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1 Introduction 

Graph theory has found its importance in many real-time problems. Recent applications 
in graph theory is quite interesting analysing any complex situations and moreover in 
engineering applications. It has got numerous applications on operations research, system 
analysis, network routing, transportation and many more. To analyse any complete 
information we make intensive use of graphs and its properties. For working on partial 
information or incomplete information or to handle the systems containing the elements 
of uncertainty we understand that fuzzy logic and its involvement in graph theory is 
applied. In 1975, Rosenfeld discussed the concept of fuzzy graphs whose ideas are 
implemented by Kauffman in 1973. The fuzzy relation between fuzzy sets was also 
considered by Rosenfeld who developed the structure of fuzzy graphs, obtaining various 
analogous results of several graph theoretical concepts. Bhattacharya (1987) gave some 
remarks of fuzzy graphs. The complement of fuzzy graphs was introduced by Mordeson 
and Nair (2001). Atanassov introduced the concept of intuitionistic fuzzy relation and 
intuitionistic fuzzy graphs (Atanassov, 1986, Atanassov et al., 2003; Shannon and 
Atanassov, 1994, 1995). Talebi and Rashmanlou (2013) studied the properties of 
isomorphism and complement of interval-valued fuzzy graphs. They defined 
isomorphism and some new operations on vague graphs (Talebi et al., 2013, 2016). 
Borzooei and Rashmalou (2017, 2015, 2016a, 2016b, 2016c) analysed new concepts of 
vague graphs, degree of vertices in vague graphs, more results on vague graphs, semi 
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global domination sets in vague graphs with application and degree and total degree of 
edges in bipolar fuzzy graphs with application. Rashmanlou and Jun (2013) defined the 
complete interval-valued fuzzy graphs. Rashmanlou and Pal (2015, 2013d) studied 
intuitionistic fuzzy graphs with categorical properties, some properties of highly irregular  
interval-valued fuzzy graphs, more results on highly irregular bipolar fuzzy graphs 
(Rashmanlou et al., 20141), balanced interval-valued fuzzy graphs (Rashmanlou and Pal, 
2013b, 2013a) and antipodal interval-valued fuzzy graphs. Samanta and Pal (2013) 
investigated fuzzy k-competition and p-competition graphs, and concept of fuzzy planar 
graphs in Pal et al. (2013a, 2013b). Also they introduced fuzzy tolerance graph (Samanta 
and Pal, 2011, 2012) bipolar fuzzy hypergraphs and given several properties on it. Pal 
and Rashmanlou (2013) defined many properties of irregular interval-valued fuzzy 
graphs. Ghorai and Pal (2016, 2017) analysed the properties of regular product vague 
graphs and product vague line graphs. In this article, we define the product vague graphs 
and investigate some interesting properties of regular, irregular and edge regular product 
vague graphs. Likewise, we analyse some concepts on product vague line graphs. For 
other notations and terminologies the readers are referred to Akram and Karunambigai 
(2011), Atanassov (1986), Atanassov et al. (2003), Bhattacharya (1987), Borzooei and 
Rashmanlou (2015, 2017), Karunambigai et al. (2011) and Karunambigai and Kalaivani 
(2011). 

2 Preliminaries 

In this section we give some definitions which are prerequisites applied throughout this 
paper. 

Definition 2.1 (Kauffman, 1973): A graph is an ordered pair G = (V, E), where V is the set 
of vertices of G and E is the set of all edges of G. Two vertices x and y in an undirected 
graph G are said to be adjacent in G if xy is an edge of G. A simple graph is an undirected 
graph that has no loops and not more than one edge between any two different vertices. 

Definition 2.2 (Kauffman, 1973): A subgraph of a graph G* = (V, E) is a graph  
H = (W, F), where W ⊆ V and F ⊆ E. 

