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Abstract: Flash memory is used in various electronic handheld devices such as laptops and 
PDAs as secondary storage because of its excellent performance, low energy consumption, 
compact size, high-access speed and resistance to shock with growing density and lowering 
prices. However, the intrinsic properties, such as no in-place update and asymmetric I/O 
operations, provide challenges to designing buffer replacement strategies. This paper suggests an 
improved buffer management strategy called the Page Weight Buffer Replacement (PWBR) 
algorithm for flash memory, which considers buffers’ page weight. An eviction approach  
is applied which tries to minimise the number of write counts and maintain a higher  
buffer hit rate by integrating recency, operational cost and temporal locality. Our finding shows 
PWBR is superior to existing buffers’ management policies in terms of increasing the hit ratio of 
LRU-WSR, CF-LRU, CCF-LRU and AD-LRU by 9.3%, 6.4%, 3.7% and 2.5% higher, 
respectively.  
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1 Introduction 

SSDs based on NAND flash memory have low-power 
consumption, faster reading and writing speed, compact size, 
resistance to shock and noise-free performance which makes 
it suitable for storage systems (Du et al., 2019; Lawton, 
2006). NAND flash memory capacity and cost are growing 
due to which an increasing number of consumer gadgets are 
now outfitted with flash memory as a secondary storage 
device (Mielke et al., 2017). The buffer management strategy 
can influence the sequence of access to the flash device, 
which affects the system performance. Many ways have been 

developed in the study on successful buffer replacement 
systems (Jiang et al., 2015; Butt et al., 2007; Javaid et al., 
2017). 

Many buffer management methods were presented by 
integrating recency and frequency which will aim to 
maximise buffer hit rates. Traditional buffer replacement 
techniques are intended for hard disc memory, attempting  
to improve hit ratio and hence I/O speed (Yao et al., 2019;  
Jia et al., 2018; Yuan et al., 2017). Operating systems employ 
buffer cache to store portions of disc blocks to decrease I/O 
requests. Because the cache buffer is smaller than the disc, 
I/O speed can be improved by buffer replacement schemes. 
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In recent decade, processor performance has improved 
quickly due to Moore’s Law. The delayed performance 
increase of HDD-based storage systems has led to a growing 
performance gap between computation and storage. 
Compared to typical HDDs, flash memory features 
asymmetric I/O latencies, erase-before-write and restricted 
erase cycles, unlike hard disks (Wang and Wong, 2015). It’s 
required to modify the flash memory buffer management 
algorithm. Flash memory differs from magnetic discs in 
numerous ways, including asymmetric I/O performance, 
write once and block erase count. Each flash memory block 
has a predetermined number of pages (Kim et al., 2018). 
Read/write operations takes place on the granularity of page, 
while erase operations is performed to block. Write/erase is 
slower than read. Write latency is substantially greater than 
read latency, while erase operation is much slower than write. 
Flash memory has durability issues since blocks are limited to 
being erased 10,000 to 100,000 times (Kobayashi et al., 
2017). In other words, a block will get worn out and 
unreliable after receiving the fixed amount of erase 
operations. The buffer may support various storage layers’ 
asymmetric I/O speeds. By integrating the buffer with disk 
drives, a hard drive or flash memory could be able to handle 
upper-layer demands more effectively and quickly. Buffer 
improves storage I/O performance. Traditional algorithms are 
developed for magnetic discs which cannot be used for flash 
memory (Liu et al., 2017). These techniques try to enhance 
buffer hit ratio while ignoring flash memory’s asymmetric 
I/O performance. They don’t work well with NAND flash 
memory storage systems. Traditional buffer management 
strategies are ideal for HDDs. 

For flash memory buffer management system there is 
need of some modifications to cope up with above mentioned 
constraints.However, several limitations still limit SSDs 
performance. The first is its ‘erase-before-write’ operating 
technique (Wu et al., 2017; Chen et al., 2018). An SSD unit 
often has several blocks, each storing many pages. Page is the 
unit of write and read, whereas block is the unit of erase. 
Rewriting a single page requires erasing the whole block 
comprising it. Because block erasing takes time, it reduces 
SSD performance. 

The second problem is SSDs endurance as the 
program/erase cycles are restricted to about 1,000,000 
depending on NAND flash type. The concerns have been 
addressed extensively. FTL stands for Flash Translation 
Layer, which is used as an interface so that it can be easily 
used as secondary storage (Mittal and Vetter, 2015; Liu et al., 
2017). Many buffer management techniques have constraints 
in successfully managing buffer space holding clean data 
since the eviction unit size does not correspond to the I/O 
request data size. 

