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Abstract: This paper presents a study on an autonomous vehicle system
capable of recognising and responding to traffic signs. Using the virtual robot
experimentation platform (V-REP) virtual simulation system, a training dataset
is generated for traffic sign recognition (TSR), employing a pre-trained AlexNet
network. The vehicle model, integrated with the trained network, operates within
the V-REP environment, supported by a vision-based control system. Driving
scenarios are designed to assess the system’s ability to interpret and respond to
traffic signs without human intervention. Experimental validation confirms the
effectiveness and reliability of the proposed system, showcasing its potential for
real-world applications in autonomous vehicles with TSR capabilities.
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1 Introduction

Autonomous vehicles are revolutionising the transportation industry, promising safer and
more efficient mobility. Within this context, traffic sign recognition (TSR) plays a vital role
in enabling these vehicles to interpret and respond to the information conveyed by traffic
signs. Accurate and timely recognition of traffic signs is crucial for autonomous vehicles
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to navigate roads, comply with regulations, and ensure the safety of passengers and other
road users.

Automating the process of TSR through computer vision and machine learning
techniques offers the potential to enhance the capabilities of autonomous vehicles. By
leveraging advanced algorithms and deep learning models, autonomous vehicles can
effectively interpret traffic signs, including speed limits, stop signs, yield signs, and other
regulatory signs. This allows the vehicles to make informed decisions, adjust their speed,
plan manoeuvres, and ensure compliance with traffic rules. Bouaafia et al. (2021) introduced
the deep convolutional neural network (CNN) and its architectures, such as, VGG16,
VGG19, AlexNet, and Resnet50. An overview for the techniques and schemes used for
road sign recognition is introduced. These networks have shown exceptional performance
in road sign recognition. The techniques and schemes employed for road sign recognition
are provided in an overview. Atif et al. (2022) employed ML-based classifiers to build a
TSR system that analyses a sliding window of frames sampled by sensors on a vehicle.
This system leverages machine learning algorithms to accurately identify and interpret
traffic signs, contributing to the overall perception and decision-making capabilities of the
autonomous vehicle. Zhou et al. (2018) combined with the idea of AlexNet and the residual
network structure, and the optimised network model is used for road TSR. This hybrid
model capitalises on the strengths of both architectures to achieve improved accuracy and
efficiency in recognising traffic signs. Xie et al. (2021) provided a high-accuracy AlexNet
model for an autonomous car in TSR.

The development of TSR systems for autonomous vehicles is driven by advancements in
computer vision, image processing, and deep learning methodologies. Convolutional neural
networks (CNNs) have emerged as a powerful tool for TSR in autonomous vehicles. These
networks can automatically learn complex features from raw image data, enabling robust
and accurate recognition of traffic signs across a wide range of scenarios and environmental
conditions.A lightweight neural network architecture has been proposed for TSR, achieving
high levels of accuracy and precision while utilising fewer trainable parameters (see Khan
et al. (2023)). This approach emphasises efficiency without compromising performance.
Fredj et al. (2023) used CNN to develop a Traffic and Road Sign recognition system. The
performance of the proposed architecture is measured using a novel dataset, namely the
Tunisian traffic signs dataset. These studies highlight the applicability and effectiveness
of CNNs in real-world traffic sign recognition tasks. Niu and Li (2022) proposed a
method based on YOLOv5s target detection and AlexNet image classification to detect and
identify traffic lights. This approach combines the strengths of object detection and image
classification techniques to improve traffic light recognition. Lim et al. (2023) provided a
comprehensive overview of the latest advancements in TSR has been provided, covering
various essential areas such as preprocessing techniques, feature extraction methods,
classification techniques, datasets, and performance evaluation. This review consolidates
the recent progress made in the field and offers insights into the current state-of-the-
art approaches and their performance. The integration of computer vision and machine
learning techniques, along with the utilisation of advanced deep learning models, showcases
the potential for robust and accurate TSR in autonomous vehicles. Zheng et al. (2020)
explores the role of activation functions in deep convolutional neural networks for image
classification tasks. It compares and analyses the effects of different activation functions,
providing valuable insights for the selection of activation functions in deep learning. Zheng
et al. (2017) combines artificial features with deep convolutional activation features in fine-
grained image classification to enhance accurate object classification in complex scenes.
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Tian et al. (2019) utilises deep learning for the accurate prediction of electric vehicle
charging demand and optimises the layout of charging stations to improve the efficiency
of electric vehicle charging. Jiang et al. (2021) employs long short-term memory (LSTM)
networks to predict PM2.5 concentrations. These advancements contribute significantly to
enhancing the overall safety and efficiency of autonomous transportation systems.

