

International Journal of Grid and Utility Computing

ISSN online: 1741-8488 - ISSN print: 1741-847X
https://www.inderscience.com/ijguc

A page weight-based replacement algorithm to enhance the
performance of buffer management in flash memory

Shweta, P.K. Singh

DOI: 10.1504/IJGUC.2023.10060590

Article History:
Received: 13 January 2023
Last revised: 02 April 2023
Accepted: 27 April 2023
Published online: 19 February 2024

Powered by TCPDF (www.tcpdf.org)

Copyright © 2024 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijguc
https://dx.doi.org/10.1504/IJGUC.2023.10060590
http://www.tcpdf.org

Int. J. Grid and Utility Computing, Vol. 15, No. 1, 2024 75

Copyright © 2024 Inderscience Enterprises Ltd.

A page weight-based replacement algorithm to
enhance the performance of buffer management
in flash memory

Shweta and P.K. Singh
Computer Science and Engineering Department,
Madan Mohan Malaviya University of Technology,
Gorakhpur, Uttar Pradesh, India
Email: shweta20989@gmail.com
Email: topksingh@gmail.com
*Corresponding author

Abstract: Flash memory is used in various electronic handheld devices such as laptops and
PDAs as secondary storage because of its excellent performance, low energy consumption,
compact size, high-access speed and resistance to shock with growing density and lowering
prices. However, the intrinsic properties, such as no in-place update and asymmetric I/O
operations, provide challenges to designing buffer replacement strategies. This paper suggests an
improved buffer management strategy called the Page Weight Buffer Replacement (PWBR)
algorithm for flash memory, which considers buffers’ page weight. An eviction approach
is applied which tries to minimise the number of write counts and maintain a higher
buffer hit rate by integrating recency, operational cost and temporal locality. Our finding shows
PWBR is superior to existing buffers’ management policies in terms of increasing the hit ratio of
LRU-WSR, CF-LRU, CCF-LRU and AD-LRU by 9.3%, 6.4%, 3.7% and 2.5% higher,
respectively.

Keywords: buffer replacement algorithm; frequency; recency; page migration.

Reference to this paper should be made as follows: Shweta and Singh, P.K. (2024) ‘A page
weight-based replacement algorithm to enhance the performance of buffer management in flash
memory’, Int. J. Grid and Utility Computing, Vol. 15, No. 1, pp.75–83.

Biographical notes: Shweta received her BTech degree in Computer Science and Engineering
from the Purvanchal University Jaunpur, India and MTech degree in Computer Science and
Engineering from Kamla Nehru Institute of Technology, Sultanpur, India. Currently, she is
working as Research Scholar with Department of Computer Science and Engineering, Madan
Mohan Malaviya University of Technology, Gorakhpur, India. Her current research interests
include flash memory and multicore architectures.

P.K. Singh received his BE degree in Computer Science from the DDU University of Gorakhpur,
Gorakhpur, India, MTech degree in Computer Science and Technology from University
of Roorkee, Roorkee (now IITR) and PhD degree in Computer Science and Engineering
from the DDU University of Gorakhpur. Presently, he is a Professor at Madan Mohan
Malaviya University of Technology in Gorakhpur, India. His current research interests include
memory and parallelism optimisation for storage systems, multi-core architectures and compiler
design.

1 Introduction

SSDs based on NAND flash memory have low-power
consumption, faster reading and writing speed, compact size,
resistance to shock and noise-free performance which makes
it suitable for storage systems (Du et al., 2019; Lawton,
2006). NAND flash memory capacity and cost are growing
due to which an increasing number of consumer gadgets are
now outfitted with flash memory as a secondary storage
device (Mielke et al., 2017). The buffer management strategy
can influence the sequence of access to the flash device,
which affects the system performance. Many ways have been

developed in the study on successful buffer replacement
systems (Jiang et al., 2015; Butt et al., 2007; Javaid et al.,
2017).

Many buffer management methods were presented by
integrating recency and frequency which will aim to
maximise buffer hit rates. Traditional buffer replacement
techniques are intended for hard disc memory, attempting
to improve hit ratio and hence I/O speed (Yao et al., 2019;
Jia et al., 2018; Yuan et al., 2017). Operating systems employ
buffer cache to store portions of disc blocks to decrease I/O
requests. Because the cache buffer is smaller than the disc,
I/O speed can be improved by buffer replacement schemes.