We suggest the Page Weight-based Buffer Replacement 
(PWBR) flash-based buffer management system for 
managing the buffer efficiently. The basic idea of PWBR is to 
evaluate the weight of page in buffer. The victim page from 
the buffer is selected on the basis of weight calculated. The 
access frequency, recency and operational cost of page is 
taken into consideration. PWBR page migration approach 

separates the buffer into two list based on access mode of 
page and frequency. The eviction method is modified to 
lower the write count and keep the buffer hit ratio high by 
integrating real-time eviction cost, page recency and access 
frequency. 

The rest of this paper is structured as follows.  
In Section 2, we examine the characteristics of flash memory 
and existing literature on buffer management. A novel buffer 
management strategy for flash memory is presented in 
Section 3. In Section 4, we evaluate how effectively the 
proposed policy has worked. Section 5 concludes the research 
in its last paragraph. 

2 Background 

2.1 Related work 

DRAM is employed as the SSD buffer to reduce write 
operations. For maximum efficiency, the victim page 
selection from the buffer must be done efficiently. SSD buffer 
management techniques vary. Before rewriting, the target 
area must be erased. Read operations are faster than 
write/erase. LRU allows easy operation and a good hit ratio. 
Existing approaches concentrate on reducing write 
operations.Several techniques reduce write operations to 
improve I/O speed. Many algorithms avoid evicting dirty 
pages from buffer.The LRU page is selected as victim for 
eviction when the system requires more space. Flash memory 
writes cost more than reads, hence buffer replacement 
methods are used to decrease write operations. 

To decrease flash write operations, the CFLRU (Park et 
al., 2006) used a clean-first eviction policy, which selects a 
clean page over a dirty page as the eviction victim. Many 
buffer management techniques use clean first evictions. To 
enhance buffer hit ratio, they often adopt a clean-first/cold-
first eviction strategy. Several techniques reduce write 
operations to improve I/O speed. In addition to the  
wear-leveling degree and the number of erasure operations 
(Yoo et al., 2007) extends the original CFLRU method by 
incorporating asymmetric read/write costs into the algorithm 
design. In particular, CFLRU/C and CFLRU/E take into 
account the frequency of access and the quantity of block 
erasure operations, respectively. DL-CFLRU/E considerably 
increases the wear-leveling level of flash memory while 
decreasing the amount of erase operations. 

LRU-WSR (Jung et al., 2008) intended to overcome  
CF-LRU drawbacks, it evaluates page hotness in buffer and 
retains hot dirty pages. It contains tag bit so that cold and 
clean pages are removed first. To decrease write requests to 
flash memory. Cold detection technique in LRU–WSR is 
designed to identify cold dirty pages. Each buffer page has a 
cold flag added. A dirty page that was selected as a target has 
the cold flag activated. If it isn’t set, the page is relocated to 
the buffer’s MRU position and then a new page is selected 
from the LRU. If activated, the page is saved to flash memory 
as the victim. No matter whether a page seems clean or not, it 
will be victimised. On visit, the buffer list dirty page is 
transferred to the MRU place and its cold tag is deleted. 
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Li et al. (2009) introduced a novel page replacement 
technique dubbed CCF-LRU. CCF-LRU maintains both the 
mixed and cold clean LRU page lists. Cold clean pages are 
the only ones on the mixed LRU page list. CCF-LRU first 
checks into the cold clean LRU page list, then evicts the 
pages in LRU order after that it scans the mixed LRU page 
list, identifying the most frequently referred page. It will 
activate the cold flag and shift the page to MRU inside the 
mixed list. In contrast to CFLRU, LRU-WSR not only 
postpones flushing dirty pages but also takes into account 
how frequently they are accessed. This enhances the overall 
I/O efficiency of the flash memory-based storage system and, 
in most instances, secures against serious deterioration of the 
buffer hit ratio. It buffers clean and dirty pages using two 
LRU lists. 

AD-LRU (Jin et al., 2012) employs dynamic cold and hot 
areas to prevent evicting buffered clean pages. Pages on the 
cold list are removed whenever it reaches a certain size. 
Present flash-based approaches are far better than 
conventional buffer management policies, which don’t use 
access pattern and page locality. Flash-based buffer 
management strategies may be optimised. 

