
 
International Journal of Materials and Product Technology
 
ISSN online: 1741-5209 - ISSN print: 0268-1900
https://www.inderscience.com/ijmpt

 
Study on detection of dent defects of polariser based on deep
convolutional generative adversarial network
 
Pengfei Shi
 
DOI: 10.1504/IJMPT.2024.10062361
 
Article History:
Received: 06 July 2023
Last revised: 04 September 2023
Accepted: 06 November 2023
Published online: 22 February 2024

Powered by TCPDF (www.tcpdf.org)

Copyright © 2024 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijmpt
https://dx.doi.org/10.1504/IJMPT.2024.10062361
http://www.tcpdf.org


   

  

   

   
 

   

   

 

   

   18 Int. J. Materials and Product Technology, Vol. 68, Nos. 1/2, 2024    
 

   Copyright © 2024 Inderscience Enterprises Ltd. 
 
 

   

   
 

   

   

 

   

       
 

Study on detection of dent defects of polariser based 
on deep convolutional generative adversarial network 

Pengfei Shi 
CETC Fenghua Information-Equipment Co., Ltd., 
Taiyuan, 030024, Shanxi, China 
Email: Shipf_1988@163.com 

Abstract: The existing techniques of polariser detection only concern whether 
the polarisers have defects or not and do not classify them as specialised. In 
addition, lightweight CNN architectures proposed for defect classification of 
polarisers are based on limited samples. In order to attack the aforementioned 
issues, a novel grating imaging mechanism based on an adsorption transport 
platform is designed for a certain defect, dent. Multi-scale negative samples 
with dent defects and positive samples with other defects or not are expanded 
by a deep convolutional generative adversarial network (DCGAN). O sets, 
64_10000 sets and 128_10000 sets (referred to as the original data, 64*64 
generated data and 128*128 generated data) are trained on multiple 
convolutional neural networks (AlexNet, VGGNet, GoogLeNet, ResNet, 
SqueezeNet, MoblieNet, ShuffleNet) respectively, the obtained models are then 
validated on two new samples. Empirically show that ResNet obtained by 
64G+128G perform better than others, classification accuracy rate of the new 
model is up to 94.94%. 

Keywords: deep learning; polariser defect detection; convolutional neural 
network; CNN; generative adversarial net; GAN. 
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1 Introduction 

A polymeric polariser is one of the most crucial parts of thin-film transistor (TFT) liquid 
crystal display (LCD) panels, which has a wide range of applications such as car monitor, 
TVs, wearable devices, mobile phone, pad and computer. Typically, a polariser consists 
of six transparent layers of polymeric film. During manufacturing, these layers may lead 
to aesthetic defects such like marks, bubbles, impurities, stains, dents, scratches and so 
on. The polariser accounts for the total cost of a panel up to 10%, its aesthetic defects 
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play a crucial role on the panel’s quality. Almost all kinds of products must be inspected 
before packing. Thanks to the rapid progress of machine vision and deep learning 
technology, automated efficient image classification techniques with high precision and 
speed would be employed to detect these defects above. 

But investigation on defects detection of polariser are barely enough recently. Lai  
et al. (2016) employed a machine vision system which used a LCD monitor to produce a 
binary stripe pattern for the enhancement of defects imaging. Yen and Syu (2015) 
developed a cost-effective optical detection system for the tiny bump defects of polariser 
films based on computer vision techniques. The system applies digital fringes and image 
processing methods for detecting the tiny bump defects (Yen and Syu, 2015). Deng et al. 
(2017) proposed a novel automatic inspection method via the structured lighting 
technique to enhance transparent defects imaging in a polariser. Deng et al. (2018) also 
proposed an automated inspection method of using edges of light for inspecting ESTADs. 
They can be detected at the edge of light regions via structured light illumination, which 
was found to greatly enhance the image contrast (Deng et al., 2018). 

Liu et al. (2020a) constructed a lightweight efficient deep learning network for 
defects classification of polarisers, named LWEN. The shunt module building block and 
a global average pooling layer after convolutional layer were developed to design the 
LWEN, which contribute to simplify without reducing the accuracy of classification. Liu 
et al. (2020b) used a parallel module to develop a real-time detection network for 
polariser defects based on deep learning, named DNN. Empirically shows that the 
classification of speed, accuracy and memory utilisation can meet the real-time 
requirements of industrial production line. Lei et al. (2018) proposed a deep learning 
technique to train models and detect defects of polariser images based on faster R-CNN, 
which help to mark the location of defects exactly. 