We write xy ∈ E to mean (x, y) ∈ E, and if e = xy ∈ E, we say x and y are adjacent. 
Formally, given a graph G* = (V, E), two vertices x, y ∈ V are said to be neighbours or 
adjacent nodes, if xy ∈ E. The neighbourhood of a vertex v in a graph G* is the induced 
subgraph of G* consisting of all vertices adjacent to v and all edges connecting two such 
vertices. The neighbourhood of v is often denoted by N(v). The degree deg(v) of vertex v 
is the number of edges incident on v. The open neighbourhood for a vertex v in a graph 
G* consists of all vertices adjacent to v but not including v, i.e., N(v) = u ∈ V: uv ∈ E. If v 
is included in N(v), then it is called closed neighbourhood for v and is denoted by N[v], 
i.e., N[v] = N(v) ∪ v. A regular graph is a graph where each vertex has the same open 
neighbourhood degree. A complete graph is a simple graph in which every pair of distinct 
vertices has an edge. 

Definition 2.3 (Ramakrishna, 2009): A vague relation B on a set V is a vague relation 
from V to V such that tB(xy) ≤ min(tA(x), tA(y)), fB(xy) ≥ max(fA(x), fA(y)) where A is a 
vague set on a set V and for a vague relation B on A for all x, y ∈ V. 
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Definition 2.4 (Ramakrishna, 2009): Let G* = (V, E) be a crisp graph. A pair G = (A, B) 
is called a vague graph on a crisp graph G* = (V, E) where A = (tA, fA) is a vague set on V 
and B = (tB, fB) is a vague set on E ⊆ V × V such that tB(xy) ≤ min(tA(x), tA(y)), fB(xy) ≥ 
max(fA(x), fA(y)) for each edge x, y ∈ E. Otherwise A is the vague set on V and B is a 
vague relation on V. 

We consider G* as crisp graph and G as product vague graph. 

Definition 2.5 (Ghorai and Pal, 2016): A product vague graph G of G* = (V, E) is a pair 
G = (V, A, B) where A = (tA, fA) is an vague set in V and B = (tB, fB) is a vague relation on 
V2 such that tB(xy) ≤ tA(x) × tA(y), fB(xy) ≥ fA(x) × fA(y) for all x, y ∈ V. 

Figure 1 Example of product vague graph 

 

Figure 2 (0.04, 0.8)-regular and (0.24, 1.1)-totally regular product vague graph 

 

Definition 2.6 (Ghorai and Pal, 2016): A product vague graph G = (V, A, B) of  
G* = (V, E) is said to be strong if tB(xy) = tA(x) × tA(y), fB(xy) = fA(x) × fA(y) for all xy ∈ E. 
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Definition 2.7 (Ghorai and Pal, 2016): Let G = (A, B) be a product vague graph of  
G* = (V, E). The open neighbourhood degree of a vertex v in G is defined by  
deg(v) = (degt(v), degf(v)), where ( ) ( )

≠
∈

= t
B

u v
uv E

deg v t uv  and ( ) ( ).
≠
∈

= f
B

u v
uv E

deg v f uv  If all 

the vertices of G have same open neighbourhood degree (d1, d2), then G is called  
(d1, d2)-regular product vague graph. 

Definition 2.8 (Ghorai and Pal, 2016): Let G = (A, B) be a product vague graph of  
G* = (V, E). The closed neighbourhood degree of a vertex v is defined by  
deg[v] = (degt[v], degf[v]), where degt[v] = degt(v) + tA(v) and degf[v] = degf(v) + fA(v). If 
each vertex of G has the same closed neighbourhood degree (f1, f2), then G is called  
(f1, f2)-totally regular product vague graph. 

3 Edge regular and irregular product vague graphs 

Definition 3.1: Let G = (V, A, B) be a product vague graph and let eij = vivj ∈ E be an 
edge of G. Then the degree of the edge eij is defined as dt(eij) = degt(vi) + degt(vj) – 2tB(eij) 
and df(eij) = degf(vi) + degf(vj) – 2fB(eij). The edge degree of G is d(eij) = (dt(eij), df(eij)). 

Definition 3.2: Let G = (V, A, B) be a product vague graph and let eij = vivj ∈ E be an 
edge of G. Then the total degree of the edge eij is defined as dt[eij] = dt(eij) + tB(eij) and 
df[eij] = df(eij) + fB(eij) and d[eij] = (dt[eij], df[eij]). 

Definition 3.3: Let G = (V, A, B) be a product vague graph on G* = (V, E). If each edge in 
G has the same degree (r1, r2), then G is said to be an (r1, r2)-edge regular product vague 
graph. 