CLRU (Xu et al., 2014) manages clean and dirty page 
listings by LRU order. Both have cold-first and hot-first 
regions. By favourably removing cold pages from cold-first 
regions and taking into account their frequency of access, 
CLRU maximises page hit ratio. It also lowers write operations 
by postponing the removal of cold dirty pages effectively. 

HDC (Lin et al., 2014) offers a replacement index to evict 
pages. This replacement index examines each page’s hotness 
and the operation cost of target page to flash memory. It 
provides effective way to handle partial update in which 
migrates the dirty data of victim page to secondary flash 
memory. This reduces the cost of write operations while 
simultaneously improving the dependability of flash memory. 

Table 1 Comparison of buffer replacement algorithms 

Algorithm  Granularity  Replacement technique  

CFLRU  Page It evicts preferentially clean pages. 

LRU-WSR  Page It firstly evicts cold dirty pages. 

CCF-LRU  Page Pages are evicted in order of cold 
clean, hot clean and hot dirty, 
respectively. 

CLRU  Page There is high probability of evicting 
the least-referenced page. 

ADLRU  Page LRU queue in situations where the 
size of the cold area does not meet 
the minimum required for lc. 

FAB  Block Block of large size. 

BPLRU  Block BPLRU handles write request for 
buffer memory. 

  It redirects reads to the FTL. 

CFDC  Block Clean pages are prioritised for 
replacement, while blocks of dirty 
pages are used to write back. 

 

PT-LRU (Cui et al., 2014) preferentially evicts cold clean 
pages over hot clean pages. In case the list is empty, pages 
which are cold dirty are more likely to be evicted from the 
buffer than hot clean pages. By emphasising the eviction of 
the cold clean pages, PT-LRU postpones the removal of  
hot clean pages. Cold-page detection is used to prevent 
permanently retaining dirty pages with in buffer. 

3 Proposed architecture of PWBR approach 

3.1 Proposed approach 

The PWBR is designed to enhance the performance of buffer 
by delaying the eviction of pages based on their weight which 
tends to improve the buffer hit ratio. In PWBR pages are 
classified into four categories: hot clean  HC , cold dirty 

 CD  cold clean  CC  and hot dirty  HD . A page is 

referred to as a hot page if it is accessed two or more times; 
otherwise, it is known as a cold page. If the pages operation 
mode is read it is clean in nature otherwise it is dirty. Pages in 
the buffer are differentiated by PWBR based on their weight, 
which is determined by the frequency, recency and cost of 
operation. 

Figure 1 depicts the buffer management of the proposed 
PWBR approach, which includes the working list and hold 
list. Working list and hold list sizes are L1 and L2, 
respectively, while the total buffer size. L is the sum of L1 
and L2. Figure 1 shows the process of hit and miss 
occurrence in PWBR when a request arrives, it is structured 
and placed in a First-In-First-Out (FIFO) queue. The 
following steps takes place when request is arrived: 

 It is ensured that the requests are processed in the order 
that they were received.  

 The request is sent through the hash function to see if 
there is a match in hash bucket.  

 If there is a hit, the buffer will be updated to reflect the 
changes made to the pages in either the working list or 
the hold list.  

 Upon miss, the page which is requested is taken from 
memory and the buffer is updated.  

 At last, the evicted buffer page is relocated to flash 
memory.  

3.2 Page weight (PW) algorithm and page  
migration policy 

The page migration in buffer is done within working list and 
hold list and victim is selected is depicted in Figure 2. Hold 
list follows the LRU policy whereas working list obeys page 
migration according to PW algorithm. Suppose the refrence 
of page is denoted by R the sequence Q can be represented as 

1 2, , ..., , ...,x uQ R R R R  1 x u    where x is page 

sequence number and u represents total refrenced amount. 
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Figure 1 Buffer management in PWBR 

 

Figure 2 Page migration in PWBR 

 
 

To determine the weight of the page, we will compute it 
based on the following four definitions. The pages access 
frequency is provided in Definition 1. Definition 2 defines 
recency of page. Definition 3 compute the cost of operation 
performed on page. In Definition 4 the weight of page is 
calculated by integration of above definitions. 

Definition 1: Page Frequency is determined as number of 
time page is accessed in certain time period. The access 
frequency is calculated by considering hit count and age 
count. The time difference between the present time and the 
first time page was accessed indicates the age of a page. If 
page i’s initial access time is ti and the current time is tc, 
then access frequency of page is evaluated as  

=APi tc ti  

The second required information is the page’s write hit count 
in the buffer.The hit count starts at 1 when a page is allocated, 
rises by 1 with each write hit and is cleared when flash 
memory is flushed. Table 2 shows the Hit and Age count of 
pages in buffer at different instances. 