Previous work mainly focused on detecting whether the polarisers have defects or 
not, and lacked of detailed description of a certain defect detection, that the industry 
really cares about. Consequently, two significant points were neglected by former 
researcher. Firstly, the imaging results of different defects under uniform illumination 
environment was neglected. Because some defects like dent may be observed clearly only 
in certain imaging condition. Unified lighting conditions cannot perfectly show all kinds 
of defects, and even may lead to serious erroneous judgment (for some defects that 
cannot be imaged, the algorithm fails completely). Secondly, the influence of weak 
supervision of limited samples was ignored. Negative and positive samples (positive 
samples does not mean no defect) are difficult to collect and algorithm based on small 
samples are insufficient to meet further defection requirements. Researchers developed 
some lightweight convolutional neural network (CNN) architectures through studying 
limited samples, and the generalisation ability under further image samples have not been 
verified. Unconvincing generalisation ability may also lead to erroneous judgment (OK 
become NG and NG become OK). 

In this paper, we make the following contributions: 

• We design a novel grating imaging mechanism based on an adsorption transport 
platform, which is inspired by the idea of structured light illumination from Lai et al. 
(2016). The characteristics of dent defects can be clearly captured and other defects 
may be weakened in some extent. 

• We use a deep convolutional generative adversarial network (DCGAN) to expand 
negative and positive samples and a richer training set are obtained. 
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• We use a multi-scale generation strategy to expand the samples, and test on multiple 
CNNs (AlexNet, VGGNet, GoogLeNet, ResNet, SqueezeNet, MoblieNet, 
ShuffleNet), which empirically show that the training set expanded with 64*64 and 
128*128 scale samples perform the best accuracy. 

2 Related work 

In the past two decades, the increasing development of deep CNNs have make a huge 
contribution to multiple computer vision tasks such as image classification, object 
detection, segmentation and localisation. In 2012, Krizhevsky et al firstly proposed a 
CNN architecture named AlexNet, which won the first place on the ImageNet 2012 
classification benchmark (Krizhevsky et al., 2012). Their model have five convolutional 
layers (some of which are max-polling layers followed) and three fully-connected layers, 
which lays the foundation for the following architecture. For improving the classification 
accuracy, researcher try to increase the depth of networks during that period. In 2014, 
Simonyan proposed VGG network with 16 layers, and Szegedy proposed GoogLeNet 
with 22 layers (Szegedy et al., 2015; Simonyan and Zisserman, 2014). In VGG networks, 
they pushed the depth of network to 16–19 through using a smaller convolutional kernel 
(3 × 3) architecture than (Krizhevsky et al., 2012), which achieved a significant 
improvement on classification accuracy. GoogLeNet developed a different module called 
Inception, the computing resources inside the network is improved utilisation while 
increasing the depth of the network. He et al. (2016) presented a residual learning 
architecture to facilitate the training of deeper neural networks, named ResNet. On the 
ILSVRC 2015, the ResNet with a depth of 152 layers, eight times deeper than VGGNet 
and about 20 times deeper than AlexNet, achieved the 1st place on classification task. 
However, with the increasing depth of network, the size of the model becomes bigger and 
more complicated. Recent studies found that smaller CNNs architecture may offer 
equivalent accuracy. Iandola et al. (2015) introduced the fire module to build a new 
smaller CNN architecture named SqueezeNet, which achieved AlexNet-level accuracy 
with 50× fewer parameters. Howard et al. (2017) proposed an efficient lightweight 
network for mobile and embedded vision devices named MobileNet. Zhang et al. (2018) 
presented an extremely computation efficient CNN architecture named ShuffleNet, which 
is designed for mobile applications with limitation of computing resources. 

Supervised learning with CNNs have been successfully applied in industrial defects 
detection for years. However, due to the insufficient defect images and the high 
expensive labelled data in practical production lines, it is difficult to get satisfied 
classification result. 

In 2014, Goodfellow et al. firstly proposed generative adversarial nets (GANs) to 
generate samples. In 2015, Radford et al. proposed a series of CNNs named DCGANs, 
which help to bridge the gap between the achievement of CNNs for supervised learning 
and unsupervised learning. Recently, large numbers of researchers take advantage of 
GAN, DCGAN and their variants to generate image samples, and achieved convincing 
results in practice. Lian et al. (2020) employed the generative adversarial networks 
method to expand the limited datasets of the training image samples for defects detection. 
Qi et al. (2018) developed a multi-view GAN to generate labelled pearl images 
automatically, and then use the expanded samples to train the multi-stream CNN, results 
show that the utilisation of images generated can remarkable improve classification 
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performance. Niu et al. (2020) used a large number of defect-free images to generate 
defect images, the method called surface defect-generation adversarial network 
(SDGAN), which takes advantage of GANs. 