This study utilises the virtual robot experimentation platform (V-REP) virtual simulation
platform to establish a virtual physical model of an autonomous car. Within this model,
a TSR system is designed based on the Alexnet network, enabling the car to navigate
within a simulated traffic environment. Furthermore, a simplified road network is created
within the simulation. The results of the simulation demonstrate that the designed sign
recognition system accurately identifies common traffic signs on the road, thereby assisting
the autonomous car in adhering to the detected signs and achieving self-driving capabilities.

This study employs modelling and simulation techniques to investigate a TSR system
based on AlexNet. The primary objective is to validate the real-world applicability of deep
learning models within autonomous driving systems. The research focuses on enhancing the
perceptual and recognition capabilities of autonomous vehicles, specifically in the context of
traffic sign identification. The overarching goal is to facilitate accurate TSR by autonomous
vehicles across diverse road conditions, thereby ensuring adherence to road regulations and
traffic sign directives.

2 Traffic sign recognition based on Alexnet

In this section, we present the TSR approach utilising the AlexNet model.

2.1 Brief introduction of AlexNet

AlexNet is a CNN architecture that was developed by Alex Krishevsky, Ilya Sutskever, and
Geoffrey Hinton in 2012. AlexNet consists of eight layers, including five convolutional
layers, followed by three fully connected layers. It operates on 2D images as input, see
Yuan and Jun (2016).

The design of AlexNet excels in the aspect of image feature learning, and for autonomous
vehicles, visual perception is of paramount importance. Therefore, the choice of AlexNet is
based on its outstanding capability in image feature learning. Serving as a pre-trained model,
AlexNet is highly suitable for transfer learning, significantly reducing the required samples,
time, and computational resources for learning. AlexNet has undergone training on a large-
scale dataset. In the task of autonomously recognising traffic signs for self-driving vehicles,
utilising a pre-trained AlexNet facilitates faster convergence and superior performance.
Furthermore, in comparison to certain state-of-the-art deep learning models, AlexNet’s
structure is relatively straightforward, making it more accessible for understanding and
interpretation. This simplicity is advantageous for considering the interpretability of models
in subsequent research, especially in critical domains like autonomous vehicles.

AlexNet’s architecture encompasses eight layers, consisting of five convolutional layers
and three fully connected layers (Figure 1). Its architectural choices, including the use of
rectified linear unit (ReLU) activation functions, address the vanishing gradient problem
and facilitate faster training.
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Figure 1 AlexNet’s architecture (see online version for colours)

Convolutional layers: The initial layers of AlexNet employ convolutional operations to
extract low-level features from input images. These layers utilise a large number of learnable
filters to capture various visual patterns.

ReLU activation: Rectified Linear Unit (ReLU) activation functions are used throughout
AlexNet to introduce non-linearity, allowing the network to learn more complex
representations. ReLU helps mitigate the vanishing gradient problem and accelerates
training.

Pooling layers: After each set of convolutional layers, max-pooling layers are applied
to reduce spatial dimensions while preserving important features. Pooling helps capture
invariant properties and enhances translation invariance.

Local response normalisation: AlexNet incorporates local response normalisation, a
normalisation technique that promotes competition between features within the same local
neighbourhood. It enhances the network’s ability to generalise and respond to various input
variations.

Dropout: To prevent overfitting, AlexNet uses a technique called dropout during training.
Dropout randomly drops out a fraction of the neurons, forcing the network to rely on
different combinations of features and improving generalisation.

Fully connected layers: The last three layers of AlexNet are fully connected layers that
process the high-level features learned by previous layers. These layers progressively reduce
the dimensions and ultimately output class probabilities.

Softmax activation: The final layer employs the softmax activation function, which
transforms the network’s outputs into a probability distribution over different classes,
enabling classification.

This architecture follows a typical pattern of alternating convolutional layers with ReLU
activations, pooling layers for down-sampling, and fully connected layers for classification.
Dropout layers are used to reduce overfitting, and cross-channel normalisation helps with
local contrast normalisation. Softmax activation is applied to produce class probabilities,
and the network is trained using cross-entropy loss.
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AlexNet played a significant role in popularising deep learning, especially in the field of
computer vision, and its architectural principles have influenced subsequent CNN designs.

2.2 Data collection and preparation

This study primarily focuses on the identification of left-turn signs, right-turn signs, stop
signs and road without traffic signs (Figure 2).

