+1(x;ψ)dx.

3.4 Rényi entropy

Rényi entropy of the TIHTEG-G family of distributions is given in this section. Rényi
entropy (Rényi, 1960) is a measure of uncertainty associated to a random variable X
and is defined as

HR(v) =
1

1− v
log

(∫ ∞

0

fv(x)dx

)
for v > 0, v ̸= 1. From equation (6), fvTIHTEG−G(x; a, α, β, ψ) = fv(x) can be written
as

fv(x) =

(
a2αβ

)v
gv(x;ψ)Ḡv(α−1)(x;ψ)

(
1− Ḡα(x;ψ)

)v(β−1)(
1−

(
1− a

)(
1− Ḡα(x;ψ)

)β)2v
×

[
1−

(
1− Ḡα(x;ψ)

)β
1−

(
1− a

)(
1− Ḡα(x;ψ)

)β
]v(a−1)

.
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Using the generalised binomial series expansions:

(
1−

(
1− a

)(
1− Ḡα(x;ψ)

)β)−(va+v)

=
∞∑
i=0

(
−(va+ v)

i

)
(−1)

i

× (1− a)
i (
1− Ḡα(x;ψ)

)βi
,[

1−
(
1− Ḡα(x;ψ)

)β]v(a−1)

=
∞∑
j=0

(−1)
j

(
v(a− 1)

j

)(
1− Ḡα(x;ψ)

)βj
,

(
1− Ḡα(x;ψ)

)βj+βi+v(β−1)
=

∞∑
k=0

(−1)
k

(
βj + βi+ v(β − 1)

k

)
Ḡαk(x;ψ),

and

[1−G(x;ψ)]
αk+v(α−1)

=

∞∑
l=0

(−1)
l

(
αk + v(α− 1)

l

)
Gl(x;ψ),

we can write

fv(x) =
(
a2αβ

)v ∞∑
i,j,k,l=0

(−1)
i+j+k+l

(
−(va+ v)

i

)(
v(a− 1)

j

)

×
(
βj + βi+ v(β − 1)

k

)(
αk + v(α− 1)

l

)
(1− a)

i
gv(x;ψ)Gl(x;ψ).

Now, we can write Rényi entropy of the TIHTEG-G family of distributions as

HR(v) =
1

1− v
log

[∫ ∞

0

fv(x)dx

]

=
1

1− v
log

[ ∞∑
l=0

Ul

(∫ ∞

0

gv(x;ψ)Gl(x;ψ)dx

)]
,

where

Ul =
(
a2αβ

)v ∞∑
i,j,k=0

(−1)
i+j+k+l

(
−(va+ v)

i

)(
v(a− 1)

j

)

×
(
βj + βi+ v(β − 1)

k

)(
αk + v(α− 1)

l

)
(1− a)

i
.

Note that,
∫∞
0
gv(x;ψ)Gl(x;ψ)dx can be obtained numerically. Also, Rényi entropy

of the TIHTEG-G family of distributions can be obtained directly from that of the
exponentiated-G distribution as follows:

HR(v) =
1

1− v
log

[ ∞∑
l=0

ϕle
(1−v)IREG

]
, (12)
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where

ϕl =
(
a2αβ

)v ∞∑
i,j,k=0

(−1)
i+j+k+l(

l
v + 1

)v (
−(va+ v)

i

)(
v(a− 1)

j

)

×
(
βj + βi+ v(β − 1)

k

)(
αk + v(α− 1)

l

)
(1− a)

i

and IREG = 1
1−v log

(∫∞
0

[ (
l
v + 1

)
g(x;ψ)

(
G(x;ψ)

) l
v

]v
dx
)
is the Rényi entropy of

the exp-G distribution with power parameter l
v .

3.5 Distribution of order statistics

Let X1, X2, ..., Xn be independent and identically distributed TIHTEG-G random
variables. The pdf of the ith order statistic, Xi:n can be written as

fi:n(x) =
n!f(x)

(i− 1)!(n− i)!

n−i∑
j=0

(−1)j
(
n− i

j

)
[F (x)]j+i−1.

Using the result form the PWMs, with r = i+ j − 1, the pdf of the ith order statistic
for the TIHTEG-G family of distributions is given by

fi:n(x) =
n!

(i− 1)!(n− i)!

n−i∑
j=0

∞∑
p=0

(−1)j
(
n− i

j

)
Up+1hp+1(x;ψ),

where hp+1(x;ψ) = (p+ 1)g(x;ψ)Gp(x;ψ) and

Up+1 = a2αβ
∞∑

k,l,m,n=0

(−1)
k+m+p

p+ 1

(
i+ j − 1

k

)(
l + ka+ a

ka+ a

)(
ka+ a− 1

m

)

×
(
mβ + lβ + β − 1

n

)(
nα+ α− 1

p

)
(1− a)

l
.

4 Maximum likelihood estimation

Suppose X1, X2, ..., Xn is a random sample obtained from the TIHTEG-G family with
pdf given by equation (6). Let X ∼ TIHTEG−G(a, α, β, ψ) and ∆ = (a, α, β, ψ)T

be the vector of model parameters. The log-likelihood function ℓn = ℓn(∆) based on a
random sample of size n is given by

ℓn(∆) = 2n log(a) + n log(αβ) +
n∑
i=1

log [g(xi;ψ)]

+ (α− 1)

n∑
i=1

log [1−G(xi;ψ)] + (β − 1)

n∑
i=1

log
[
1− Ḡα(xi;ψ)

]
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− 2
n∑
i=1

log
[
1−

(
1− a

)(
1− Ḡα(xi;ψ)

)β]
+ (a− 1)

n∑
i=1

log
[
1−

(
1− Ḡα(xi;ψ)

)β]
− (a− 1)

n∑
i=1

log
[
1−

(
1− a

)(
1− Ḡα(xi;ψ)

)β]
.

