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Abstract: The quadratic spline is used in the conventional Levin’s method to 
evaluate the oscillatory integral. Generally, the Levin method requires O(n3) 
computations and can be unstable. Here, the quadratic spline interpolation 
method requires solving recurrence relations of the derivatives of the given 
function and needs only O(n2) computations, where (n) is the number of 
selected nodes. The recurrence relations for large (n) are shown to be not  
ill-conditioned. Linear piecewise and cubic interpolation do not offer such 
advantages. The bound on the solution is obtained in terms of frequency. 
Numerical examples, including an application to a scattering problem, 
adequately illustrate the performance of the proposed method. They exhibit 
stability when the nodes are adequately large, unlike the conventional Levin 
method. 
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1 Introduction 

The oscillatory integral, 

( ) ( ) ( )( )1

0
exp dI f f x i g x xω= ∫  (1) 

given the frequency ω > 0 and smooth functions f(x) and g(x) has wide applications. 
Stationary point of g(x) of order one at ξ in [0,1] means 

g1(ξ) = 0, (2) 

where g1(x) denotes the derivative of g(x). 
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Some applications of the integral in equation (1) are in electromagnetic problems 
(Delgado et al., 2007), full spectrum inversion of radio occultation of signals (Gorbunov 
et al., 2004), and in estimating attitude liberations of orbiting satellite (Aidoo and Osei-
Frimpong, 2012). 

The numerical quadrature given by Filon (1928) is efficient yet it involves the 
evaluation of integrals called moments. Levin (1982) brought out a quadrature technique 
for overcoming the evaluation of moments. A good account of other types of methods is 
referenced in Huybrechs and Olver (2009). We confine only to the Levin-type methods in 
this paper which is described as follows. 

The integrand in (1.1) is expressed in terms of Fo(x) which satisfies: 

d/dx{Fo(x) ( )( )exp i g xω } = ( ) ( )( ) expf x i g xω  (3) 

and when expanded is 

[Fo
1(x)+iωg1 (x)Fo(x)] ( )( )exp i g xω = ( ) ( )( )expf x i g xω  (4) 

Equation (4) is the differential equation 

Fo
1 (x)+ iωg1 (x)Fo(x) = ( )f x  (5) 

Here, it is assumed that g1(x) does not have stationary point, that is g1(x) ≠ 0, for all x in 
[0,1] as in Levin (1982). The collocation method is applied in solving the non-oscillatory 
differential equation. Boundary conditions are not present with equation (5) as the non-
oscillatory particular solution, Fo(x) alone is sufficient. The function Fo(x) is 
approximated by polynomial interpolation either over the entire interval [0,1] or 
piecewise over meshes selected in [0,1]. We apply n-point collocation method at the 
selected nodes which then leads to a system of (n) linear equations. 

A0 α = f (6) 

Based on the solution to the linear system in equation (6), the computed values of Fo(0) 
and Fo(1) are further used to determine the integral in equation (1) by using the relation: 

( )  I f = Fo(1) exp(iω g(1) – Fo(0) exp(iω g(1)) (7) 

The conventional Levin method tends to be ill-conditioned. The solution oscillates as 
illustrated by Li et al. (2010) and Motygin (2017) when the size of the system of 
equations increases. It has also been observed Levin method is instable for low 
frequencies (Olver, 2006). 

We outline a few Levin-type methods in the literature that overcome instability due to 
collocation or achieve a reduction in computation. Singular value decomposition applied 
in Li et al. (2010) and Motygin (2017) using clustered Chebychev points at the ends – 
increase the stability for large (n). A Levin-type method in Olver (2006) uses multiple 
collocations along with the derivatives in equation (5) to achieve high asymptotic 
convergence but it does not offer stability while Olver (2010) enhances stability and 
convergence. Meshless approaches are seen in Ma and Duan (2019) and in Geng and Wu 
(2021). Sevastianov et al. (2020) use the Gauss-Lobatto points to reduce the 
computations whenever g(x) is linear. Here, we shall have a reduction without any such 
condition. 
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The direct Levin (1982) and above-mentioned methods (Iserles and Norsett, 2005; 
Olver, 2010), all need to solve a (n×n) system of equations and require O(n3) 
computations. Matrix inversion is necessitated in all these methods. Transformation and 
matrix multiplications in these formulations add more computations to mainly overcome 
instability in conventional Levin methods. Here we shall achieve stability directly and 
with lesser computations. 