Figure 2 Traffic signs in China (see online version for colours)

To increase the number of training samples, we employed the V-REP virtual simulation
system to construct traffic signs positioned on the road. By simulating the perspective of
traffic signs captured by an autonomous vehicle at various locations and using random
camera positions, we obtained additional traffic sign images for learning purposes.

Since we utilised transfer learning with the pre-trained AlexNet model, the data
requirement was not excessively high. Hence, we prepared about 20 sample images for each
traffic sign, and some of these images are illustrated in Figures 3–5.

Figure 3 Sample set of left turn traffic signs (see online version for colours)

In addition, an image enhancement function is employed to generate an image data
augmentation object capable of implementing a multitude of transformations on input
images. These transformations encompass rotation, scaling, flipping, cropping, translation,
shearing, as well as adjustments in brightness and contrast. The integration of these
augmentations serves to enhance the diversity and variability of the training data,
consequently fostering improved generalisation and robustness in deep learning models.
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Figure 4 Sample set of right turn traffic signs (see online version for colours)

Figure 5 Sample set of stop traffic signs (see online version for colours)

2.3 Transfer learning with the pre-trained AlexNet

In this study, an AlexNet pre-trained network is employed, which has undergone training
on an extensive dataset consisting of over one million images. This pre-trained network
exhibits the capability to classify images across a vast range of 1000 object classes. Through
this training process, the network has acquired a comprehensive and informative feature
representation derived from the extensive image collection.

The training of AlexNet will be conducted on a Windows platform equipped with
Core i5-8500, utilising the MATLAB Reinforcement Learning Toolbox. we employed
the stochastic gradient descent (SGD) optimiser with a momentum parameter set to 0.9,
facilitating rapid convergence during training. The initial learning rate was set to 0.001
and may be subject to a learning rate scheduling strategy, utilising a piecewise constant
learning rate schedule, allowing for adaptive adjustments to the learning rate throughout the
training process. To regulate the model’s complexity, we introduced an L2 regularisation
term with a weight set to 1e-4. The gradient threshold method opted for the L2 norm,
and the gradient threshold was set to infinity, indicating an absence of constraints on the
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gradient threshold.The training process was configured with a maximum of 30 epochs,
each consisting of small-batch training using 128 samples. Detailed information during
the training process was displayed at a frequency of every 50 iterations. Additionally, the
validation set was assessed every 50 iterations to monitor model performance and potential
overfitting.

Initially, the dataset of sample images employed for training purposes is partitioned
into two subsets. Randomly, 70% of the images are selected as the training set, while
the remaining portion is designated as the test set. This division ensures a representative
distribution of data for model training and subsequent evaluation.

Next, the pre-trained AlexNet network is loaded using the Matlab AlexNet function.
Additionally, network-related parameters can be adjusted according to the specific
requirements of the task at hand.Modifications to the network architecture can be made by
adjusting the layers of the network. For instance, to change the number of output classes,
you can replace the last few layers with new layers that match the desired number of classes.

Subsequently, the training options are established, and the AlexNet network is trained.
Owing to the incorporation of pre-trained networks and transfer learning techniques,
AlexNet demonstrates superior efficiency in training the learning of sample data, facilitating
accelerated and significant performance enhancements.

Figure 6 illustrates the validation results of the trained model when applied to the
validation image set containing traffic signs. The visualisation of these results indicates that
the designed network exhibits improved accuracy in accurately classifying the traffic signs
depicted in the images.

Figure 6 Validation results of the trained model (see online version for colours)

Figure 7 presents the confusion matrix of the trained model applied to the test samples. The
matrix provides valuable insights into the model’s performance in accurately recognising
traffic signs and differentiating them from other signs, as well as correctly identifying cases
where traffic signs are absent.
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Figure 7 Confusion matrix of the trained model (see online version for colours)

From the observed results, it is evident that the model exhibits a high level of accuracy in
recognising traffic signs without misclassifying specific signs as other types. Additionally,
the model demonstrates the ability to effectively identify instances that do not contain any
traffic signs. These findings reflect the robustness and discriminative capabilities of the
model in the context of TSR.

Figure 8 depicts the evolution of the model’s classification accuracy throughout the
training process. As the number of iterations increases, the model progressively learns to
capture more refined features of traffic signs, resulting in improved prediction accuracy.
The curve demonstrates a rapid initial improvement, eventually reaching a high plateau
of accuracy. Moreover, the model exhibits faster convergence, showcasing its ability to
converge quickly and effectively.