The maximum likelihood estimates of the parameters, denote by ∆̂ is obtained by

solving the nonlinear equation
(
∂ℓn
∂a ,

∂ℓn
∂α ,

∂ℓn
∂β ,

∂ℓn
∂ψ

)T
= 0 using a numerical method

such as Newton-Raphson procedure. Elements of the score vector are given in the
appendix.

5 Some special models

We present some special cases of the TIHTEG-G family of distributions, when the
baseline cdf G(x;ψ) is specified to be log-logistic, Weibull, Power and Burr III
distributions.

5.1 Type-I heavy tailed exponentiated generalised-log-logistic distribution

Suppose the baseline distribution is the log-logistic distribution with the cdf and pdf
given by G(x; c) = 1− (1 + xc)−1 and g(x; c) = cxc−1(1 + xc)−2, respectively, for
c, x > 0. From equations (5) and (6), we obtain the cdf and pdf of the type-I heavy
tailed exponentiated generalised-log-logistic (TIHTEG-LLoG) distribution as

F (x; a, α, β, c) = 1−

 1−
(
1− [1 + xc]

−α
)β

1− (1− a)
(
1− [1 + xc]

−α
)β

a

,

and

f(x; a, α, β, c) =
a2αβcxc−1 [1 + xc]

−2
[1 + xc]

−(α−1)
(
1− [1 + xc]

−α
)β−1

(
1−

(
1− a

) (
1− [1 + xc]

−α
)β )2

×

[
1−

(
1− [1 + xc]

−α
)β

1−
(
1− a

) (
1− [1 + xc]

−α
)β
]a−1

,

respectively, for x, a, α, β, c > 0. When β = 1, we obtain the Type I heavy-tailed
generalised log-logistic (TIHTG-LLoG) distribution.

Tables 1 and 2 give the quantiles and moments for TIHTEG-LLoG distribution for
selected parameter values.
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Table 1 Quantiles for TIHTEG-LLoG distribution

u
(a, α, β, c)

(1, 1.5, 1.3, 3.5) (1.7, 1.1, 1.8, 2.5) (1, 0.5, 2.5, 4.5) (2, 0.3, 2.9, 5.4) (9.9, 1, 1.5, 6.5)

0.1 0.5587 0.4934 1.1337 1.1445 0.4965
0.2 0.6763 0.6015 1.3145 1.2709 0.5357
0.3 0.7686 0.6926 1.4790 1.3809 0.5644
0.4 0.8546 0.7772 1.6552 1.4862 0.5870
0.5 0.9407 0.8648 1.8519 1.6029 0.6086
0.6 1.0331 0.9622 2.0996 1.7399 0.6259
0.7 1.1396 1.0800 2.4428 1.9158 0.6459
0.8 1.2890 1.2408 2.9820 2.1759 0.6656
0.9 1.5352 1.5186 4.1240 2.6795 0.6992

Table 2 Moments for TIHTEG-LLoG distribution

u
(a, α, β, c)

(2, 1.5, 1.3, 3.5) (2.7, 1.1, 1.8, 2.5) (3.4, 0.5, 2.5, 4.5) (4, 1.3, 2.9, 5.4) (6.9, 1, 1.5, 6.5)

E(X) 0.6702 0.6845 1.0707 0.8372 0.6515
E(X2) 0.4995 0.5385 1.1985 0.7106 0.4323
E(X3) 0.4113 0.4877 1.4080 0.6111 0.2916
E(X4) 0.3737 0.5176 1.7494 0.5324 0.1997
E(X5) 0.3764 0.6723 2.3351 0.4698 0.1387
E(X6) 0.4251 1.1963 3.4849 0.4197 0.0976
SD 0.2245 0.2644 0.2282 0.0983 0.0886
CV 0.3349 0.3863 0.2131 0.1174 0.1360
CS 0.7898 1.2689 1.1124 0.0620 –0.3350
CK 4.8041 7.6365 7.4602 3.4783 3.3300

Figure 1 Plots of the density and hazard rate function for the TIHTEG-LLoG distribution
(see online version for colours)
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Figure 1 shows flexibility of the TIHTEG-LLoG distribution for selected parameter
values. The density adopts various shapes including reverse-J, left-skewed, right-skewed
and almost symmetric shapes. Moreover, plots of the hrf of the TIHTEG-LLoG
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distribution reveal J-shape, decreasing, upside down bathtub, bathtub followed by upside
down bathtub shapes.

Figure 2 shows the 3D-plots of skewness and kurtosis for TIHTEG-LLoG
distribution. The plots show that when we fix the parameter β and c, the skewness and
kurtosis of the TIHTEG-LLoG distribution increases as a and α increase.

Figure 2 Plots of skewness and kurtosis for TIHTEG-LLoG distribution (see online version
for colours)
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5.2 Type-I heavy tailed exponentiated generalised-Weibull distribution

Suppose we take the baseline distribution to be the one parameter Weibull distribution
with the cdf and pdf given by G(x;λ) = 1− e−x

λ and g(x;λ) = λxλ−1e−x
λ

,
respectively, for λ > 0. From equations (5) and (6), we obtain the cdf and pdf of the
type-I heavy tailed exponentiated generalised-Weibull (TIHTEG-W) distribution as

F (x; a, α, β, λ) = 1−

 1−
(
1− e−αx

λ
)β

1− (1− a)
(
1− e−αxλ

)β

a

,

and

f(x; a, α, β, λ) =
a2αβλxλ−1e−αx

λ
(
1− e−αx

λ
)β−1

(
1− (1− a)