This paper uses quadratic spline in interpolating the function Fo(x). When nodes are 
equally spaced then equation (6) is shown to reduce to a system of equations that is lower 
diagonal. Evaluation of the integral in equation (1) then requires solving recurrence 
relation instead of solving a linear system of equations and thus reduces the 
computations. Next, the stability of the recurrence relations is analysed for larger values 
of (n) to assure that the method is not ill-conditioned. The proposed method offers two 
advantages, namely reduction in computation as well as stability. It may be noted that the 
first advantage is particularly useful when using a limited processor without using matrix 
inversions. 

The paper is organised as follows: Section 2 describes the quadratic spline 
interpolation. In Section 3, this is used in equation (4) to obtain the recurrence relations. 
Here, the formulation carefully avoids any further computation and shows that  
the recurrence relation solution obtains the approximate value of the integral (1).  
In Section 4, the stability analysis of the recurrence relation is demonstrated to prove that 
the method is well-conditioned. Also, the bound of the solution in terms of frequency as 
in any Levin method is obtained. Here, it is noted that the linear and cubic spline are 
shown not to offer the same advantages. As a remark, the extension of the approach in the 
evaluation of two-dimensional integral is given. Finally in Section 5, we consider 
examples that illustrate the efficiency and the computational stability of the proposed 
method. This ensures trust, which is primary of any numerical scheme. 

2 Quadratic spline interpolation 

The (n) nodes selected on [0,1] are: 

0 = x1 < x2 <  < xn = 1 (8) 

The approximation of Fo on the nodes is denoted as yi; i = 1,2,., n. The piecewise 
quadratic spline interpolation S(x) = Sj(x) over the interval [xj, xj+1]; j = 1,2, …., (n–1) 
with the derivative Sj

1(xj) = mj is given as (Behforooz, 1998): 

Sj(x) = aj (x – xj)2 + mj (x – xj) + yj (9) 

where 

aj = (yj+1–yj – hj+1mj )/ 2
( 1)jh +

 (10) 

and the step sizes are given by: 

hj+1= xj+1 – xj (11) 

The step size is set equal, that is 

hj+1 = h (12) 
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that is, h = (1/(n – 1)). This makes the proposal simpler. An explanation regarding 
unequal step sizes shall be made in Section 4. 

The consistency relation on the derivatives mj at the nodes between the adjacent 
intervals is the continuity condition and given in Behforooz (1998): 

mk+1 + mk = (2/h) (yk+1 – yk); k = 1, 2, …, (n – 1) (13) 

The (n – 1) equations in equation (13) are usually associated with an additional end 
condition. This helps to fully describe the quadratic spline. We usually set m1, either to a 
known value available from the boundary value problem or approximate value is 
assigned, this will be later mentioned in equation (17). 

3 Computational advantage 

In equation (3), we substitute Fo, with (F(x) – F(x1)) and obtain: 

d/dx{(F(x) – F(x1))exp(iωg(x))} = ( ) ( )( )expf x i g xω  (14) 

which is, 

F1(x) + {F(x) –F(x1)} i ω g1 (x) = f(x). (15) 

The integral ( )I f  in equation (1) is got by integrating (14) and is: 

( )I f ={F(xn) –F(x1)} ( )( )exp  ni g xω  (16) 

The function F(x) is now approximated by the quadratic spline as in equation (9) over 
each of the (n – 1) intervals [xj, xj+1]; j = 1,2,…. , (n – 1). Let mk and yk denote the 
approximation of F1(xk ) and F(xk) respectively. When setting x = x1 in equation (15) we 
have: 

m1 = f(x1). (17) 

As mentioned earlier, this end condition supplements the (n – 1) equations in  
equation (13) to uniquely determine mk, k = 1,2, …, (n).. The linear system obtained from 
equations (15) using collocation at x = xj; j = 2,3, …, (n) gives rise to : 

mj + (yj – y1) iω g1(xj) = f(xj), j = 2,3, …, (n). (18) 

In equation (18), we write, 

(yj – y1) = ( )

( 1)

1
1

(
j

k
k

y
−

+
=
∑  – yk). (19) 

On the other hand, using equation (13) we have: 

yk+1 – yk = (h/2) (mk+1 + mk) (20) 

First, we substitute the right-hand side of equation (19) with the relation (20) and next use 
it in equation (18) to eliminate the y’s and finally get: 
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{1 + i αj} mj + i αj ( )

( 2)

1  
1

(
j

k
k

m
−

+
=
∑  + mk) + i αj (mj–1) = f(xj); 

          j = 2,3, … , n (21) 

where 

αj = h ω g1 (xj)/2 (22) 

We find that equation (17) along with the system of (n – 1) equations in equation (21) 
forms a lower triangular system of equations. The solution mj; j = 1,2,3..(n) requires only 
O(n2) computations. The first mentioned advantage (a) of reducing the computational 
task while applying the Levin method has been established. 