76 Shweta and P.K. Singh

In recent decade, processor performance has improved
quickly due to Moore’s Law. The delayed performance
increase of HDD-based storage systems has led to a growing
performance gap between computation and storage.
Compared to typical HDDs, flash memory features
asymmetric I/O latencies, erase-before-write and restricted
erase cycles, unlike hard disks (Wang and Wong, 2015). It’s
required to modify the flash memory buffer management
algorithm. Flash memory differs from magnetic discs in
numerous ways, including asymmetric I/O performance,
write once and block erase count. Each flash memory block
has a predetermined number of pages (Kim et al., 2018).
Read/write operations takes place on the granularity of page,
while erase operations is performed to block. Write/erase is
slower than read. Write latency is substantially greater than
read latency, while erase operation is much slower than write.
Flash memory has durability issues since blocks are limited to
being erased 10,000 to 100,000 times (Kobayashi et al.,
2017). In other words, a block will get worn out and
unreliable after receiving the fixed amount of erase
operations. The buffer may support various storage layers’
asymmetric I/O speeds. By integrating the buffer with disk
drives, a hard drive or flash memory could be able to handle
upper-layer demands more effectively and quickly. Buffer
improves storage I/O performance. Traditional algorithms are
developed for magnetic discs which cannot be used for flash
memory (Liu et al., 2017). These techniques try to enhance
buffer hit ratio while ignoring flash memory’s asymmetric
I/O performance. They don’t work well with NAND flash
memory storage systems. Traditional buffer management
strategies are ideal for HDDs.

For flash memory buffer management system there is
need of some modifications to cope up with above mentioned
constraints.However, several limitations still limit SSDs
performance. The first is its ‘erase-before-write’ operating
technique (Wu et al., 2017; Chen et al., 2018). An SSD unit
often has several blocks, each storing many pages. Page is the
unit of write and read, whereas block is the unit of erase.
Rewriting a single page requires erasing the whole block
comprising it. Because block erasing takes time, it reduces
SSD performance.

The second problem is SSDs endurance as the
program/erase cycles are restricted to about 1,000,000
depending on NAND flash type. The concerns have been
addressed extensively. FTL stands for Flash Translation
Layer, which is used as an interface so that it can be easily
used as secondary storage (Mittal and Vetter, 2015; Liu et al.,
2017). Many buffer management techniques have constraints
in successfully managing buffer space holding clean data
since the eviction unit size does not correspond to the I/O
request data size.

We suggest the Page Weight-based Buffer Replacement
(PWBR) flash-based buffer management system for
managing the buffer efficiently. The basic idea of PWBR is to
evaluate the weight of page in buffer. The victim page from
the buffer is selected on the basis of weight calculated. The
access frequency, recency and operational cost of page is
taken into consideration. PWBR page migration approach

separates the buffer into two list based on access mode of
page and frequency. The eviction method is modified to
lower the write count and keep the buffer hit ratio high by
integrating real-time eviction cost, page recency and access
frequency.

The rest of this paper is structured as follows.
In Section 2, we examine the characteristics of flash memory
and existing literature on buffer management. A novel buffer
management strategy for flash memory is presented in
Section 3. In Section 4, we evaluate how effectively the
proposed policy has worked. Section 5 concludes the research
in its last paragraph.

2 Background

2.1 Related work

DRAM is employed as the SSD buffer to reduce write
operations. For maximum efficiency, the victim page
selection from the buffer must be done efficiently. SSD buffer
management techniques vary. Before rewriting, the target
area must be erased. Read operations are faster than
write/erase. LRU allows easy operation and a good hit ratio.
Existing approaches concentrate on reducing write
operations.Several techniques reduce write operations to
improve I/O speed. Many algorithms avoid evicting dirty
pages from buffer.The LRU page is selected as victim for
eviction when the system requires more space. Flash memory
writes cost more than reads, hence buffer replacement
methods are used to decrease write operations.

To decrease flash write operations, the CFLRU (Park et
al., 2006) used a clean-first eviction policy, which selects a
clean page over a dirty page as the eviction victim. Many
buffer management techniques use clean first evictions. To
enhance buffer hit ratio, they often adopt a clean-first/cold-
first eviction strategy. Several techniques reduce write
operations to improve I/O speed. In addition to the
wear-leveling degree and the number of erasure operations
(Yoo et al., 2007) extends the original CFLRU method by
incorporating asymmetric read/write costs into the algorithm
design. In particular, CFLRU/C and CFLRU/E take into
account the frequency of access and the quantity of block
erasure operations, respectively. DL-CFLRU/E considerably
increases the wear-leveling level of flash memory while
decreasing the amount of erase operations.