(
1− e−αxλ

)β)2
×

 1−
(
1− e−αx

λ
)β

1− (1− a)
(
1− e−αxλ

)β

a−1

,

respectively, for x, a, α, β, λ > 0.
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Table 3 Quantiles for TIHTEG-W distribution

u
(a, α, β, λ)

(1, 1.5, 1.3, 3.5) (1.7, 1.1, 1.8, 2.5) (1, 0.5, 2.5, 4.5) (2, 0.3, 2.9, 5.4) (9.9, 1, 1.5, 6.5)

0.1 0.5495 0.4760 1.0050 1.0203 0.4961
0.2 0.6553 0.5744 1.0927 1.0807 0.5349
0.3 0.7321 0.6458 1.1550 1.1254 0.5632
0.4 0.7980 0.7114 1.2096 1.1619 0.5855
0.5 0.8575 0.7741 1.2626 1.1954 0.6067
0.6 0.9190 0.8400 1.3107 1.2264 0.6231
0.7 0.9861 0.9108 1.3644 1.2625 0.6431
0.8 1.0593 1.0000 1.4238 1.3036 0.6621
0.9 1.1661 1.1280 1.5091 1.3624 0.6940

Table 4 Moments for TIHTEG-W distribution

u

(a, α, β, λ)

(2, 1.5, 7.3,
1.9)

(1.3, 1.2, 0.6,
2.3)

(2.1, 2.9, 2.7,
1.8)

(1.1, 1.5, 2.5,
1.6)

(2.1, 1.5, 1.7,
1.9)

E(X) 1.0287 0.5072 0.4697 0.9585 0.5318
E(X2) 1.1006 0.3671 0.2464 1.0848 0.3346
E(X3) 1.2234 0.3276 0.1426 1.4091 0.2414
E(X4) 1.4120 0.3378 0.0901 2.0598 0.1958
E(X5) 1.6915 0.3887 0.0618 3.3374 0.1759
E(X6) 2.1025 0.4880 0.0457 5.9236 0.1730
SD 0.2057 0.3315 0.1606 0.4075 0.2275
CV 0.2000 0.6537 0.3418 0.4251 0.4278
CS 0.4758 0.8204 0.6186 0.7549 0.7146
CK 3.5782 3.4294 3.6892 3.7916 3.7545

Figure 3 Plots of the density and hazard rate function for the TIHTEG-W distribution
(see online version for colours)
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Tables 3 and 4 give the quantiles and moments for TIHTEG-W distribution for selected
parameter values. Figure 3 shows flexibility of the TIHTEG-W distribution for selected
parameter values. The density adopts various shapes including reverse-J, left-skewed,
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right-skewed and almost symmetric shapes. Also, the plots of the hrf of the TIHTEG-W
distribution reveal J-shape, decreasing, upside down bathtub and bathtub shapes.

Figures 4 and 5 show the 3D-plots of skewness and kurtosis for TIHTEG-W
distribution. The plots show that when we fix the parameter β and λ, the skewness
and kurtosis of the TIHTEG-W distribution increases as a and α increase. Furthermore,
when we fix the parameter a and α, the skewness and kurtosis of the TIHTEG-W
distribution decreases then increase as β and λ increase.

Figure 4 Plots of skewness and kurtosis for TIHTEG-W distribution (see online version
for colours)
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Figure 5 Plots of skewness and kurtosis for TIHTEG-W distribution (see online version
for colours)
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5.3 Type-I heavy tailed exponentiated generalised-Burr IIIdistribution

Suppose we take the baseline distribution to be the Burr III distribution with the cdf and
pdf given by G(x;λ, γ) =

(
1 + x−λ

)−γ and g(x;λ, γ) = λγx−(λ+1)
(
1 + x−λ

)−(γ+1)
,
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respectively, for λ, γ > 0. From equations (5) and (6) we obtain the cdf and pdf of the
type-I heavy tailed exponentiated generalised-Burr III (TIHTEG-BIII) distribution as

F (x; a, α, β, λ, γ) = 1−

 1−
(
1−

[
1−

(
1 + x−λ

)−γ]α)β
1− (1− a)

(
1−

[
1− (1 + x−λ)

−γ
]α)β


a

and

f(x; a, α, β, λ, γ) = a2αβλγx−(λ+1)
(
1 + x−λ

)−(γ+1)
[
1−

(
1 + x−λ

)−γ]α−1

×
(
1−

[
1−

(
1 + x−λ

)−γ]α)β−1

×
[
1− (1− a)

(
1−

[
1−

(
1 + x−λ

)−γ]α)β]−2

×

 1−
(
1−

[
1−

(
1 + x−λ

)−γ]α)β
1− (1− a)

(
1−

[
1− (1 + x−λ)

−γ
]α)β


a−1

,

respectively, for x, a, α, β, λ, γ > 0.

Table 5 Quantiles for TIHTEG-BIII distribution

u

(a, α, β, λ, γ)

(1, 1.5, 3.3,
2.5, 1.2)

(1.7, 1.1, 1.8,
0.5, 2.1)

(1, 0.5, 2.5,
2.5, 1.1)

(1, 0.3, 2.9,
3.4, 2)

(1.9, 1, 1.5,
2.5, 1.1)

0.1 0.7306 0.0223 1.0050 1.2278 0.3970
0.2 0.8334 0.0617 1.1728 1.3597 0.4921
0.3 0.9086 0.1110 1.2990 1.4585 0.5625
0.4 0.9770 0.1827 1.4084 1.5437 0.6289
0.5 1.0431 0.2789 1.5200 1.6204 0.6918
0.6 1.1096 0.4175 1.6272 1.7003 0.7577
0.7 1.1834 0.6264 1.7475 1.7883 0.8296
0.8 1.2685 0.9950 1.8935 1.8902 0.9202
0.9 1.3977 1.8117 2.0968 2.0308 1.0448