The procedure to solve the system (21)–(22) is as follows. We know m1 from (17). 
Using this value of m1 in equation (21) when in (j = 2), the summation vanishes and we 
easily determine m2. Subsequently when (j = 3), Equation (21) is: 

{1 + i α3} m3 + i α3 (m2 + m1) + i α3 (m2) = f(x3), 

which helps in determining m3 using both m1 and m2, that are now known besides α3 and 
f(x3) which are respectively known in equations (22) and (1). Similarly, at the jth equation 
we solve for mj using the previous values of mp, p = 1, 2, … (j–1). Finally when j = n, all 
the derivatives mi; i = 1, 2, … n are computed. This is simple even as the system in 
equation (21) involves complex numbers. 

On the other hand the approximate value of the integral ( ) I f in (16) is denoted as 
Qn(f). Similar to the relation seen in equation (19) we have: 

Qn(f) = ( )

( 1)

1  
1

(
n

k
k

y
−

+
=
∑ –yk) ( )( ) exp  ni g xω , (23) 

Substituting the relation in equation (20) in the above equation and then using the 
solution of equation (21) that is, the derivatives mi; i = 1,2,…(n), the approximate value 
of the integral becomes: 

Qn(f) = (h/2) ( )

( 1)

1  
1

(
n

k
k

m
−

+
=
∑  + mk) ( )( )exp  ni g xω  (24) 

Thus, the integral ( )I f  which is approximated by applying quadratic spline in the Levin 
approach finally enables in finding Qn(f). It is interesting to note that the determination of 
(m1, m2, m3, …, mn) alone is sufficient and any additional computations in obtaining yj 
(j = 1,.2, …, n) are not required to evaluate ( )I f . 

4 Stability, well condition and boundedness 

In this section, the transformation that was applied on equation (21) to obtain the solution 
m, is used to examine the stability and the condition number as the dimension (n) 
increases. Note that (17) and (21) are represented as: 

A m = f (25) 
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where A (n × n) is a lower triangular matrix. In the jth equation we derive mj using 
previously computed mr; r = (j–1), …, 2 and m1. We adopt the algebraic substitution or 
elementary transformation on (25). This retains m1 and diagonal elements. The reduced 
form is: 

B m = p (26) 

Here, m = [m1, m2,. ., mn] and the elements of B = [bij ] deduced by algebraic 
manipulation and given by: 

b11 = 1, b1j = 0; j = 2,…, n; p(x1) = f(x1) 

b21 = i α2, b22 = (1 + i α2), b2j = 0    j∀ ≠ 1 and 2; p(x2) = f(x2) 

b31 = i α3 (1– i α2)/(1 + i α2), b33 = (1 + i α3), 

b3j = 0; j∀ ≠ 1 and 3; p(x3) = f(x3) – (2i f(x2) α3)/(1 + i α2) 

b41 = i α4 (1- i α2)(1 – i α3)/(1 + i α2)(1 + i α3), b44 = (1 + i α4), b4j = 0; j∀ ≠ 1 and 4; 

p(x4) = f(x4) – (2i f(x3) α4)/(1 + i α3) – 2i f(x2) α4 (1-i α3)/ 

((1 + i α2)(1 + i α3)) 

b51 = i α5 (1- i α2)(1– i α3)(1- i α4)/((1 + i α2)(1 + i α3)(1 + i α4)), 

b55 = (1 + i α5) 

b5j = 0; j∀ ≠  1 and 5; 

p(x5) = f(x5) – (2i f(x4) α5)/(1 + i α4) – 2i f(x3) α5 (1-iα4)/((1 + i α3) 

(1 + i α4)) – 2i f(x2) α5 (1– i α4)(1– i α3)/((1 + i α2) (1 + i α3) (1 + iα4)) 

Based on inductive reasoning the above algebraic relations allow us to write the square 
matrix B in a more general form as: 

( )
( ) ( ) ( )

1

1

  1

   1     ;   2,.. ,   where   1j j j j j

m p

i m i m p j j nβ α α β

= ⎫⎪
⎬

+ + = = ≤ ⎪⎭
 (27) 