Definition 3.4: Let G = (V, A, B) be product vague graph on G* = (V, E). G is said to be 
an irregular product vague graph if there exists a vertex which is adjacent to vertices with 
distinct edge degrees. 

Definition 3.5: Let G = (V, A, B) be a product vague graph on G* = (V, E). G is said to be 
strong irregular product vague graph if every pair of vertices have distinct edge degree. 

Definition 3.6: Let G = (V, A, B) be a product vague graph on G* = (V, E). G is said to be 
strong totally irregular product vague graph if every pair of vertices have distinct total 
edge degree. 

Definition 3.7: Let G = (V, A, B) be a product vague graph on G* = (V, E). G is said to be 
edge irregular product vague graph if there exists an edge which is adjacent with the 
edges having distinct edge degree. 

Definition 3.8: Let G = (V, A, B) be a product vague graph on G* = (V, E). G is said to be 
edge totally irregular product vague graph if there exists an edge which is adjacent with 
the edges having distinct total edge degree. 

Definition 3.9: Let G = (V, A, B) be a product vague graph on G* = (V, E). G is said to be 
highly irregular product vague graph if every vertex is adjacent to vertices with distinct 
edge degrees. 
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Proposition 3.1: Let G = (V, A, B) be a product vague graph on G* = (V, E). If B is 
constant then G is edge regular if and only if G* is edge regular. 

Remark 3.1: In any product vague graph G, if degree of all the edges is zero, the graph G 
is both regular and totally regular. 

Consider the product vague graph G (see Figure 3). In this graph, we see that deg(v1) = 
deg(v2) = deg(v3) = (0.06, 0.08). Hence it is (0.06, 0.08)-regular but deg(v1v2) = deg(v2v3) 
= deg(v3v1) = (0, 0) = 0. Hence the graph is edge regular with degree 0. 

Figure 3 (0.06, 0.8)-regular and (0, 0)-dge regular product vague graph 

 

Proposition 3.2: Let G = (V, A, B) be a product vague graph from G* = (V, E) and B is a 
constant function. If G is strongly irregular product vague graph then G is edge irregular 
product vague graph. 

Proof: Let G = (V, A, B) be a product vague graph defined from G* = (V, E). 

Let us assume that B is a constant function where B(uv) = (tB(uv), fB(uv)) = (r1, r2). r1 and 
r2 are constants for all uv ∈ E. 

Let us consider minimum of four vertices say u, v, w and x and the edges uv, vw and 
vx which are adjacent in G. 

Supposing G is strongly irregular product vague graph: 

• Every pair of vertices in G have distinct degrees. 

• Degree of u, v, w and x are not equal. 
Therefore we have, 

( ) ( ) ( )( ), ( ) ( ), ( ) ( ), ( )≠ ≠t f t f t fdeg u deg u deg v deg v deg w deg w  

( ) ( ) or ≠t tdeg u deg v  

( ) ( ) and≠f fdeg u deg v  

( ) ( ) or≠t tdeg v deg w  

( ) ( )≠f fdeg v deg w  

( ) ( ) ( ) ( ) or + ≠ +t t t tdeg u deg v deg v deg w  
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( ) ( ) ( ) ( )+ ≠ +
A

f f f N
μdeg u deg v deg v deg w  

1 1( ) ( ) 2 ( ) ( ) 2 or + − ≠ + −t t t tdeg u deg v r deg v deg w r  

2 2( ) ( ) 2 ( ) ( ) 2+ − ≠ + −f f f fdeg u deg v r deg v deg w r  

( ) ( ) 2 ( ) ( ) ( ) 2 ( ) or + − ≠ + −t t t t
B Bdeg u deg v t uv deg v deg w t vw  

( ) ( ) 2 ( ) ( ) ( ) 2 ( )+ − ≠ + −f f f f
B Bdeg u deg v f uv deg v deg w f vw  

( ) ( )( ), ( ) ( ), ( ) ≠t f t fd uv d uv deg vw deg vw  

( ) ( ). ≠d uv d vw  

Similarly we can prove that d(vw) ≠ d(vx), i.e., an edge uv which is adjacent with the 
other edges vw and vx have distinct degrees. 