Table 5 gives the table of quantiles for TIHTEG-BIII distribution for selected parameter
values. Figure 6 demonstrates flexibility of the TIHTEG-BIII distribution for selected
parameter values. The density shows various shapes including reverse-J, left skewed,
right skewed and almost symmetric shapes. The plots of the hrf of the TIHTEG-BIII
distribution reveal J-shape, decreasing shape as well as upside down bathtub shape.
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Figure 6 Plots of the density and hazard rate function for the TIHTEG-BIII distribution
(see online version for colours)
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5.4 Type-I heavy tailed exponentiated generalised-power distribution

Suppose we take the baseline distribution to be the power distribution with the cdf
and pdf given by G(x; θ, k) = (θx)

k and g(x; θ, k) = kθkxk−1, respectively, for θ, k >
0. From equations (5) and (6), we obtain the cdf and pdf of the type-I heavy tailed
exponentiated generalised-power (TIHTEG-P) distribution as

F (x; a, α, β, θ, k) = 1−

 1−
(
1−

[
1− (θx)

k
]α)β

1− (1− a)
(
1−

[
1− (θx)

k
]α)β


a

and

f(x; a, α, β, θ, k) =
a2αβkθkxk−1

[
1− (θx)

k
]α−1 (

1−
[
1− (θx)

k
]α)β−1

[
1− (1− a)

(
1−

[
1− (θx)

k
]α)β]2

×

 1−
(
1−

[
1− (θx)

k
]α)β

1− (1− a)
(
1−

[
1− (θx)

k
]α)β


a−1

,

respectively, for x, a, α, β, θ, k > 0.
Table 6 gives the quantiles for TIHTEG-P distribution for selected parameter values.

Figure 7 shows flexibility of the TIHTEG-P distribution for selected parameter values.
The density adopts various shapes including reverse-J, J, left-skewed, right-skewed and
almost symmetric shapes. Also, the plots of the hrf of the TIHTEG-P distribution
reveal J-shape, decreasing, increasing, bathtub, upside down bathtub followed by bathtub
shapes.
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Table 6 Quantiles for TIHTEG-P distribution

u

(a, α, β, θ, k)

(2.1, 1.5, 1.3,
0.1, 1.6)

(1.7, 1.1, 1.8,
0.5, 2.1)

(2, 0.5, 0.8,
0.8, 1.1)

(1.9, 1.3, 0.9,
0.4, 2)

(1.9, 1, 0.5,
0.3, 1.1)

0.1 1.2950 0.7996 0.0387 0.3059 0.0067
0.2 1.8703 0.9711 0.0872 0.4674 0.0213
0.3 2.3558 1.1033 0.1460 0.6061 0.0472
0.4 2.8159 1.2113 0.2148 0.7417 0.0937
0.5 3.2760 1.3081 0.3010 0.8758 0.1600
0.6 3.7662 1.4039 0.4021 1.0193 0.2590
0.7 4.3198 1.4993 0.5218 1.1805 0.4145
0.8 4.9915 1.6051 0.6768 1.3751 0.6635
0.9 5.9410 1.7324 0.8886 1.6379 1.1389

Figure 7 Plots of the density and hazard rate function for the TIHTEG-P distribution
(see online version for colours)
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Table 7 Simulation results

Parameter Sample size (1.1, 3.5, 1.1, 1.5) (5.0, 5.0, 2.1, 1.5)

Mean RMSE Bias Mean RMSE Bias

a 50 1.2112 0.7028 0.1112 8.3738 8.3500 3.3738
100 1.2105 0.6948 0.1105 7.6220 7.9664 2.6220
200 1.1804 0.6272 0.0804 6.6696 6.0300 1.6696
400 1.1894 0.5710 0.0894 5.9271 3.4488 0.9271
800 1.1724 0.4993 0.0724 5.4459 2.1879 0.4459
1,600 1.1408 0.3958 0.0408 5.2962 1.6724 0.2962

α 50 4.7744 3.6471 1.2744 8.4037 12.5111 3.4037
100 4.3653 2.8225 0.8653 7.1306 5.9244 2.1306
200 4.2434 2.6250 0.7434 6.5487 5.2381 1.5487
400 3.9138 2.0478 0.4138 6.0988 4.3823 1.0988
800 3.8317 1.8205 0.3317 5.7402 3.6867 0.7402
1,600 3.7923 1.6123 0.2923 5.2968 2.2241 0.2968
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Table 7 Simulation results (continued)

Parameter Sample size (1.1, 3.5, 1.1, 1.5) (5.0, 5.0, 2.1, 1.5)

Mean RMSE Bias Mean RMSE Bias

β 50 3.1812 12.2667 2.0812 8.2279 21.5558 6.1279
100 1.6755 3.5844 0.5755 4.6672 8.1359 2.5672
200 1.2814 1.1787 0.1814 3.3710 4.9560 1.2710
400 1.1577 0.3667 0.0577 2.6017 2.7516 0.5017
800 1.1302 0.2603 0.0302 2.2778 1.6127 0.1778
1,600 1.1215 0.2013 0.0215 2.1979 1.1430 0.0979

c 50 1.7023 1.2136 0.2023 3.2421 3.1986 1.7421
100 1.5875 0.7798 0.0875 2.5633 2.3603 1.0633
200 1.5427 0.5121 0.0427 2.1007 1.6406 0.6007
400 1.5463 0.3843 0.0463 1.8178 1.0453 0.3178
800 1.5352 0.2879 0.0352 1.6486 0.5551 0.1486
1,600 1.5217 0.2339 0.0217 1.5623 0.3128 0.0623

6 Simulation study

The performance of the TIHTEG-LLoG distribution is examined by conducting various
simulations for different sizes (n = 100, 200, 400, 800 and 1,600) via the R package.
We simulate N = 3,000 samples for the true parameter values given in Table 7. The
tables list the mean MLE estimates of the model parameters along with the respective
average bias (ABias) and root mean square errors (RMSEs). The ABias and RMSE for
the estimated parameter, say θ̂ are given by:

ABias(θ̂) =

∑N
i=1 θ̂i
N

− θ, and RMSE(θ̂) =

√∑N
i=1(θ̂i − θ)2

N
, (13)

respectively.