However, a single network structure does not perform very well in the field of 
polariser detection. The results of combining multiple networks may be even better. 
There are not only many kinds of defects in polariser but also difficult to image, so there 
is almost no technical research on using GAN for defect detection. In next section, we 
use grating-light illumination system to image and purpose multi-scale generation by 
DCGAN to generate sample. 

3 Approaches 

3.1 Grating-light illumination 

Some defects of polymeric polarisers are hard to characteriser and image via 
conventional imaging technique, which is called as convex or concave points in the 
industry, dents may be one of them. Because of their extremely low contrast, these 
convex or concave points are the primary pain to detecting defects in polymeric 
polarisers with existing detection technology. To inspect dent defects, Lai et al. (2016) 
employed structured-light illumination to enhance the imaging defects, which use a LCD 
monitor to produce a binary stripe pattern. Inspired by the idea of structured light 
illumination from, we develop a grating-light illumination technique based on an 
adsorption transport platform. 

Figure 1 Grating imaging mechanism based on an adsorption transport platform 

 

Figure 1 illustrates grating imaging mechanism. Instead of the virtual stripes 
automatically generated by the visual system, the mechanism uses real stripes generated 
by grating plate that block light sources, which have higher stability and reliability. The 
adsorption transport platform can ensure the flatness of polarisers during imaging and 
meet the demand of on line detection in the industry. In this mechanism, the industrial 
embedded system utilises the 8k line scan camera take the polariser images based on the 
position of the polariser captured by the encoder and a sensor trigger. The obtained image 
data resolution 8,192 × 8,066. Through simple image processing, various 50 × 50 image 
crops including dent, non-dent and defect-free were extracted. And experienced 
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inspectors classify dent crops into category 1 and the rest into 0. In this paper, the 
polariser image crops are obtained from three world-famous polariser manufacturing 
enterprises (short of Se, L, Su) that accounts for more than 90% of the world’s production 
capacity. The material, transparency and refractive index of polariser produced by 
different manufacturers are various because of different manufacturing process 
parameters, which may bring about different image quality under the same optical 
system. Sample details are presented in Table 1. 
Table 1 Sample details 

Sample Category 1 Category 0 
Training set (Se) 1,200 2,150 
Validation set (Se) 350 525 
Test set (L) 565 2,109 
Test set (Su) 3,594 4,010 

3.2 Multi-scale generation by DCGAN 

DCGAN consist of two modelling frameworks (Radford et al., 2015), the generative 
model G which learn the probability distribution of real data in the training set and 
transform the input random noise into a image, and the discriminative model D which 
distinguish the fake image generated by model G from the real image in the training set. 
In DCGAN, models G and D are deep CNNs here, with the parameters represented by θg 
and θd, respectively. Define a prior noise z and a training image x, the generator can be 
represented by a differentiable function G(z; θg) which maps the prior distribution of z to 
a probability distribution of G(z) in image space. The input of D is x or G(z), and D 
outputs a single scalar D(x; θd) or D(G(z); θd). Updating G and D simultaneously and the 
final objective is to obtain the parameters of G. Loss function is with the form below: 

[ ] ( )( )~ ~( ) ( )max ( , ) log 1log ( ) ( )data zD G x p x z p zMin V D G E E DD x G z = + −   (1) 

where pdata(x) represents the distribution of training image x and pz(z) represents the 
distribution of the random noise z. 