LRU-WSR (Jung et al., 2008) intended to overcome
CF-LRU drawbacks, it evaluates page hotness in buffer and
retains hot dirty pages. It contains tag bit so that cold and
clean pages are removed first. To decrease write requests to
flash memory. Cold detection technique in LRU–WSR is
designed to identify cold dirty pages. Each buffer page has a
cold flag added. A dirty page that was selected as a target has
the cold flag activated. If it isn’t set, the page is relocated to
the buffer’s MRU position and then a new page is selected
from the LRU. If activated, the page is saved to flash memory
as the victim. No matter whether a page seems clean or not, it
will be victimised. On visit, the buffer list dirty page is
transferred to the MRU place and its cold tag is deleted.

 A page weight-based replacement algorithm to enhance the performance 77

Li et al. (2009) introduced a novel page replacement
technique dubbed CCF-LRU. CCF-LRU maintains both the
mixed and cold clean LRU page lists. Cold clean pages are
the only ones on the mixed LRU page list. CCF-LRU first
checks into the cold clean LRU page list, then evicts the
pages in LRU order after that it scans the mixed LRU page
list, identifying the most frequently referred page. It will
activate the cold flag and shift the page to MRU inside the
mixed list. In contrast to CFLRU, LRU-WSR not only
postpones flushing dirty pages but also takes into account
how frequently they are accessed. This enhances the overall
I/O efficiency of the flash memory-based storage system and,
in most instances, secures against serious deterioration of the
buffer hit ratio. It buffers clean and dirty pages using two
LRU lists.

AD-LRU (Jin et al., 2012) employs dynamic cold and hot
areas to prevent evicting buffered clean pages. Pages on the
cold list are removed whenever it reaches a certain size.
Present flash-based approaches are far better than
conventional buffer management policies, which don’t use
access pattern and page locality. Flash-based buffer
management strategies may be optimised.

CLRU (Xu et al., 2014) manages clean and dirty page
listings by LRU order. Both have cold-first and hot-first
regions. By favourably removing cold pages from cold-first
regions and taking into account their frequency of access,
CLRU maximises page hit ratio. It also lowers write operations
by postponing the removal of cold dirty pages effectively.

HDC (Lin et al., 2014) offers a replacement index to evict
pages. This replacement index examines each page’s hotness
and the operation cost of target page to flash memory. It
provides effective way to handle partial update in which
migrates the dirty data of victim page to secondary flash
memory. This reduces the cost of write operations while
simultaneously improving the dependability of flash memory.

Table 1 Comparison of buffer replacement algorithms

Algorithm Granularity Replacement technique

CFLRU Page It evicts preferentially clean pages.

LRU-WSR Page It firstly evicts cold dirty pages.

CCF-LRU Page Pages are evicted in order of cold
clean, hot clean and hot dirty,
respectively.

CLRU Page There is high probability of evicting
the least-referenced page.

ADLRU Page LRU queue in situations where the
size of the cold area does not meet
the minimum required for lc.

FAB Block Block of large size.

BPLRU Block BPLRU handles write request for
buffer memory.

 It redirects reads to the FTL.

CFDC Block Clean pages are prioritised for
replacement, while blocks of dirty
pages are used to write back.

PT-LRU (Cui et al., 2014) preferentially evicts cold clean
pages over hot clean pages. In case the list is empty, pages
which are cold dirty are more likely to be evicted from the
buffer than hot clean pages. By emphasising the eviction of
the cold clean pages, PT-LRU postpones the removal of
hot clean pages. Cold-page detection is used to prevent
permanently retaining dirty pages with in buffer.

3 Proposed architecture of PWBR approach

3.1 Proposed approach

The PWBR is designed to enhance the performance of buffer
by delaying the eviction of pages based on their weight which
tends to improve the buffer hit ratio. In PWBR pages are
classified into four categories: hot clean  HC , cold dirty

 CD cold clean  CC and hot dirty  HD . A page is

referred to as a hot page if it is accessed two or more times;
otherwise, it is known as a cold page. If the pages operation
mode is read it is clean in nature otherwise it is dirty. Pages in
the buffer are differentiated by PWBR based on their weight,
which is determined by the frequency, recency and cost of
operation.