7 Actuarial measures

Actuaries are mostly concerned with evaluating the exposure of market risk in a
portfolio of instruments. Risk measures are calculated in this section, these includes
value at risk (VaRq), tail value at risk (TV aRq), tail variance (TVq) and tail variance
premium (TV Pq) for the TIHTEG-G family of distributions. These risk measures play
a very important role in portfolio optimisation under uncertainty.

7.1 Risk measures

• Value at risk measure
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Let X follow the TIHTEG-G family of distributions with pdf (6), then the V aRq,
where q is a specified level of significance, is given by

V aRq = xq = G−1

1−

1− [ 1− (1− q)
1
a

1− (1− q)
1
a (1− a)

] 1
β


1
α

 ,

for 0 ≤ q ≤ 1.

• Tail value at risk measure

This measure is used to determine the expected value of loss given that an event
outside a given probability level has occurred. Let X has TIHTEG-G pdf, then
using equations (8) and (9), TV aRq of X is computed as

TV aRq(X) =
1

1− q

∫ ∞

V aRq

xf(x)dx

=
1

1− q

∞∑
l=0

∫ ∞

V aRq

xtl+1hl+1(x;ψ)dx,

where tl+1 is defined as equation (9) and hl+1(x;ψ) (l + 1) g(x;ψ)Gl(x;ψ) is the
exp-G density with power parameter (l + 1) and parameter vector ψ.

• Tail variance measure

Tail variance (TVq) is an actuarial measure that pays attention to the tail variance
beyond V aRq. TVq is given as

TVq = E
(
X2|X > xq

)
− (TV aRq)

2

=
1

1− q

∫ ∞

V aRq

x2f(x)dx− (TV aRq)
2

=
1

1− q

∞∑
l=0

∫ ∞

V aRq

x2tl+1hl+1(x;ψ)dx− (TV aRq)
2
,

where tl+1 is defined as equation (9) and hl+1(x;ψ) (l + 1) g(x;ψ)Gl(x;ψ) is the
exp-G density with power parameter (l + 1) and parameter vector ψ.

• Tail variance premium measure

TV Pq is one of the important actuarial measures and is given by

TV Pq = TV aRq + δ (TVq) ,

for 0 < δ < 1.
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Table 8 Simulation results of VaR, TVaR, TV and TVP

Distribution Level of significance VaR TVaR TV TVP

TIHTEG-LLoG 0.7 1.4159 1.7973 0.1895 1.9300
a = 1.9 0.75 1.4818 1.8672 0.1981 2.0157
α = 1.0 0.8 1.5616 1.9539 0.2099 2.1218
β = 3.8 0.85 1.6644 2.0683 0.2271 2.2614
c = 3.0 0.9 1.8117 2.2361 0.2553 2.4659

0.95 2.0770 2.5448 0.3144 2.8435
TIHTG-LLoG 0.7 0.7462 1.0070 0.0754 1.0599
a = 1.9 0.75 0.7953 1.0544 0.0770 1.1122
α = 1.1 0.8 0.8533 1.1122 0.0795 1.1758
c = 3.0 0.85 0.9261 1.1869 0.0835 1.2579

0.9 1.0270 1.2938 0.0906 1.3753
0.95 1.2009 1.4839 0.1065 1.5851

TIHT-LLoG 0.7 0.7750 1.0567 0.0931 1.1219
a = 1.9 0.75 0.8269 1.1080 0.0959 1.1799
c = 3.0 0.8 0.8885 1.1708 0.1001 1.2509

0.85 0.9663 1.2525 0.1065 1.3431
0.9 1.0749 1.3704 0.1177 1.4763
0.95 1.2642 1.5826 0.1424 1.7179

APTLW 0.7 1.3067 1.5633 0.0767 1.6170
α = 1.9 0.75 1.3533 1.6101 0.0789 1.6692
β = 1.0 0.8 1.4090 1.6676 0.0820 1.7332
c = 3.8 0.85 1.4798 1.7425 0.0867 1.8162
λ = 3.9 0.9 1.5795 1.8507 0.0946 1.9358

0.95 1.7546 2.0450 0.1111 2.1505
LLoG 0.7 1.1311 1.3638 0.0664 1.4102
c = 3.0 0.75 1.1732 1.4062 0.0687 1.4577

0.8 1.2234 1.4584 0.0720 1.5160
0.85 1.2870 1.5266 0.0771 1.5921
0.9 1.3767 1.6254 0.0855 1.7024
0.95 1.5351 1.8048 0.1034 1.9030

7.2 Numerical study of actuarial measures

In this section, numerical study of actuarial measures is done for the TIHTEG-LLoG,
type-I heavy-tailed generalised log-logistic (TIHTG-LLoG), type-I heavy tailed
log-logistic (TIHT-LLoG), APTLW and log-logistic (LLoG) distributions for different
sets of parameters. Firstly, a random sample of size n = 100 is generated from these
distributions, and the maximum likelihood method of estimation is used to estimate the
model parameters. Secondly, a repetition of 1,000 iterations is made in order to find the
values of the risk measures for the distributions. The model with the highest values of
risk measures has the heavier tail.