Table 2 Hit count(Hc) and age count(Ac) of pages in buffer at 
different instances 

 T1 T2 T3 T4 T5 

Page P P Q P Q R Q R P Q R S T 

Ac 1 2 1 3 2 1 3 2 1 4 3 2 1 

cH  1 1 1 1 1 1 1 1 2 1 1 2 1 

When a new page comes to buffer, the value of age-count is 
initialised to 1 and for all existing pages in buffer the age 
counts is incremented by 1. When a page is changed, its age-
count is refresh to 1, and for others that has a lower age count 
than the updated page is raised by 1. Other pages with high 
value of age-count remains unaltered. Any update to a page 
with the value of Age-count 1 will leave all buffer pages’ age-
count values unaffected. When a page gets evicted from 
buffer, pages with a greater age-count will decremented by 1 
whereas remaining pages age count remains unaffected. For 
example, as shown in Table 2 hit count and age count at 
various time instances, i.e., Tx represents the state of buffer at 
time x. At T1 there is only one page P in buffer, at T2 Q is 
added so it’s age count becomes 1 whereas the age count of P 
is incremented by 1, i.e., 2. At T4, page P’s age count is 
reinitialised to 1 and Q and R’s are increased by 1, i.e., 3  
and 2, respectively. Therefore, access frequency is calculated 
using: 

   
 

c

c

H x
AF x

A x
   (1) 

Definition 2: The term cR  (Recency) is described as the 

number of distinct pages that have been referred between 
lastest access of page LTR  and the last page access LR . A 

page has a higher chance of being re-visited the more 
recently it has been seen, the recency is calculated by recent 
access and current access time of page.Pages with a lower 
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freshness should be discarded first because recency 
indicates how recent page is.  

= ,LT L
c L LT

LT

R R
R R R

R


   (2) 

Definition 3: The cost of operation   defines the  
operation of write and read from memory. Suppose 

 1 2= , , , , ,l l l l l
f gR R R R R   and  1 2= , , , , ,l l l l l

y gW W W W W   

are the current g  latencies of read and write operations in 

flash memory.  
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





 


 

  (3) 

Unlike other LRU-based algorithms,   is adaptable based on 
the write/read cost ratio of a particular memory device. 
Utilising  , the overall latency may be decreased while 
taking into account the various features of flash memory. 

Definition 4: The weight of page is evaluated using three 
previously mentioned arguments:  

*=
c

AFweightofpage
R

  (4) 

The aforementioned formula is used to compare pages within 
the working list’s window. The ultimate eviction decision is 
based on page weight, and the page having least weight is 
evicted from working to hold list. 

3.3 Workflow of PWBR and description of algorithm 

The workflow of PWBR algorithm is described in algorithm1. 
If there is a request for page access, the hash function 
determines if that page exists in the buffer. Hit occurs if that 
page is already in buffer; otherwise, it is miss.The page is 
moved to the working list’s Most Recently Used (MRU) 
position if hit happens in the working list.Whenever hit take 
place in hold list or there is miss the subsequent step is to find 
whether hold or working list is full. The Page Weight (PW) 
algorithm is applied if the required list is full. 

After removing the victim page, the requested page is 
added to the specified list. Depending on the circumstances, 
the eviction may go somewhere different. If hit happens in 
the hold list, the victim page is relocated to the MRU position 
of the hold list (lines 11–13). The victim page is shifted to the 
MRU of the hold list whenever there is a miss in the working 
list, and the hold list’s LRU is moved to flash memory (lines 
29–32). Whenever there is miss in hold list, eviction of victim 
page is done to secondary flash memory (lines 21–23). The 
eviction algorithm’s operation is illustrated by Algorithm 2. 
The algorithm determines the window’s page weight  
(lines 8–11). The mentioned three definitions are used to 
calculate weight of page (line 9). A weight map is used to 
keep each page’s weight, and the page having least weight is 
selected as the victim page as hown in (line 12–17). 