Hence, G is an edge irregular product vague graph. □ 

Proposition 3.3: Let G = (V, A, B) be a product vague graph of G* and B is a constant 
function. If G is an edge irregular product vague graph, then G is an edge totally irregular 
product vague graph. 

Proof: Let us assume that B is a constant function. 

Let B(uv) = (r1, r2) for all uv ∈ E, where r1 and r2 are constants. 
Suppose that G is an edge irregular product vague graph. Then there exist an edge 

adjacent with the edges with distinct degrees. 
Let uv be an edge which is adjacent with edges uw and ux which are incident at the 

vertex u and vy is the edge which is incident with the vertex v. Then d(uw) ≠ d(ux) ≠ 
d(vy), where uw, ux and vy are adjacent with the edge uv in E. 

Consider d(uw) ≠ d(ux) ≠ d(vy) 

( ) ( ) ( )( ), ( ) ( ), ( ) ( ), ( ) ≠ ≠t f t f t fd uw d uw d ux d ux d vy d vy  

( ) ( ) ( ) ( )
( ) ( )

1 2 1 2

1 2

( ), ( ) , ( ), ( ) ,

( ), ( ) ,

 + ≠ +

≠ +
t f t f

t f

d uw d uw r r d ux d ux r r

d vy d vy r r
 

( ) ( ) ( ) ( ) ( ) ( ) + ≠ + ≠ +d uw B uw d ux B ux d vy B vy  

[ ] [ ] [ ] ≠ ≠d uw d ux d vy  

where uw, ux and vy are adjacent edges of uv in E. 
Hence G is an edge totally irregular product vague graph.  □ 

Proposition 3.4: Let G = (V, A, B) be a product vague graph of G* and B is a constant 
function. If G is an edge totally irregular product vague graph, then G is an edge irregular 
product vague graph. 

Proof: The proof is same as proposition 3.3. 
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Remark 3.2: By the propositions 3.3 and 3.4, we have the result as follows. Let G = (V, A, 
B) be a product vague graph of G* and B is a constant function. Then G is an edge totally 
irregular product vague graph if and only if G is an edge irregular product vague graph. 

Remark 3.3: Let G = (V, A, B) be a product vague graph of G*. If G is both an edge 
irregular product vague graph and an edge totally irregular product vague graph, then B 
need not be a constant function. 

Proposition 3.5: Let G = (V, A, B) be a product vague graph of G* and B is a constant 
function. If G is highly irregular product vague graph, then G is an edge irregular product 
vague graph. 

Proof: Let G = (V, A, B) be a product vague graph of G*. 

Let us assume that B is a constant function. Let B(uv) = (r1, r2) for all uv ∈ E, where r1 
and r2 are constants. Let v be any vertex adjacent with u, w and x. Then uv, vw and vx are 
adjacent edges in G. 

Supposing that G is highly irregular product vague graph. 

• Every vertex adjacent to the vertices in G have distinct degrees. 

( ) ( ) ( ) ≠ ≠deg u deg v deg x  

( ) ( ) ( )( ), deg ( ) ( ), ( ) ( ), ( ) ≠ ≠t f t f t fdeg u u deg v deg v deg x deg x  

( ) ( ) (or) ( ) ( ) ≠ ≠t t f fdeg u deg v deg u deg v  

In the similar way we can prove that d(vw) ≠ d(vx), i.e., an edge uv which is adjacent to 
the edges vw and vx have distinct degrees. 

Hence G is an edge irregular product vague graph. □ 

4 Strongly edge irregular and strongly edge totally irregular product 
vague graph 

In this section we define the strongly edge irregular and strongly edge totally irregular 
product vague graphs. Also we discuss some of the properties of it. 

Definition 4.1: Let G = (V, A, B) be a product vague graph on G* = (V, E). Then G is said 
to be strongly edge irregular product vague graph if every pair of edges have distinct 
degrees. 

Definition 4.2: Let G = (V, A, B) be a product vague graph on G* = (V, E). Then G is said 
to be strongly edge totally irregular product vague graph if every pair of edges have 
distinct total degrees. 

Proposition 4.1: Let G = (V, A, B) be a product vague graph on G* = (V, E). If G is 
strongly edge irregular product vague graph, then G is an edge irregular product vague 
graph. 