Simulated results of VaR, TVaR, TV and TVP are shown in Tables 8 and 9. These
results show that the TIHTEG-LLoG distribution has higher values of risk measures
as compared to the TIHTG-LLoG, TIHT-LLoG, APTLW and log-logistic distributions
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respectively, therefore, it is evident that TIHTEG-LLoG has a heavier tail and it can be
used effectively to model heavy-tailed data.

Table 9 Simulation results of VaR, TVaR, TV and TVP

Distribution Level of significance VaR TVaR TV TVP

TIHTEG-LLoG 0.7 1.9172 3.1769 2.4241 4.8737
a = 0.9 0.75 2.1301 3.4083 2.5867 5.3484
α = 1.4 0.8 2.4047 3.6952 2.8205 5.9515
β = 2.1 0.85 2.7865 4.0657 3.2075 6.7920
c = 1.9 0.9 3.3905 4.5679 4.0394 8.2034

0.95 4.6539 5.2132 7.1179 11.9752
TIHTG-LLoG 0.7 1.3427 2.4426 1.8734 3.7540
a = 0.9 0.75 1.5107 2.6464 1.9984 4.1452
α = 1.4 0.8 1.7261 2.9047 2.1635 4.6355
c = 1.9 0.85 2.0238 3.2510 2.4026 5.2931

0.9 2.4917 3.7580 2.8235 6.2992
0.95 3.4630 4.6146 4.1039 8.5133

TIHT-LLoG 0.7 0.5914 0.9708 0.2187 1.1238
a = 2.1 0.75 0.6532 1.0406 0.2331 1.2154
c = 1.9 0.8 0.7291 1.1284 0.2528 1.3306

0.85 0.8282 1.2458 0.2816 1.4851
0.9 0.7930 1.4211 0.3293 1.7175
0.95 1.2408 1.7531 0.4324 2.1638

APTLW 0.7 0.5313 1.3496 0.0797 1.4054
α = 0.9 0.75 0.5771 1.4117 0.1784 1.5455
β = 1.4 0.8 0.6294 1.4842 0.3477 1.7623
c = 2.1 0.85 0.6919 1.5630 0.6890 2.1487
λ = 1.9 0.9 0.7724 1.6152 1.5618 3.0209

0.95 0.8950 1.7338 4.9846 6.0691
LLoG 0.7 1.0997 1.2671 0.0311 1.2888
c = 1.9 0.75 1.1312 1.2975 0.0317 1.3212

0.8 1.1683 1.3345 0.0327 1.3607
0.85 1.2150 1.3825 0.0342 1.4115
0.9 1.2798 1.4512 0.0368 1.4842
0.95 1.3919 1.5732 0.0423 1.6134

8 Applications

In this section, we present examples to illustrate the flexibility and usefulness of
the TIHTEG-LLoG distribution for data modelling. Several goodness-of-fit statistics
are used to compare TIHTEG-LLoG distribution to other equi-parameter models.
These include: –2log-likelihood statistic (–2ln(L)), Akaike information criterion (AIC),
Bayesian information criterion (BIC), where L = L(∆̂) is the value of the likelihood
function evaluated at the parameter estimates, n is the number of observations,
and p is the number of estimated parameters. We also used the Cramér-von Mises
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(W ∗), Anderson-Darling (A∗), the Kolmogorov-Smirnov (K-S) statistic as well as
its associated p-value, and sum of squares (SS) from the probability plots to assess
goodness-of-fit. The SS described by Chen and Balakrishnan (1995) is given by SS =∑n
j=1

[
FTIHTEG−LLoG(x(j))−

(
j − 0.375

n+ 0.25

)]2
, where j = 1, 2, ..., n and x(j) are

ordered values of the observed data. In general, the smaller the values of goodness-of-fit
statistics and the highest p-value for the K-S statistic, the better the fit.

The TIHTEG-LLoG distribution is fitted to datasets and these fits are compared to
several models including the Kumaraswamy Weibull (KumW) distribution by Cordeiro
et al. (2010), the Alpha power exponentiated log-logistic (APExLLD) distribution
by Mead et al. (2019), the type II exponentiated half-logistic-Weibull (TIIEHLW)
distribution by Al-Mofleh et al. (2020), Topp-Leone Marshall-Olkin-Weibull (TLMOW)
distribution by Chipepa et al. (2020) and the type II generalised inverse exponentiated
Lomax (TIIGIELx) distribution by Jamal et al. (2020). The pdfs are

fKumW (x) = abcλcxc−1e−(λx)c
[
1− e−(λx)c

]a−1
[
1−

(
1− e−(λx)c

)a−1
]b−1

for a, b, c, λ > 0, and x > 0,

fAPEXLLD(x) =
ac log(α)
b(α− 1)

(x
b

)−a−1
[(x

b

)−a
+ 1

]−c−1

α(( x
b )

−a
+1)−c

,

for α, a, b, c > 0 and x > 0,

fTIIEHLW (x) = 2aλδγxγ−1e−δx
γ
[
1− e−δx

γ
]λ−1

[
1−

(
1− e−δx

γ)λ]a−1

[
1 + (1− e−δxγ )

λ
]a+1

for a, λ, δ, γ > 0, and x > 0,

fTLMOW (x) =
2bδ2γλγxγ−1e−2(λx)γ(

1− δ̄e−(λx)γ
)3 (

1−
(
1− δ̄e−(λx)γ

)2)b−1

for b, δ, λ, γ > 0 and x > 0, and

fTIIGIELx(x) = λα
(a
b

) [
1 +

x

b

]−(a+1) (
1 +

x

b

)a(α+1)

e[λ(1−[1+ x
b ]

aα)]

for λ, α, a, b > 0, and x > 0.