Algorithm 1: PWBR Algorithm  

1: Initialise RP : Requested page, MP  : Access mode of 

 page, WL: Working List, HL: Hold List; 
2: Output Reference of RP ; 

3: if RP  belongs to buffer, then; 

4:   if RP  ϵ WL then 

5:     Migrate RP  to MRU of WL 

6:    else  
7:     if SizeWL  <  SizeWL Max  then 

8:      Add RP  to MRU of WL  

9:      else  
10:   PV  ← Evict(WL)  

11:    Add RP  into MRU of WL  

12:    Add PV  to MRU of HL  

13:    end if  
14:   end if  
15:     else  
16:      if ==MP R  then  

17:       if SizeHL < SizeHL Max  then  

18:        Add RP  into MRU of HL  

19:      else  
20:      PV  ← Evict(HL)  

21:      Add RP  to MRU of HL  

22:      Remove the PV  to secondary memory  

23:     end if  
24:    else  
25:    if SizeWL < SizeWL Max  then  

26:      Add RP  to MRU of WL;  

27:    else  
28:    PV  ← Evict(WL)  

29:     Add RP  to MRU of WL  

30:     Add PV  to MRU of HL  

31:     Remove LRU of HL to secondary storage  
32:    end if  
33:   end if  
34:  end if  
35: return RP . 

3.4 Complexity of PWBR 

The space and time complexity of the PWBR algorithm is 
described in this subsection. The eviction algorithm is the 
main cause of time complexity (see in Algorithm 2). The 
page weight must be determined for pages in eviction 
window. In the hold zone, the eviction window’s size is fixed, 
hence the eviction method has O(1) time complexity. As a 
result, the PWBR algorithm’s overall time complexity is 
O(1). To keep track of each page’s recency and temporal 
locality interval PWBR employs extra data structures that 
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reduce space complexity. As this extra space is constant so 
for every page belonging to buffer the complexity is O(1). 

Algorithm 2: Algorithm for eviction 

1: Initialise  P: page, RS : Selected region, WL: Working 

List, HL: Hold List, PW : page weight: WM : Weight map ; 

2: Output Reference of PV ;  

3: if RS  belongs to HL, then;  

4:     Apply LRU in HL of LRU list;  
5:     return LRU reference of HL;  
6: else  
7:      Execute algorithm1 in WL;  
8:      forP [0, ]w of WL do  

9:     PW  ← PW(P);  

10:   WM .put  , pP W ;  

11:    end for  
12:    for P WM  do  

13:       if P <  minimumW  then  

14:         PV  ←  P  

15:        minimumW ← WM .get(P);  

16:      end if  
17       return PV   

18:    end if    

4 Performance evaluation 

The tests are carried out with the assistance of the simulation 
platform known as Flash-DBSim (Su et al., 2009). It is one of 
the most widely used open-source simulator for flash memory. 
FlashDBSim’s architecture incorporates modules such as Flash 
translation layer and Memory technology device. Each module’s 
content may be modified to meet research requirements. The 
framework for simulator is shown in Figure 3. 

Figure 3 Framework of simulator (see online version for colours) 

 

The experimental parameters used in simulator are shown in 
Table 3.   

Table 3 Parameters 

Parameter Description 

Size of Page (KB) 2 

Size of Block (KB) 64 

Page Read (µs) 20 

Block Erase (µs) 1500 

Page Write (µs) 200 

Three metrics are analysed in this simulation which are 
runtime, hit ratio and write count. Table 4 provides a detailed 
description of the two synthetic traces which are gathered by 
Zipfian distribution, with the read-and-write proportion 
showing the percentage of total read and write requests .The 
locality indicates the number of operations carried out on a 
significant number of pages.From read-intensive to write-
intensive, there are two synthetic traces, each with 300,000 
requests. A storage system’s workload may be inferred from 
varying ratios of all activities, and access patterns of distinct 
upper-layer applications can be seen in combination at 
different locations.The reference localisation ‘80%/40%’ 
indicates that 80% of the references are densely done in 20% 
of the pages. 

Table 4 I/O synthetic trace characteristics 

Trace 
Total  

Request 
Reference 

Locality (%) 
Read 

or Write 

T1 300,000 80/20 70%/30% 

T2 300,000 80/20 90%/10% 

The second category of traces includes the real-world traces 
Financial1 shown in Table 5. that was generated by recording 
OLTP application requests at a major financial institution 
which were made accessible by Storage Networking Industry 
Association (Umass.edu, 2018). These traces T1 & T2 are 
often used for performance evaluation of storage systems. 
Analysis and comparison of the simulation’s outcomes with 
those from various buffer replacement methods, which are 
referred to as LRU-WSR, CCF-LRU, CFLRU and AD-LRU 
correspondingly. 