Figure 1 depicts the buffer management of the proposed
PWBR approach, which includes the working list and hold
list. Working list and hold list sizes are L1 and L2,
respectively, while the total buffer size. L is the sum of L1
and L2. Figure 1 shows the process of hit and miss
occurrence in PWBR when a request arrives, it is structured
and placed in a First-In-First-Out (FIFO) queue. The
following steps takes place when request is arrived:

 It is ensured that the requests are processed in the order
that they were received.

 The request is sent through the hash function to see if
there is a match in hash bucket.

 If there is a hit, the buffer will be updated to reflect the
changes made to the pages in either the working list or
the hold list.

 Upon miss, the page which is requested is taken from
memory and the buffer is updated.

 At last, the evicted buffer page is relocated to flash
memory.

3.2 Page weight (PW) algorithm and page
migration policy

The page migration in buffer is done within working list and
hold list and victim is selected is depicted in Figure 2. Hold
list follows the LRU policy whereas working list obeys page
migration according to PW algorithm. Suppose the refrence
of page is denoted by R the sequence Q can be represented as

1 2, , ..., , ...,x uQ R R R R 1 x u  where x is page

sequence number and u represents total refrenced amount.

78 Shweta and P.K. Singh

Figure 1 Buffer management in PWBR

Figure 2 Page migration in PWBR

To determine the weight of the page, we will compute it
based on the following four definitions. The pages access
frequency is provided in Definition 1. Definition 2 defines
recency of page. Definition 3 compute the cost of operation
performed on page. In Definition 4 the weight of page is
calculated by integration of above definitions.

Definition 1: Page Frequency is determined as number of
time page is accessed in certain time period. The access
frequency is calculated by considering hit count and age
count. The time difference between the present time and the
first time page was accessed indicates the age of a page. If
page i’s initial access time is ti and the current time is tc,
then access frequency of page is evaluated as

=APi tc ti

The second required information is the page’s write hit count
in the buffer.The hit count starts at 1 when a page is allocated,
rises by 1 with each write hit and is cleared when flash
memory is flushed. Table 2 shows the Hit and Age count of
pages in buffer at different instances.

Table 2 Hit count(Hc) and age count(Ac) of pages in buffer at
different instances

 T1 T2 T3 T4 T5

Page P P Q P Q R Q R P Q R S T

Ac 1 2 1 3 2 1 3 2 1 4 3 2 1

cH 1 1 1 1 1 1 1 1 2 1 1 2 1

When a new page comes to buffer, the value of age-count is
initialised to 1 and for all existing pages in buffer the age
counts is incremented by 1. When a page is changed, its age-
count is refresh to 1, and for others that has a lower age count
than the updated page is raised by 1. Other pages with high
value of age-count remains unaltered. Any update to a page
with the value of Age-count 1 will leave all buffer pages’ age-
count values unaffected. When a page gets evicted from
buffer, pages with a greater age-count will decremented by 1
whereas remaining pages age count remains unaffected. For
example, as shown in Table 2 hit count and age count at
various time instances, i.e., Tx represents the state of buffer at
time x. At T1 there is only one page P in buffer, at T2 Q is
added so it’s age count becomes 1 whereas the age count of P
is incremented by 1, i.e., 2. At T4, page P’s age count is
reinitialised to 1 and Q and R’s are increased by 1, i.e., 3
and 2, respectively. Therefore, access frequency is calculated
using:

   
 

c

c

H x
AF x

A x
 (1)

Definition 2: The term cR (Recency) is described as the

number of distinct pages that have been referred between
lastest access of page LTR and the last page access LR . A

page has a higher chance of being re-visited the more
recently it has been seen, the recency is calculated by recent
access and current access time of page.Pages with a lower

 A page weight-based replacement algorithm to enhance the performance 79

freshness should be discarded first because recency
indicates how recent page is.

= ,LT L
c L LT

LT

R R
R R R

R


 (2)

Definition 3: The cost of operation  defines the
operation of write and read from memory. Suppose

 1 2= , , , , ,l l l l l
f gR R R R R  and  1 2= , , , , ,l l l l l

y gW W W W W 

are the current g latencies of read and write operations in

flash memory.