8.1 Waiting times data

The first dataset represents the waiting times (in minutes) before service of 100 bank
customers. The data was used and analysed by Ghitany et al. (2011). The data are: 0.8,
0.8, 1.3, 1.5, 1.8, 1.9, 1.9, 2.1, 2.6, 2.7, 2.9, 3.1, 3.2, 3.3, 3.5, 3.6, 4.0, 4.1, 4.2, 4.2, 4.3,
4.3, 4.4, 4.4, 4.6, 4.7, 4.7, 4.8, 4.9, 4.9, 5.0, 5.3, 5.5, 5.7, 5.7, 6.1, 6.2, 6.2, 6.2, 6.3, 6.7,
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6.9, 7.1, 7.1, 7.1, 7.1, 7.4, 7.6, 7.7, 8.0, 8.2, 8.6, 8.6, 8.6, 8.8, 8.8, 8.9, 8.9, 9.5, 9.6,
9.7, 9.8, 10.7, 10.9, 11.0, 11.0, 11.1, 11.2, 11.2, 11.5, 11.9, 12.4, 12.5, 12.9, 13.0, 13.1,
13.3, 13.6, 13.7, 13.9, 14.1, 15.4, 15.4, 17.3, 17.3, 18.1, 18.2, 18.4, 18.9, 19.0, 19.9,
20.6, 21.3, 21.4, 21.9, 23.0, 27.0, 31.6, 33.1, 38.5.

Figure 8 Fitted densities and probability plots for waiting times data (see online version
for colours)
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Figure 9 Estimated cdf plot, Kaplan-Meier survival plot and estimated hazard rate function
plot of the TIHTEG-LLoG distribution for waiting times data (see online version
for colours)
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From the values of the goodness-of-fit statistics, p-value of the K-S statistic and the
plots in Figures 8 and 9, we can conclude that the TIHTEG-LLoG distribution provide
a better fit compared to the other models. The estimated variance-covariance matrix for
the waiting times data is given by,

2.4505× 10−7 2.7046× 10−5 −4.6395× 10−7 −4.8485× 10−6

2.7046× 10−5 2.9854× 10−3 −5.1213× 10−5 −5.3720× 10−4

−4.6395× 10−7 −5.1213× 10−5 8.7855× 10−7 9.2237× 10−6

−4.8485× 10−6 −5.3720× 10−4 9.2237× 10−6 1.1021× 10−4
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and the 95% asymptotic confidence intervals for the parameters a, α, β, and c are:
2.3338 × 101 ± 0.0010, 2.9937 ± 0.1071, 7.8826 × 101 ± 0.0018 and 1.3107 × 10−1

± 0.0206, respectively.

8.2 Agriculture data

This dataset represents the total factor productivity (TFP) growth agricultural production
for 37 African countries from 2001–2010, see https://dataverse.harvard.edu/dataset.
xhtml?persistentId=doi:10.7910/DVN/9IOAKR. The data are: 4.6, 0.9, 1.8, 1.4, 0.2, 3.9,
1.8, 0.8, 2.0, 0.8, 1.6, 0.8, 2.0, 1.6, 0.5, 0.1, 2.5, 2.4, 0.6, 1.1, 0.7, 1.7, 1.0, 1.7, 2.5, 3.5,
0.3, 0.9, 2.3, 0.5, 1.5, 5.1, 0.2, 1.5, 3.3, 1.4, 3.3.

Figure 10 Fitted densities and probability plots for agriculture data (see online version
for colours)
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Figure 11 Estimated cdf plot, Kaplan-Meier survival plot and estimated hazard rate function
plot of the TIHTEG-LLoG distribution for agriculture data (see online version
for colours)
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Table 10 Parameter estimates and goodness-of-fit statistics for various models for waiting
times data
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Table 11 Parameter estimates and goodness-of-fit statistics for various models for agriculture
data
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Table 12 Parameter estimates and goodness-of-fit statistics for various models for COVID-19
data
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From the values of the goodness-of-fit statistics, p-value of the K-S statistic and the
plots in Figures 10 and 11, we can conclude that the TIHTEG-LLoG distribution
provide a better fit compared to the other models. This is evident because the
TIHTEG-LLoG distribution has smaller values of goodness-of-fit statistics and the
highest p-value compared to other models. Moreover, the TIHTEG-LLoG distribution
follows the empirical cdf and Kaplan-Meier survival curves closely. The estimated
variance-covariance matrix for the agriculture data is given by,

5.8540× 10−10 6.5842× 10−7 −1.2968× 10−9 −7.7059× 10−8

6.5842× 10−7 7.4057× 10−4 −1.4586× 10−6 −8.7036× 10−5

−1.2968× 10−9 −1.4586× 10−6 2.8728× 10−9 1.7163× 10−7

−7.7059× 10−8 −8.7036× 10−5 1.7163× 10−7 2.6110× 10−5


and the 95% asymptotic confidence intervals for the parameters a, α, β, and c are:
2.6851 × 102 ± 4.7422 × 10−5, 5.9306 ± 5.3338 × 10−2, 7.2720 × 102 ± 1.0505 ×
10−4 and 4.0750 × 10−2 ± 1.0015 × 10−2, respectively.