Figure 8 Accuracy of the trained model (see online version for colours)
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Figure 9 illustrates the variation of the model’s loss value during training. The results indicate
a lack of overfitting or underfitting, as the loss value demonstrates a stable pattern without
significant fluctuations. This suggests that the model successfully captures the underlying
patterns in the training data and generalises well to unseen examples, yielding reliable and
consistent predictions.

Figure 9 Loss value of the trained model (see online version for colours)

3 Modelling of the autonomous vehicle

The fully developed AlexNet model exhibits commendable accuracy in classifying traffic
signs and has been specifically tailored for integration into a self-driving car system. Its
primary purpose is to evaluate the model’s reliability and validity within the context of
autonomous driving.

3.1 The autonomous vehicle

The autonomous vehicle (Figure 10) is equipped with OpenMV and STM32
microcontrollers. The OpenMV module is responsible for capturing ground traffic signs and
detecting black guidance tracks. It then sends the recognition results to the STM32 control
unit, which processes the information and generates corresponding control signals to drive
the motors. This allows for precise control of the trolley’s movements and navigation based
on the detected signs and tracks.

To validate the efficacy of the autonomous vehicle , we initially constructed a virtual
physical model of the trolley within a simulation platform. This virtual model served as a
representative replica of the actual physical system. Subsequently, we seamlessly integrated
the designed TSR system into the virtual physical model. By doing so, we aimed to assess the
reliability and effectiveness of the designed system in a controlled and virtual environment.
This approach allowed us to conduct extensive testing, analyse the system’s performance,
and validate its functionality before deploying it in real-world scenarios.
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Figure 10 The real autonomous vehicle (see online version for colours)

3.2 The autonomous vehicle in the V-REP

Virtual robot experimentation platform (V-REP) is a widely used robotics simulation
software. It provides a comprehensive platform for simulating and visualising complex
robotic systems in a virtual environment, see Rohmer et al. (2013).

The autonomous vehicle components are accurately replicated in a 1 : 1 scale within
the V-REP simulation environment, matching the dimensions of the actual car. These
replicated components are then meticulously assembled, employing suitable couplings and
connections, to create a unified entity. This approach ensures that the virtual representation
of the car faithfully mirrors its physical counterpart, encompassing precise proportions and
structural details. By faithfully recreating the car’s components and their interactions in the
virtual realm, it facilitates realistic simulation and thorough testing of the car’s behaviour
and performance before its implementation in real-world scenarios.

In V-REP, the four wheels of a car, much like in a real vehicle, are linked to the body
through four motors known as revolute joints (Figure 11). These revolute joints can be
effectively operated using control commands within V-REP, enabling users to modify the
car’s position and attitude. By manipulating these joints, users can replicate the rotational
movement of the wheels, thereby controlling the overall motion and behaviour of the
simulated car.

Furthermore, in the virtual model, V-REP incorporates a camera module instead of
OpenMV’s vision module. This camera module allows for the capture of environmental
images within the V-REP virtual environment. By utilising this camera module, users can
gather visual data that emulates the real-world perception of the car, enabling the simulation
to incorporate visual inputs and potentially implement vision-based algorithms or tasks.

3.3 Control of the autonomous vehicle

When simplifying the actual traffic situations encountered by the autonomous vehicle, its
tasks can be categorised into four distinct actions. Firstly, if the camera captures a left turn
sign on the ground, the trolley is programmed to make a left turn accordingly. Similarly,
if a right turn sign is detected by the camera, the trolley will execute a right turn. In the
presence of a stop sign within the camera’s view, the trolley will come to a complete stop.
Lastly, in instances where no traffic signs are detected by the trolley’s camera, it is required
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to autonomously follow a predetermined black guide track. These task categories provide
a simplified framework for the autonomous vehicle’s behaviour within its environment.

The tasks performed by the autonomous vehicle can be effectively composed of these
four distinct working modes.

Figure 11 The virtual model of the autonomous vehicle (see online version for colours)

During operation, the control of each task mode of the autonomous vehicle is accomplished
by independently controlling the speed of the four-wheel drive motors. This approach allows
for precise manipulation of the autonomous vehicle’s movement and enables it to execute
the desired actions for each task mode. By adjusting the speed of the individual motors,
the trolley can accurately navigate through turns, come to a halt, or follow the guide track
as required by the specific task mode. This independent control mechanism ensures the
autonomous vehicle’s responsiveness and adaptability to different scenarios encountered
during its operation.