To make the most use of DCGAN and obtain large scale expanded data, we add a 
deconvolution layer to generate 128 × 128 scale images based on the model from Radford 
et al. (2015). More scale means more image diversity, which can show more uncertain 
details. The generated experimental results are sufficient to support subsequent studies. 
The overall architecture consists of 6 4 × 4 deconvolution layers and details are depicted 
in Table 2. ConvT refer to deconvolution operation, which is first discussed for 
generative model in Radford et al. (2015). Batch normalisation (BN) layers which 
normalise the input to each unit to have zero mean and unit variance are added in ConvT 
with the exception of ConvT6. The BN layers can deal with poor initialisation problems 
in training process and helps gradient go in deeper. Every ConvT layers are followed by 
ReLU nonlinearity layer but CovT6, which is added by Tanh function. In this paper, we 
use the generation model with the resolution of 64 × 64 and 128 × 128 to generate new 
training sets with a number of 10,000 (0 and 1 samples account for half respectively) 
based on the training set in Table 1 (the samples come from different companies, and the 
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defects have been confirmed by several experienced engineers for many times. Table 1 
shows the quantity after selection). 
Table 2 G model architecture for 128 × 128 scale 

Layer Kernel size Input channels Output channels Output size 
ConvT1 4×4 100 1024 4×4 
BN  1024 1024 4×4 
ReLU    4×4 
ConvT2 4×4 1024 512 8×8 
BN  512 512 8×8 
ReLU    8×8 
ConvT3 4×4 512 256 16×16 
BN  256 256 16×16 
ReLU    16×16 
ConvT4 4×4 256 128 32×32 
BN  128 128 32×32 
ReLU    32×32 
ConvT5 4×4 128 64 64×64 
BN  64 64 64×64 
ReLU    64×64 
ConvT6 4×4 64 3 128×128 
Tanh    128×128 

3.3 Experiments details 

Firstly, we train eight representative and classical CNN models (AlexNet, VGG16, 
GoogLeNet, ResNet, SqueezeNet, MoblieNet, ShuffleNet, DenseNet) using stochastic 
gradient descent with the same batch-size of 32, same momentum of 0.9, and same 
weight decay of 0.0005 on training sets (Se) for 100 cycles. Initialisation parameters and 
regularisation strategy follow the original work. The learning rate is initialised at 0.01 
and is divided by 10 every 30 cycles. Then the trained models (named model sets I) are 
tested on the test set (L) and test set (Su). 

Secondly, we extend samples based on the training set (Se) and new samples are 
named as 64_10000, 128_10000, where the number in front of the underline refers to the 
resolution, and the number after the underline refers to the number of samples. The  
batch-size of the G, D models are all set to 64, and use the Adam optimisation algorithm 
with the learning rate of 0.0002 for 64 × 64 image generation. And for 128 × 128 image 
generation, the learning rate is set to 0.00001. The two models are alternately trained 
until convergence, approximately 700 cycles. 

Thirdly, these model sets are trained for transfer learning on various extended sample 
sets, then the trained models are tested on the test set (L) and test set (Su). 
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4 Results and discussion 

4.1 Results of model sets I 

Figure 2 shows the training loss curves, training accuracy curves and validation accuracy 
curves of the eight models on datasets from Se in Table 1. Figure 2(a) reveals that all the 
eight classical models can converge quickly and loss values are all converge to 0 after 
100 training cycles. Figure 2(b) and Figure 2(c) reveal that the eight classical models 
perform very well in both the training set (Se) and the validation set (Se). Here, we can 
conclude that these eight classical models perform perfectly for datasets from the same 
source. But for different sources, they do not do well. 

Figure 2 (a) Comparison of training loss curves on the training set (Se) (b) Comparison of 
classification accuracy curves on the training set (Se) (c) Comparison of classification 
accuracy curves on the validation set (Se) (see online version for colours) 

   
(a)     (b) 

 
(c) 

The trained eight models are tested on the test set (L) and test set (Su), results are showed 
in Table 3. Unfortunately, only three models have an accuracy of more than 80% on the 
test set (L) and test set (Su), they are GoogLeNet, ResNet and DenseNet. For 
GoogLeNet, the accuracy on test set (L) and Test set (Su) are 81.76%, 85.19% 
respectively. ResNet are 86.76%, 80.84 respectively. And for DenseNet are 80.88%, 
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82.07% respectively. Some of the early CNN models such as AlexNet and VGG16 do not 
perform well may due to their flatten architecture. And lightweight CNNs like 
SqueezeNet, MoblieNet and ShuffleNet also perform poorly. We argue the lower 
accuracy is caused by the difference between training sets and test sets. Because of 
different manufacturing technique and process parameters of the three polariser 
manufacturing enterprises, the material, transparency and refractive index of polariser 
produced are various. Therefore, the optical properties of the polariser surface are also 
different, which play a key role on defects detection. Hence, this study has more practical 
significance, it contribute to utilise existing datasets to fit unknown datasets that may 
have different features. 