 

 

1

1

1 1

1 1

1

1

1 1

1 1

, ,

, ,

g

ff
C Hg g

f yf g
g

yg
C Hg g

f yf y

R
pages C H

R W

W
pages D D

R W





 



 


 
  






 


 

 (3)

Unlike other LRU-based algorithms,  is adaptable based on
the write/read cost ratio of a particular memory device.
Utilising  , the overall latency may be decreased while
taking into account the various features of flash memory.

Definition 4: The weight of page is evaluated using three
previously mentioned arguments:

*=
c

AFweightofpage
R

 (4)

The aforementioned formula is used to compare pages within
the working list’s window. The ultimate eviction decision is
based on page weight, and the page having least weight is
evicted from working to hold list.

3.3 Workflow of PWBR and description of algorithm

The workflow of PWBR algorithm is described in algorithm1.
If there is a request for page access, the hash function
determines if that page exists in the buffer. Hit occurs if that
page is already in buffer; otherwise, it is miss.The page is
moved to the working list’s Most Recently Used (MRU)
position if hit happens in the working list.Whenever hit take
place in hold list or there is miss the subsequent step is to find
whether hold or working list is full. The Page Weight (PW)
algorithm is applied if the required list is full.

After removing the victim page, the requested page is
added to the specified list. Depending on the circumstances,
the eviction may go somewhere different. If hit happens in
the hold list, the victim page is relocated to the MRU position
of the hold list (lines 11–13). The victim page is shifted to the
MRU of the hold list whenever there is a miss in the working
list, and the hold list’s LRU is moved to flash memory (lines
29–32). Whenever there is miss in hold list, eviction of victim
page is done to secondary flash memory (lines 21–23). The
eviction algorithm’s operation is illustrated by Algorithm 2.
The algorithm determines the window’s page weight
(lines 8–11). The mentioned three definitions are used to
calculate weight of page (line 9). A weight map is used to
keep each page’s weight, and the page having least weight is
selected as the victim page as hown in (line 12–17).

Algorithm 1: PWBR Algorithm

1: Initialise RP : Requested page, MP : Access mode of

 page, WL: Working List, HL: Hold List;
2: Output Reference of RP ;

3: if RP belongs to buffer, then;

4: if RP ϵ WL then

5: Migrate RP to MRU of WL

6: else
7: if SizeWL < SizeWL Max then

8: Add RP to MRU of WL

9: else
10: PV ← Evict(WL)

11: Add RP into MRU of WL

12: Add PV to MRU of HL

13: end if
14: end if
15: else
16: if ==MP R then

17: if SizeHL < SizeHL Max then

18: Add RP into MRU of HL

19: else
20: PV ← Evict(HL)

21: Add RP to MRU of HL

22: Remove the PV to secondary memory

23: end if
24: else
25: if SizeWL < SizeWL Max then

26: Add RP to MRU of WL;

27: else
28: PV ← Evict(WL)

29: Add RP to MRU of WL

30: Add PV to MRU of HL

31: Remove LRU of HL to secondary storage
32: end if
33: end if
34: end if
35: return RP .

3.4 Complexity of PWBR

The space and time complexity of the PWBR algorithm is
described in this subsection. The eviction algorithm is the
main cause of time complexity (see in Algorithm 2). The
page weight must be determined for pages in eviction
window. In the hold zone, the eviction window’s size is fixed,
hence the eviction method has O(1) time complexity. As a
result, the PWBR algorithm’s overall time complexity is
O(1). To keep track of each page’s recency and temporal
locality interval PWBR employs extra data structures that

80 Shweta and P.K. Singh

reduce space complexity. As this extra space is constant so
for every page belonging to buffer the complexity is O(1).

Algorithm 2: Algorithm for eviction

1: Initialise P: page, RS : Selected region, WL: Working

List, HL: Hold List, PW : page weight: WM : Weight map ;

2: Output Reference of PV ;

3: if RS belongs to HL, then;

4: Apply LRU in HL of LRU list;
5: return LRU reference of HL;
6: else
7: Execute algorithm1 in WL;
8: forP [0,]w of WL do

9: PW ← PW(P);

10: WM .put  , pP W ;

11: end for
12: for P WM do

13: if P < minimumW then

14: PV ← P

15: minimumW ← WM .get(P);

16: end if
17 return PV

18: end if

4 Performance evaluation

The tests are carried out with the assistance of the simulation
platform known as Flash-DBSim (Su et al., 2009). It is one of
the most widely used open-source simulator for flash memory.
FlashDBSim’s architecture incorporates modules such as Flash
translation layer and Memory technology device. Each module’s
content may be modified to meet research requirements. The
framework for simulator is shown in Figure 3.