Turn left and right: The autonomous vehicle’s turning can be controlled by modulating
the speed difference between its wheels. By adjusting the speeds of the wheels on either
side of the autonomous vehicle, a differential drive system can be utilised to achieve turning
manoeuvres. When the trolley needs to make a left turn, the wheels on the right side can
be slowed down or stopped while the wheels on the left side continue to move at a normal
speed or vice versa for a right turn. This speed difference creates a rotational effect, causing
the trolley to turn in the desired direction. This method allows for agile and precise turning
control without the need for additional steering mechanisms.

Stop: The autonomous vehicle can be brought to a stop by ensuring that all four wheels
have ceased turning. By monitoring the rotational speed of each wheel, the autonomous
vehicle’s control system can detect when all four wheels have come to a halt. Once this
condition is met, appropriate control commands can be sent to the wheel drive motors to stop
their rotation completely. This ensures that the trolley remains stationary and is effectively
stopped.

Straight forward: When the autonomous vehicle is travelling in a straight line, it is essential
to continuously adjust its own attitude based on the straight line path information obtained
from the image. This adjustment is necessary to maintain alignment with the predetermined
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trajectory. By analysing the image data captured by the camera, the autonomous vehicle’s
control system can extract relevant information about the straight line path and compare it
with the desired trajectory.

4 Simulation and experiment

4.1 Virtual simulation

To validate the functionality of the autonomous vehicle’s ability to autonomously recognise
traffic signs and adhere to traffic rules in an unattended manner, driving scenarios were
created within V-REP (Figure 12). These scenarios include various relevant traffic signs and
pre-defined trajectories. By incorporating these elements into the simulation environment,
it allows for comprehensive testing and evaluation of the self-driving car’s performance.

Figure 12 Driving scenarios in V-REP (see online version for colours)

In the simulation scenario, the autonomous vehicle starts from a designated starting point
and follows a predetermined trajectory. The car utilises its camera to recognise the black
pre-defined trajectory on the road, enabling it to accurately stay within the designated
path. Additionally, the car’s camera system identifies the presence of traffic signs at road
intersections.

By analysing the captured images, the autonomous vehicle’s control system recognises
the various traffic signs and interprets their corresponding meanings. Based on this
information, the car adjusts its behaviour and adheres to traffic rules, ensuring it operates
on the road in a compliant and safe manner. For example, when the camera detects a stop
sign, the car will come to a complete stop. Similarly, when it identifies a left or right turn
sign, the car will execute the corresponding manoeuvre accordingly.

By integrating the camera-based perception system and the control system, the
autonomous vehicle car successfully recognises the pre-defined road trajectory and
accurately interprets traffic signs to navigate the road following traffic rules. This simulation
scenario allows for comprehensive testing and validation of the autonomous vehicle’s
ability to autonomously respond to the environment and demonstrate its adherence to traffic
regulations.
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In Figure 13, the results of the on-board AlexNet TSR are presented. In the established
simulation environment, six crucial traffic signs, which indicate the direction of the trolley’s
travel, were successfully identified. Furthermore, the vehicle seamlessly transitioned to
the corresponding control system, accurately adjusting its steering, forward motion, and
stopping actions based on the obtained image results.

Figure 13 On-board Alexnet recognition of traffic signs

The trajectory of the centre of mass of the autonomous vehicle is depicted as the red path in
Figure 14. This trajectory illustrates the trolley’s ability to recognise traffic signs at specific
locations and execute precise movements in accordance with the recognised signs. This
capability ensures the successful completion of the task at hand.

Figure 14 Trajectory of the autonomous vehicle (see online version for colours)

4.2 Experiment

During the experimental session, the trained Alexnet was installed on the cart, which
was tasked with autonomously navigating by identifying traffic signs on the ground and
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accurately following the predetermined black trajectory without any external intervention
(Figures 15 and 16).

Figure 15 Driving scenarios in real (see online version for colours)

Figure 16 Experiment result of the autonomous vehicle (see online version for colours)

The experimental findings reveal that the cart exhibits enhanced reliance on vision control
technology to track the predefined ground trajectory, and it can seamlessly transition
between control systems based on the recognised traffic signs and corresponding traffic
rules, thereby accomplishing automated driving.

5 Conclusion

This paper presents a study focused on autonomous vehicle capable of recognising traffic
signs. The researchers utilised the V-REP virtual simulation system to generate a training
dataset for TSR. For this purpose, a pre-trained AlexNet network was employed to achieve
accurate recognition of traffic signs. Within the V-REP virtual simulation system, a vehicle
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was created and equipped with the trained network. Additionally, a vision-based control
system was developed to facilitate autonomous operation of the vehicle.