Proof: Let G = (V, A, B) be a product vague graph on G*: (V, E). 
Assume that G is strongly edge irregular product vague graph: 
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• Every pair of edges in G have distinct degrees. 

• There exists an edge adjacent with the edges having distinct degrees. 

• Hence G is an edge irregular product vague graph. □ 

Proposition 4.2: Let G = (V, A, B) be a product vague graph on G* = (V, E). If G is 
strongly edge totally irregular product vague graph, then G is an edge totally irregular 
product vague graph. 

Proof: Proof is same as proposition 4.1. □ 

Proposition 4.3: Let G = (V, A, B) be a product vague graph on G* = (V, E) and B is a 
constant function. If G is a strongly edge irregular product vague graph, then G is a 
highly irregular product vague graph. 

Proof: Let G = (V, A, B) be an product vague graph on G* = (V, E). 

Assume that B is a constant function. 
Let B(uv) = (r1, r2) for all uv ∈ E and r1, r2 are constants. 
Let v be any vertex adjacent with u, w and x. 
Then uv, vw and vx are adjacent edges in G. 
Supposing that G is a strongly edge irregular product vague graph, i.e., every pair of 

edges in G have distinct degrees 

( ) ( ) ( ) ≠ ≠d uv d vw d vx  

( ) ( ) ( )( ), ( ) ( ), ( ) ( ), ( ) ≠ ≠t f t f t fd uv d uv d vw d vw d vx d vx  

( )
( )

( ) ( ) 2 ( ), ( ) ( ) 2 ( )

( ) ( ) 2 ( ), ( ) ( ) 2 ( )

 + − + −

≠ + − + −

t t f f
B B

t t f f
B B

deg u deg v t uv deg u deg v f uv

deg v deg w t vw deg v deg w f vw
 

( ) ( ) 2 ( ) ( ) ( ) 2 ( ) (or)
( ) ( ) 2 ( ) ( ) ( ) 2 ( )

 + − ≠ + −
+ − ≠ + −

t t t t
B B

f f f f
B B

deg u deg v t uv deg v deg w t vw
deg u deg v f uv deg v deg w f vw

 

1 1

2 2

( ) ( ) 2 ( ) ( ) 2 (or)
( ) ( ) 2 ( ) ( ) 2

 + − ≠ + −
+ − ≠ + −

t t t t

f f f f

deg u deg v r deg v deg w r
deg u deg v r deg v deg w r

 

( ) ( ) ( ) ( ) (or)
( ) ( ) ( ) ( )

 + ≠ +
+ ≠ +

t t t t

f f f f

deg u deg v deg v deg w
deg u deg v deg v deg w

 

( ) ( ) (or) ( ) ( ) ≠ ≠t t f fdeg u deg w deg u deg w  

( ) ( )( ), ( ) ( ), ( ) ≠t f t fdeg u deg u deg w deg w  

( ) ( ) ≠deg u deg w  

Similarly by taking (dt(vw), df(vw)) ≠ (dt(vx), df(vx)), we get deg(w) ≠ deg(x). 
So, we have deg(u) ≠ deg(w) ≠ deg(x). Thus every vertex is adjacent to vertices with 

distinct degrees. Hence G is highly irregular product vague graph. □ 
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Proposition 4.4: Let G = (V, A, B) be a product vague graph on G* = (V, E) and B is a 
constant function. If G is a strongly edge totally irregular product vague graph then G is a 
highly irregular product vague graph. 

Proof: Proof is similar to proposition 4.3. □ 

5 Conclusions 

The theory of graph is very much useful to solve lot of real-time applications and 
combinatorial problems. Many mathematical fields such as algebra, number theory, 
topology, operations research and optimisation techniques involve the ideas of graph 
theory. Many partial information leads to inconclusive results and it could be resolved 
using vague graphs concepts. Also the effectiveness of vague concepts rather than 
fuzziness is a great advantage as it measures both the lower and upper bounds of 
membership values in the interval [0, 1]. In this paper, we analysed more about 
irregularity specially edge irregularity of product vague graphs and prove some properties 
on it. In future we can implement the concepts of regularity and irregularity in the area of 
product vague hypergraphs. 
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