We have transformed the linear equations (17) and (21) into (27). This is equivalent to 
the actual computational steps of elimination that we had already described while 
determining (m). The system in equation (27) is evidently diagonally dominant and hence 
stable. It is easy to notice in equation (12) that for a selected frequency, as (n) increases 
the value of (h) diminishes. If g1(x) is bounded, then we find that αj in equation (22) also 
tends to zero. However, the diagonal element in equation (27) tends to unity. Hence the 
Levin method using quadratic spline for approximation is not ill-conditioned when (n) is 
large. This establishes the second advantage namely (b) that the method of applying 
quadratic spline in Levin method is not ill-conditioned. 

The above analysis applies when the nodes are equally spaced and as set in Equation 
(12). However, when the step sizes in equation (11) are unequal, then with mathematical 
manipulations it can be shown that the system of Equations in equation (26) will not be 
ill-conditioned if: 
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h2 ≤ h3 ≤ h4 ≤  ≤ hn 

The purpose of the method here is in obtaining a simpler method and hence the choice of 
equal step size is adopted for convenience. 

Next in this section we analyse the bounds of the solution of the equation (27), 
namely (m), in terms of the frequency ω. 

|| m ||∞ = || (
j
∑ bij)–1 p(j) ||∞  denotes maximal absolute row sum) 

≤ max1≤i≤n{ | (
j
∑ bij

–1)||p (j)|} 

≤ ||B-1 ||∞ ||p ||∞  (28) 

We use the result from (Varah, 1975) to get a bound on ||B-1 ||∞ . 

||B-1 ||∞  ≤ maxj {1/(|(1 + i αj)| –| i αj |)} (29) 

The bounds of the matrix in terms of ω is 

= O (αj)-1 (30) 

We notice in equation (22) that when g1 (x) is bounded over [0,1], then the right hand 
side of equation (27) is O(1). Hence the bound in equation (30), in terms of the frequency 
ω, is O(αj)-1, which is O(ω)-1 in equation (28). This result is agreeable to that in Levin 
(1997) and shall be illustrated too. 

Finally, we note that as the solution m in equation (26) is bounded, the approximation 
Qn(f) in equation (24) is also bounded whenever g1(x) is smooth in [0,1]. Convergence 
depends on the quadratic spline but the interesting advantage is the reduction in 
computations. 

Now we shall use linear polynomial L(x) = Lj(x) on [xj, xj+1] applied to approximate 
F(x) instead of quadratic spline. 

Lj(x) = mj (x – xj) + yj, j = 1, 2, …., (n – 1) (31) 

where the slope mj, j = 1,2, …., (n – 1) is given by: 

mj = (yj+1– yj)/h; j = 1,2, …., (n – 1) (32) 

The formulation is similar to that of quadratic spline: 

F1(xj) = (yj+1– yj)/h; j = 1,2,....(n – 1) 

When we set x = x1 in equation (15) and then use (32) we have: 

(y2 – y1)/h = f(x1) (33) 

Again choosing the collocation nodes as x = xj; j = 2,3, …., (n – 1) we have the system of 
(n–2) equations: 

((yj+1–yj)/h) + i (yj –y1) ω g1(xj) = f(xj); j = 2,3,…, (n – 1) (34) 
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Applying the summation (19) in equation (34), we have finally have 

((yj+1–yj)/h) + ( )

( 1)

1  
1

(
j

k
k

y
−

+
=
∑ –yk) i ω g1(xj) = f(xj); j = 2,3, …, (n) (35) 

In the above equations we treat the term (yj+1–yj); j = 2,3, …, (n – 1), as unknowns. Later 
this solution is used in equations (16) and (23) to directly obtain the approximate value of 
the integral ( )I f . It is easy to observe (33) and (35) are lower diagonal systems. It can 
be solved as in the case of quadratic spline by recurrence relations. Yet we notice that the 
diagonal element is (1/h) whereas the sum of absolute values of the (j) non-diagonal 
elements is j (αj/h). We observe in equation (34) that the (especially when j = (n – 1)) 
need not be row-diagonally dominant. It may not be computationally stable and can be 
ill-conditioned. On the other hand, if cubic spline were to be used then we notice that the 
continuity conditions in cubic spline (Ahleberg, 1967), which is similar to (13), does not 
offer a reduction in computational reduction in solving (n x n) equations, that was seen in 
the case of the quadratic spline. 