Figure 3 Framework of simulator (see online version for colours)

The experimental parameters used in simulator are shown in
Table 3.

Table 3 Parameters

Parameter Description

Size of Page (KB) 2

Size of Block (KB) 64

Page Read (µs) 20

Block Erase (µs) 1500

Page Write (µs) 200

Three metrics are analysed in this simulation which are
runtime, hit ratio and write count. Table 4 provides a detailed
description of the two synthetic traces which are gathered by
Zipfian distribution, with the read-and-write proportion
showing the percentage of total read and write requests .The
locality indicates the number of operations carried out on a
significant number of pages.From read-intensive to write-
intensive, there are two synthetic traces, each with 300,000
requests. A storage system’s workload may be inferred from
varying ratios of all activities, and access patterns of distinct
upper-layer applications can be seen in combination at
different locations.The reference localisation ‘80%/40%’
indicates that 80% of the references are densely done in 20%
of the pages.

Table 4 I/O synthetic trace characteristics

Trace
Total

Request
Reference

Locality (%)
Read

or Write

T1 300,000 80/20 70%/30%

T2 300,000 80/20 90%/10%

The second category of traces includes the real-world traces
Financial1 shown in Table 5. that was generated by recording
OLTP application requests at a major financial institution
which were made accessible by Storage Networking Industry
Association (Umass.edu, 2018). These traces T1 & T2 are
often used for performance evaluation of storage systems.
Analysis and comparison of the simulation’s outcomes with
those from various buffer replacement methods, which are
referred to as LRU-WSR, CCF-LRU, CFLRU and AD-LRU
correspondingly.

Table 5 I/O real world trace characteristics

Trace
Total

Request
Read

Ratio (%)
Write

Ratio (%)

Financial 1 5,334,987 23.2 76.8

Figures 4, 5 and 6 show hit rates for five buffer replacement
algorithms. The hit ratio increases with a larger buffer, but the
growth rate slows. Among other four policies PWBR has
better hit rate because it takes into consideration of weight of
page which is evaluated using frequency and recency. Hence,
the active pages can be stayed longer into buffer showing
highest hit ratio compared to others policies. The number of

 A page weight-based replacement algorithm to enhance the performance 81

hit ratio for trace T1 at buffer size 3 MB is calculated to
compare it with those of CF-LRU, LRU-WSR, CCF-LRU
and AD-LRU and it was found that PWBR performs better
than the existing approaches and increases the hit rate by
9.3%, 6.4%, 3.7% and 2.5% higher, respectively.

Figure 4 Hit ratio for T1 (see online version for colours)

Figure 5 Hit ratio for T2 (see online version for colours)

Figure 6 Hit ratio for Financial 1 (see online version for colours)

Figures 7, 8 and 9 represent algorithm runtimes of five buffer
replacement policies for various buffer sizes PWBR has
minimal runtime. Asymmetric I/O latencies cause small
discrepancies in flash memory write operations. It makes
dirty pages more significant and prolongs their persistence.
Therefore, buffer replacement methods are designed to reduce
writes. Runtime falls slower than memory time when buffer

capacity is big. In comparison to AD-LRU, LRU-WSR,
CCF-LRU and CFLRU the proposed PWBR decreases the
runtime of T1 for buffer size 3 MB by 50.2%, 41.8%, 38.2%
and 14.1%.

Figure 7 Runtime for T1 (see online version for colours)

Figure 8 Runtime for T2 (see online version for colours)

Figure 9 Runtime for Financial 1 (see online version
for colours)

Figures 10, 11 and 12 demonstrate how buffer size affects
algorithm write counts. Since the pages having frequency and
recency are stayed longer in buffer it can be seen, PWBR
only requires a small amount of flash write operation to flash
storage system. As the write operations decreases the lifetime
of flash memory increases. Since it keeps dirty pages longer
in buffer so there is probability of high-hit ratio and lesser

82 Shweta and P.K. Singh

amount of write operation. For PWBR the write count for
trace T1 at buffer size 3 MB is reduced by 48.4%, 42.2%,
31.5% and 10.7% compared by LRU-WSR, CFLRU,
CCF-LRU and AD-LRU, respectively.