8.3 COVID-19 data

This dataset shows mortality rates of the patients infected by the COVID-19 pandemic
in Mexico. The dataset was recorded from 4 March 2020, to 20 July 2020. The data
was analysed by Almongy et al. (2021) The data are: 4.4130, 3.0525, 4.6955, 7.4810,
5.1915, 3.6335, 6.6100, 8.2490, 5.8325, 3.0075, 5.4275, 3.0610, 3.3280, 1.7200, 2.9270,
5.3425, 5.0175, 2.6210, 2.1720, 2.5715, 3.8150, 7.3020, 3.9515, 3.1850, 1.7685, 3.1635,
2.3650, 1.6075, 4.6420, 6.4390, 4.4065, 5.0215, 3.6300, 2.9925, 3.2060, 1.6975, 2.2120,
4.9675, 3.9200, 4.7750, 1.7495, 1.8755, 3.4840, 1.6430, 5.0790, 4.0540, 3.3485, 3.5755,
3.2800, 1.0385, 1.8890, 1.4940, 1.6680, 3.4070, 4.1625, 3.9270, 4.2755, 1.6140, 3.7430,
3.3125, 3.0700, 2.4545, 2.3305, 2.6960, 6.0210, 4.3480, 0.9075, 1.6635, 2.7030, 3.0910,
0.5205, 0.9000, 2.4745, 2.0445, 1.6795, 1.0350, 1.6490, 2.6585, 2.7210, 2.2785, 2.1460,
1.2500, 3.2675, 2.3240, 2.3485, 2.7295, 2.0600, 1.9610, 1.6095, 0.7010, 1.2190, 1.6285,
1.8160, 1.6165, 1.5135, 1.1760, 0.6025, 1.6090, 1.4630, 1.3005, 1.0325, 1.5145, 1.0290,
1.1630, 1.2530, 0.9615.

From the values of the goodness-of-fit statistics, p-value of the K-S statistic and
the plots in Figures 12 and 13, we can conclude that the TIHTEG-LLoG distribution
provide a better fit compared to the other models. This is evident because the
TIHTEG-LLoG distribution has smaller values of goodness-of-fit statistics and the
highest p-value compared to other models. Moreover, the TIHTEG-LLoG distribution
follows the empirical cdf and Kaplan-Meier survival curves closely. The estimated
variance-covariance matrix for the COVID-19 data is given by,

1.0985× 10−6 4.9752× 10−5 −3.8571× 10−7 −9.6300× 10−6

4.9752× 10−5 0.0023 −1.7474× 10−5 −4.4089× 10−4

−3.8571× 10−7 −1.7474× 10−5 1.3548× 10−7 3.4259× 10−6

−9.6300× 10−6 −4.4089× 10−4 3.4259× 10−6 1.2011× 10−4


and the 95% asymptotic confidence intervals for the parameters a, α, β, and c are:
1.4603 × 101 ± 0.0021, 1.8292 × 102 ± 0.0930, 4.1209 × 103 ± 0.0007 and 1.4698
× 10−1 ± 0.0215, respectively.
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Figure 12 Fitted densities and probability plots for COVID-19 data (see online version
for colours)
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Figure 13 Estimated cdf plot, Kaplan-Meier survival plot and estimated hazard rate function
plot of the TIHTEG-LLoG distribution for COVID-19 data (see online version
for colours)
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9 Conclusions

A new generalised family of distributions called the type-I heavy-tailed exponentiated
generalised-G (TIHTEG-G) distribution was developed and presented. The density of
the new family of distributions can be expressed as an infinite linear combination
of exponentiated-G densities. We obtained closed form expressions for the moments,
distribution of order statistics, probability weighted moments and Rényi entropy.
The method of maximum likelihood estimation (MLE) was used to estimate the
model parameters. Performance of the TIHTEG-LLoG distribution was examined by
conducting various simulations for different sizes. The special case TIHTEG-LLoG
distribution was fitted to real datasets to illustrate the applicability and usefulness of
the proposed family of distributions. Risk measures were used to illustrate that the new
family of distributions is heavy-tailed.
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Appendix

Partial derivatives of log-likelihod function

The first derivatives of the log-likelihood function with respect to each of the parameters
in ∆ = (a, α, β, ψ)T are given by

∂ℓn(∆)

∂a
=
n

a
− 2

n∑
i=1

(
1− Ḡα(xi;ψ)

)β[
1−

(
1− a

)(
1− Ḡα(xi;ψ)

)β]
+

n∑
i=1

[
1−

(
1− Ḡα(xi;ψ)

)β]
−

n∑
i=1

[
1−

(
1− a

)(
1− Ḡα(xi;ψ)

)β]
− a

n∑
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(
1− Ḡα(xi;ψ)

)β[
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(
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)(
1− Ḡα(xi;ψ)

)β] ,
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∂ℓn(∆)

∂α
=
n

α
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1− Ḡα(xi;ψ)

)β]
− (a− 1)

n∑
i=1

β
(
1− a

)(
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1− Ḡα(xi;ψ)

]
+ 2

n∑
i=1

(
1− a

)(
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)(
1− Ḡα(xi;ψ)

)β−1
Ḡα−1(xi;ψ)

[
Ḡ(xi;ψ)

]′
1−

(
1− a

)(
1− Ḡα(xi;ψ)

)β
+ (a− 1)

n∑
i=1

βα
(
1− Ḡα(xi;ψ)

)β−1
Ḡα−1(xi;ψ)

[
Ḡ(xi;ψ)

]′
1−

(
1− Ḡα(xi;ψ)

)β
− (a− 1)

n∑
i=1

βα
(
1− a

)(
1− Ḡα(xi;ψ)

)β−1
Ḡα−1(xi;ψ)

[
Ḡ(xi;ψ)

]′
1−

(
1− a

)(
1− Ḡα(xi;ψ)

)β ,

where [g(xi;ψ)]
′
= ∂g(xi;ψ)

∂ψk
and

[
Ḡ(xi;ψ)

]′
= ∂Ḡ(xi;ψ)

∂ψk
.