Remark: Consider evaluating a two-dimensional integral defined over a rectangle: 

( ) ( ) ( )( ), exp , d d  
b d

a c
J f f x y i g x y x yω= ∫ ∫  

Applying generalised Stokes theorem, the integration has been reduced to one dimension 
integral with the suitable function G(x, y), as in equation (1): 

I[Gx + iω gx G – Gy – iω gy G] 

The subscript denotes the partial derivatives and this has been discussed in detail in the 
thesis (Olver, 2008). The quadratic spline as described here is applied when there are no 
stationary points. The reduction in computation becomes more significant when using 
quadratic spline because we need to evaluate four integrals (Olver, 2008) of the type as in 
equation (1). 

5 Examples 

Appropriate examples are taken from literature that do not have stationary points. 

Example 1: In this example the integral value is known analytically and hence is used 
here to illustrate the order of error bounds. This case helps us to understand the stability 
of the proposed method. The following integral is known in closed form (Iserles and 
Norsett; 2005): 

( )1 3 2

0
  exp d  x i x xω∫ = 

(–1/2 ω2){(-ω sin(ω)–cos(ω)+1), i(ω cos(ω)-sin(ω)} 

We note that g(x) has a stationary point at x = 0, however the value of the f(x) = x3 also 
vanishes there. Here, the node x1 in equation (8) is x = 0. We examine two cases, ω = 1 
and 100 to understand the dependence of the convergence on the frequency. In Figure 1, 
the absolute difference or error between the present approach and the exact value, that is 
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| ( )I f – Qn(f)| is depicted. The error for ω = 100, is shown by thick line and agrees in 
four decimal places from n = 4. As (n) is increased, the convergence to the exact values is 
found to be slow when ω = 1 and is better for the case when, ω = 100. This is as expected 
from our observations related to the bounds in equation (30). The results here clearly 
assure that the quadratic spline as Levin method is well condition irrespective of the 
frequency ω. It is unlike the observation made about the Levin method in Olver (2006) 
for the lower frequency. There was no instability seen even when (n) is increased up to a 
large value as 4000 for both the choice of frequencies. This showcases the 
trustworthiness of the method. 

Figure 1 Error in quadratic spline approach with increasing nodes and frequency 

 

Example 2: Finally consider an application of the scattering problem (Ishimaru, 1978). 
This example is seen in Li et al. (2010) to remarkably illustrate that Levin’s method 
(Levin, 1997) with the increasing number of nodes (n) does not have stability whereas the 
method proposed by Li has. Here, we show that the proposed Levin method is stable 
when we apply the quadratic spline. 

2

1
(cos(10x∫ 2) +(10/(1+10x)) exp(i(107 +104x2)1/2) dx = U + i V 

where U = 0.020332995 and V = –0.2160716948. However, the performance of the Levin 
method given by Li et al. (2010) can be seen to clearly exhibit certain oscillations when 
the number of nodes used is close to 40. To describe, the error in the conventional Levin 
method given in Li et al. (2010) improves when the nodes (n) increase from (n = 34) to 
(n = 36). However, when (n = 38), the error is about 10 times worse than it is when 
(n = 36). This reflects that the method cannot be trusted. Whereas the results from the 
proposed method, as seen in Figure 2, using quadratic spline show no such behaviour. 
The accuracy gradually improves as the number of nodes increases. The nodes in  
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Figure 2 are in the steps of n = 2. This amply demonstrates the advantages of using 
quadratic spline as a Levin’s method and consistent to the stability analysis. 

Figure 2 The behaviour of quadratic spline in Levin method with increasing nodes 

 

These examples amply demonstrate the stability and convergence of the proposed 
methods for a higher choice of (n) and that without requiring matrix inversion. 

6 Conclusions 

Quadratic spline is used in the Levin method to evaluate one-dimensional oscillatory 
integral. The proposed approach requires the evaluation of recurrence relations and 
demands one order lesser computation than the conventional Levin approach. This 
advantage is particularly useful when the processor has limitations and matrix inversion 
is not feasible. The stability of the recurrence relations is then analysed and the system is 
shown to be not ill-conditioned. The advantage is outlined in extending the approach 
while evaluating the two-dimensional integral. The paper obtains the error bounds in 
terms of frequency values. Numerical examples clearly illustrate the advantages namely 
stability and convergence, as the nodes are increased. This paper focuses on a Levin 
method though other emerging methods with additional computations have achieved both 
stability and better convergence. 
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