Figure 10 Write count for T1 (see online version for colours)

Figure 11 Write count for T2 (see online version for colours)

Figure 12 Write count for Financial 1 (see online version for colours)

5 Conclusions

A flash memory buffer’s efficiency improves system
performance. To tackle the shortcomings of current
algorithms, we presented PWBR, a page weight buffer
replacement algorithm that uses a page’s weight to determine
how long it may remain in the buffer.Buffer is partitioned into
working and hold list which guarantee the efficiency and

accuracy of buffer. Meantime, pages in the buffer are
classified into different kinds based on their access method
and frequency, which have a significant impact on the hit
ratio. PWBR introduces a evolutionary page migration
mechanism to improve buffer efficiency over existing LRU-
based replacement methods. An eviction algorithm is
designed for reducing the latency by integrating recency,
temporal locality and operational cost of page. Two synthetic
traces and one real world trace were taken for simulation, and
tests results revealed that the suggested PWBR method
provides performance superior to that of current techniques
in terms of total runtime, flash operations and buffer hit ratio.
We simulated PWBR and other algorithms using the Flash-
DBSim simulator. PWBR is more efficient than other buffer
management strategies in context of hit rate, write count and
overall runtime. The number of hit ratio for trace T1 at buffer
size 3 MB is calculated to compare it with LRU-WSR, CF-
LRU, CCF-LRU and AD-LRU and it was found that PWBR
performs better than the existing approaches and increases the
hit rate by 6.4%,9.3%, 3.7% and 2.5% higher, respectively.

Our ongoing research will concentrate on the use of the
PWBR algorithm in many contexts. In particular, a database
engine and DBMS will be connected with the PWBR
technique. Our future study will also encompass the PWBR
algorithm’s implementation in big data analysis in various
IoT applications.

References

Butt, A.R., Gniady, C. and Hu, Y.C. (2007) ‘The performance
impact of kernel prefetching on buffer cache replacement
algorithms’, IEEE Transactions on Computers, Vol. 56, No. 7,
pp.889–908.

Chen, X., Li, Y. and Zhang, T. (2018) ‘Reducing flash memory write
traffic by exploiting a few mbs of capacitor-powered write
buffer inside solid-state drives (ssds)’, IEEE Transactions on
Computers, Vol. 68, No. 3, pp.426–439.

Cui, J., Wu, W., Wang, Y. and Duan, Z. (2014) ‘Pt-Lru: a
probabilistic page replacement algorithm for nand flash-based
consumer electronics’, IEEE Transactions on Consumer
Electronics, Vol. 60, No. 4, pp.614–622.

Du, C., Yao, Y., Zhou, J. and Xu, X. (2019) ‘Vbbms: a novel buffer
management strategy for nand flash storage devices’,
IEEE Transactions on Consumer Electronics, Vol. 65, No. 2,
pp.134–141.

Javaid, Q., Zafar, A., Awais, M. and Shah, M.A. (2017) ‘Cache
memory: an analysis on replacement algorithms and
optimization techniques’, Mehran University Research Journal
of Engineering and Technology, Vol. 36, No. 4, pp.831–840.

Jia, G., Han, G., Wang, H. and Wang, F. (2018) ‘Cost aware cache
replacement policy in shared last-level cache for hybrid
memory based fog computing’, Enterprise Information
Systems, Vol. 12, No. 4, pp.435–451.

Jiang, Z., Zhang, Y., Wang, J. and Xing, C. (2015) ‘A cost-aware
buffer management policy for flash-based storage devices’,
Proceedings of the 20th International Conference Database
Systems for Advanced Applications, 20–23 April, Springer,
Hanoi, Vietnam, pp.175–190.

Jin, P., Ou, Y., Härder, T. and Li, Z. (2012) ‘Ad-Lru: an efficient
buffer replacement algorithm for flash-based databases’, Data
and Knowledge Engineering, Vol. 72, pp.83–102.

 A page weight-based replacement algorithm to enhance the performance 83

Jung, H., Shim, H., Park, S., Kang, S. and Cha, J. (2008) ‘Lru-Wsr:
integration of lru and writes sequence reordering for flash
memory’, IEEE Transactions on Consumer Electronics,
Vol. 54, No. 3, pp.1215–1223.

Kim, S., Eom, H. and Son, Y. (2018) ‘Improving spatial locality in
virtual machine for flash storage’, IEEE Access, Vol.7,
pp.1668–1676.