Table 5 I/O real world trace characteristics 

Trace 
Total 

Request 
Read 

Ratio (%) 
Write 

Ratio (%) 

Financial 1 5,334,987 23.2 76.8 

Figures 4, 5 and 6 show hit rates for five buffer replacement 
algorithms. The hit ratio increases with a larger buffer, but the 
growth rate slows. Among other four policies PWBR has 
better hit rate because it takes into consideration of weight of 
page which is evaluated using frequency and recency. Hence, 
the active pages can be stayed longer into buffer showing 
highest hit ratio compared to others policies. The number of 
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hit ratio for trace T1 at buffer size 3 MB is calculated to 
compare it with those of CF-LRU, LRU-WSR, CCF-LRU 
and AD-LRU and it was found that PWBR performs better 
than the existing approaches and increases the hit rate by 
9.3%, 6.4%, 3.7% and 2.5% higher, respectively. 

Figure 4  Hit ratio for T1 (see online version for colours) 

 

Figure 5 Hit ratio for T2 (see online version for colours) 

 

Figure 6  Hit ratio for Financial 1 (see online version for colours) 

 

Figures 7, 8 and 9 represent algorithm runtimes of five buffer 
replacement policies for various buffer sizes PWBR has 
minimal runtime. Asymmetric I/O latencies cause small 
discrepancies in flash memory write operations. It makes 
dirty pages more significant and prolongs their persistence. 
Therefore, buffer replacement methods are designed to reduce 
writes. Runtime falls slower than memory time when buffer 

capacity is big. In comparison to AD-LRU, LRU-WSR,  
CCF-LRU and CFLRU the proposed PWBR decreases the 
runtime of T1 for buffer size 3 MB by 50.2%, 41.8%, 38.2% 
and 14.1%. 

Figure 7  Runtime for T1 (see online version for colours) 

 

Figure 8  Runtime for T2 (see online version for colours) 

 

Figure 9 Runtime for Financial 1 (see online version  
for colours) 

 

Figures 10, 11 and 12 demonstrate how buffer size affects 
algorithm write counts. Since the pages having frequency and 
recency are stayed longer in buffer it can be seen, PWBR 
only requires a small amount of flash write operation to flash 
storage system. As the write operations decreases the lifetime 
of flash memory increases. Since it keeps dirty pages longer 
in buffer so there is probability of high-hit ratio and lesser 



82 Shweta and P.K. Singh  

amount of write operation. For PWBR the write count for 
trace T1 at buffer size 3 MB is reduced by 48.4%, 42.2%, 
31.5% and 10.7% compared by LRU-WSR, CFLRU,  
CCF-LRU and AD-LRU, respectively. 

Figure 10 Write count for T1 (see online version for colours) 

 

Figure 11 Write count for T2 (see online version for colours) 

 

Figure 12 Write count for Financial 1 (see online version for colours) 

 

5 Conclusions 

A flash memory buffer’s efficiency improves system 
performance. To tackle the shortcomings of current 
algorithms, we presented PWBR, a page weight buffer 
replacement algorithm that uses a page’s weight to determine 
how long it may remain in the buffer.Buffer is partitioned into  
working and hold list which guarantee the efficiency and  

accuracy of buffer. Meantime, pages in the buffer are  
classified into different kinds based on their access method 
and frequency, which have a significant impact on the hit 
ratio. PWBR introduces a evolutionary page migration 
mechanism to improve buffer efficiency over existing LRU-
based replacement methods. An eviction algorithm is 
designed for reducing the latency by integrating recency, 
temporal locality and operational cost of page. Two synthetic 
traces and one real world trace were taken for simulation, and 
tests results revealed that the suggested PWBR method 
provides performance superior to that of current techniques 
in terms of total runtime, flash operations and buffer hit ratio. 
We simulated PWBR and other algorithms using the Flash-
DBSim simulator. PWBR is more efficient than other buffer 
management strategies in context of hit rate, write count and 
overall runtime. The number of hit ratio for trace T1 at buffer 
size 3 MB is calculated to compare it with LRU-WSR, CF-
LRU, CCF-LRU and AD-LRU and it was found that PWBR 
performs better than the existing approaches and increases the 
hit rate by 6.4%,9.3%, 3.7% and 2.5% higher, respectively. 

Our ongoing research will concentrate on the use of the 
PWBR algorithm in many contexts. In particular, a database 
engine and DBMS will be connected with the PWBR 
technique. Our future study will also encompass the PWBR 
algorithm’s implementation in big data analysis in various 
IoT applications.  
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