To evaluate the functionality of the designed autonomous vehicle in responding to
traffic signs without human intervention, driving scenarios were carefully designed and
implemented within the V-REP virtual simulation system. These scenarios aimed to assess
the autonomous vehicle’s ability to operate in accordance with recognised traffic signs. By
simulating various traffic scenarios, the researchers could validate the system’s effectiveness
and reliability in real-world-like situations.

Through experimental validation, the paper ultimately verifies the effectiveness and
reliability of the proposed system. The results obtained from the experiments demonstrate
the system’s capability to recognise and appropriately respond to traffic signs, paving the
way for potential real-world applications of autonomous vehicle with TSR capabilities.

Acknowledgement

The project is funded in part by the Guizhou Provincial Basic Research Program (Natural
Science), under Grant No. ZK[2023]yiban139.

References

Atif, M., Zoppi, T., Gharib, M. and Bondavalli, A. (2022) ‘Towards enhancing traffic sign recognition
through sliding windows’, Sensors, Vol. 22, No. 7, p.2683

Bouaafia, S., Messaoud, S., Maraoui, A., Ammari, A.C., Khriji, L. and Machhout, M. (2021)
‘Deep pre-trained models for computer vision applications: traffic sign recognition’, 2021 18th
International Multi-Conference on Systems, Signals and Devices (SSD), Tunisia, pp.23–28.

Fredj, H.B., Chabbah, A., Baili, J., Faiedh, H. and Souani, C. (2023) ‘An efficient implementation
of traffic signs recognition system using CNN’, Microprocessors and Microsystems, Vol. 98,
p.104791.

Jiang, N., Zheng, X., Zheng, H. and Zheng, Q. (2021) ‘Long Short-Term Memory based PM2.5
concentration prediction method’, Engineering Letters, Vol. 29, No. 2, pp.1–10.

Khan, M.A., Park, H. and Chae, J. (2023) ‘A lightweight convolutional neural network (CNN)
architecture for traffic sign recognition in urban road networks’, Electronics, Vol. 12, No. 8,
p.1802.

Lim, X.R., Lee, C.P., Lim, K.M., Ong, T.S., Alqahtani, A. and Ali, A. (2023) ‘Recent advances in
traffic sign recognition: approaches and datasets’, Sensors, Vol. 23, No. 10, p.4674.

Niu, C. and Li, K. (2022) ‘Traffic light detection and recognition method based on YOLOv5s and
AlexNet’, Applied Sciences, Vol. 12, No. 21, p.10808

Rohmer, E., Singh, S.P.N. and Freese, M. (2013) ‘V-REP: A versatile and scalable robot simulation
framework’, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE,
Tokyo, Japan, pp.1321–1326.

Tian, X., Su, H., Zhang, K. and Zheng, Q. (2019) ‘A electric vehicle charging station optimization
model based on fully electrified forecasting method’, Engineering Letters, Vol. 27, No. 4,
pp.1–12.

Xie, D., Nuakoh, E., Chatterjee, P., Ghattan, A., Edoh, K. and Roy, K. (2021) ‘Traffic sign
recognition for self-driving cars with deep learning’, Advanced Machine Learning Technologies
and Applications: Proceedings of AMLTA, Singapore, pp.207–217.



Modelling and simulation of an autonomous vehicle based on Alexnet 77

Yuan, Z-W. and Jun, Z. (2016) ‘Feature extraction and image retrieval based on AlexNet’, Eighth
International Conference on Digital Image Processing (ICDIP 2016). Vol. 10033. SPIE, 2016,
pp.65–69.

Zheng, Q., Yang, M. , Zhang, Q. and Zhang, X. (2017) ‘Fine-grained image classification based on the
combination of artificial features and deep convolutional activation features’, 2017 IEEE/CIC
International Conference on Communications in China, pp.1-6.

Zheng, Q., Yang, M., Tian, X., Wang, X. and Wang, D. (2020) ‘Rethinking the Role of Activation
Functions in Deep Convolutional Neural Networks for Image Classification’, Engineering
Letters, Vol. 28, No. 1, pp.1–11.

Zhou, S., Liang, W., Li, J. and Kim, J.U. (2018) ‘Improved VGG model for road traffic sign
recognition’, Computers, Materials and Continua, Vol. 57, No. 1, pp.11–24.