Kobayashi, K.M., Miyazaki, S. and Okabe, Y. (2017) ‘Competitive
buffer management for multi-queue switches in qos networks
using packet buffering algorithms’, Theoretical Computer
Science, Vol. 675, pp.27–42, 2017.

Lawton, G. (2006) ‘Improved flash memory grows in popularity’,
Computer, Vol. 39, No. 1, pp.16–18.

Li, Z., Jin, P., Su, X., Cui, K. and Yue, L. (2009) ‘Ccf-Lru: a new
buffer replacement algorithm for flash memory’, IEEE
Transactions on Consumer Electronics, Vol. 55, No. 3,
pp.1351–1359.

Lin, M., Chen, S., Wang, G. and Wu, T. (2014) ‘Hdc: an adaptive
buffer replacement algorithm for nand flash memory-based
databases’, Optik, Vol. 125, No. 3, pp.1167–1173.

Liu, D., Yao, L., Long, L., Shao, Z. and Guan, Y. (2017) ‘A
workload-aware flash translation layer enhancing performance
and lifespan of tlc/slc dual-mode flash memory in
embedded systems’, Microprocessors and Microsystems,
Vol. 52, pp.343–354.

Liu, X., Lu, Y., Yu, J. and Lu, Y. (2017) ‘Optimizing read and write
performance based on deep understanding of SSD’,
Proceedings of the 3rd IEEE International Conference on
Computer and Communications (ICCC), pp.2607–2616.

Mielke, N.R., Frickey, R.E., Kalastirsky, I., Quan, M., Ustinov, D.
and Vasudevan, V.J. (2017) ‘Reliability of solid-state drives
based on nand flash memory’, Proceedings of the IEEE,
Vol. 105, No. 9, pp.1725–1750.

Mittal, S. and Vetter, J.S. (2015) ‘A survey of software techniques
for using non-volatile memories for storage and main memory
systems’, IEEE Transactions on Parallel and Distributed
Systems, Vol. 27, No. 5, pp.1537–1550.

Park, S-Y., Jung, D., Kang, J-U., Kim, J-S. and Lee, J. (2006)
‘Cflru: a replacement algorithm for flash memory’,
Proceedings of the International Conference on Compilers,
Architecture and Synthesis for Embedded Systems,
pp.234–241.

Su, X., Jin, P., Xiang, X., Cui, K. and Yue, L. (2009) ‘Flash-dbsim: a
simulation tool for evaluating flash-based database algorithms’,
Proceedings of the 2nd IEEE International Conference on
Computer Science and Information Technology, IEEE,
pp.185–189.

Umass.edu (2018) I/O Traces From UMass Trace Repository,
Storage Networking Industry Association. Available online at:
http://traces.cs.umass.edu/index.php/Storage/Storage (accessed
on 15 March 2018).

Wang, C. and Wong, W-F. (2015) ‘Treeftl: an efficient workload-
adaptive algorithm for ram buffer management of nand flash-
based devices’, IEEE Transactions on Computers, Vol. 65,
No. 8, pp.2618–2630.

Wu, C-H., Wu, D-Y., Chou, H-M. and Cheng, C-A. (2017) ‘Rethink
the design of flash translation layers in a component-based
view’, IEEE Access, Vol. 5, pp.12895–12912.

Xu, G., Lin, F. and Xiao, Y. (2014) ‘Clru: a new page replacement
algorithm for nand flash-based consumer electronics’,
IEEE Transactions on Consumer Electronics, Vol. 60, No. 1,
pp.38–44.

Yao, Y., Kong, X., Zhou, J., Xu, X., Feng, W. and Liu, Z. (2019)
‘An advanced adaptive least recently used buffer
management algorithm for ssd’, IEEE Access, Vol. 7,
pp.33494–33505.

Yoo, Y-S., Lee, H., Ryu, Y. and Bahn, H. (2007) ‘Page replacement
algorithms for nand flash memory storages’, Proceedings of the
International Conference on Computational Science and its
Applications, Springer, pp.201–212.

Yuan, Y., Shen, Y., Li, W., Yu, D., Yan, L. and Wang, Y. (2017)
‘Pr-lru: a novel buffer replacement algorithm based on the
probability of reference for flash memory’, IEEE Access,
Vol. 5, pp.12626–12634.