Figure 3 (a) Real images for 50 × 50 from training set (Se) (b) Fake images for 64 × 64 (c) Fake 
images for 128 × 128 

   
(a)     (b) 

  
(c) 
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The similarity of two images is obtained by calculating cosine distance between image 
vectors. Tables 4 are the computing results between training set (Se) and other datasets. 
Table 3 Comparison of classification accuracy (%) of eight models 

Model Training set (Se) Validation set (Se) Test set (L) Test set (Su) 
AlexNet 99.61 99.31 49.78 66.89 
VGG16 99.85 98.47 45.74 62.87 
GoogLeNet 99.91 98.74 81.76 85.19 
ResNet 100 99.43 80.84 86.76 
SqueezeNet 97.61 97.37 54.97 56.68 
MoblieNet 99.79 99.09 72.94 76.59 
ShuffleNet 99.07 98.97 46.67 60.06 
DenseNet 100 99.43 80.88 92.07 

Table 4 Average similarity between datasets (%) 

Datasets Training set (Se) Validation set (Se) Test set (L) Test set (Su) 
Training set (Se) 96.01 95.81 86.82 91.57 

The similarity between training set and validation set are 95.81% because they are from 
the same dataset. And the similarity between training set (Se) and the test set (L), test set 
(Su) are 86.82% and 91.57% respectively. Furthermore, image data from test set (Su) are 
more close to training set and table 3 shows this. Classification accuracy of 8 models on 
test set (Su) are slightly higher than on test set (L). 

We generate datasets based on the training set (Se) named as 64_10000 and 
128_10000. Figure 3 illustrates the real images and fake images. The three models that 
performed well (GoogLeNet, ResNet and DenseNet) are trained on new datasets of 
64_10000, 128_10000, 64_10000 + 128_10000 respectively, then they are tested on test 
set (L) and test set (Su). 

4.2 Results of models with expanded datasets 

The classification accuracy on the test set (L) and test set (Su) of three models which are 
trained on original and expanded datasets are showed in Table 5, Table 6, Table 7 
respectively. The classification accuracy of the models trained with the expanded  
dataset on test sets are all improved in some extent (6.68%–13.47%). And the  
ResNet do the best, the classification accuracy of ResNet trained with training set (Se) 
+64_10000+128_10000 on test set (L) and test set (Su) are 95.65%,94.25% respectively, 
which improved about 13.47%. 
Table 5 Comparison of classification accuracy (%) of ResNet 

Training set Test set (L) Test set (Su) Average relative 
IMP (%) 

Training set (Se) 80.84 86.76 -- 
Training set (Se)+64_10000 91.36 93.58 10.44 
Training set (Se) +128_10000 90.56 91.53 6.68 
Training set (Se) +64_10000+128_10000 95.65 94.23 13.47 



   

 

   

   
 

   

   

 

   

    Study on detection of dent defects of polariser based on deep convolutional 27    
 

    
 
 

   

   
 

   

   

 

   

       
 

Table 6 Comparison of classification accuracy (%) of GoogLeNet 

Training set Test set (L) Test set (Su) Average relative 
IMP (%) 

Training set (Se) 81.76 85.19 -- 
Training set (Se)+64_10000 90.87 92.15 9.66 
Training set (Se) +128_10000 90.24 92.50 9.48 
Training set (Se) +64_10000+128_10000 90.17 92.78 9.60 

Table 7 Comparison of classification accuracy (%) of DenseNet 

Training set Test set (L) Test set (Su) Average relative 
IMP (%) 

Training set (Se) 80.88 92.07 -- 
Training set (Se)+64_10000 90.99 93.73 7.15 
Training set (Se) +128_10000 90.10 92.88 6.15 
Training set (Se) +64_10000+128_10000 91.41 94.24 7.69 

5 Conclusions 

• The novel grating imaging mechanism based on an adsorption transport platform can 
effectively captured the characteristics of dent defects and weaken other defects in 
some extent. 

• We use a multi-scale generation strategy to expand the samples, and test on multiple 
CNNs, which empirically show that the training set expanded with 64*64 and 
128*128 scale samples perform the best accuracy. 

• ResNet has the best performance among many CNN models, so we mainly use 
ResNet for defects detection in production practice, and developed defect detection 
equipment for polariser enterprises. 

• With the development of the research work, the number and type of samples will 
continue to expand, and the single type of defect generation strategy has gradually 
failed to meet the production needs, so the generation strategy of multi-classification 
output is the research focus of the next step. 
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