

International Journal of Grid and Utility Computing

ISSN online: 1741-8488 - ISSN print: 1741-847X
https://www.inderscience.com/ijguc

Developing software predictive model for examining the
software bugs using machine learning

Swati Singh, Monica Mehrotra, Taran Singh Bharati

DOI: 10.1504/IJGUC.2023.10060445

Article History:
Received: 26 January 2023
Last revised: 05 July 2023
Accepted: 09 July 2023
Published online: 19 February 2024

Powered by TCPDF (www.tcpdf.org)

Copyright © 2024 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijguc
https://dx.doi.org/10.1504/IJGUC.2023.10060445
http://www.tcpdf.org

44 Int. J. Grid and Utility Computing, Vol. 15, No. 1, 2024

Copyright © 2024 Inderscience Enterprises Ltd.

Developing software predictive model for examining
the software bugs using machine learning

Swati Singh*, Monica Mehrotra and
Taran Singh Bharati
Jamia Millia Islamia,
Delhi, India
Email: swatisingh.aug@gmail.com
Email: mmehrotra@jmi.ac.in
Email: tbharti@jmi.ac.in
*Corresponding author

Abstract: Software faults prediction is an emerging research area in the software engineering. It is
an important issue for IT industry and professionals. We need prior information of an application for
faults or faulty modules in traditional approach to determine software faults. If we use machine
leaching techniques then we can easily automate the models enabling application software to
knowingly predict and recover the application software faults. This capability type features helps in
developing the application software to execute more productively and minimise faults, cost and
time. In the scenario of this research, we are considering the software appropriate models that
predicted development models using subsets of artificial intelligence-based approaches. Besides, we
utilise noticeable benchmark techniques for evaluation of performance for software predictive
models. However, researchers and software exponents can accomplish independent perception from
this research and can pick out automated tasks for their deliberated application.

Keywords: machine learning; software predictive model; software faults.

Reference to this paper should be made as follows: Singh, S., Mehrotra, M. and Bharati, T.S.
(2024) ‘Developing software predictive model for examining the software bugs using machine
learning’, Int. J. Grid and Utility Computing, Vol. 15, No. 1, pp.44–52.

Biographical notes: Swati Singh is pursuing her PhD degree in Department of Computer
Science, Jamia Millia Islamia (A Central University), New Delhi. She received her Post-Graduate
degree of MTech in Information Technology from Banasthali Vidyapith, Jaipur (Rajasthan). She
completed her BTech degree in Computer Science from Guru Gobind Singh Indraprastha
University (GGSIPU), Delhi. She is UGC-NET as well as GATE qualified. Her research interests
include software reliability, software growth modelling and machine learning.

Monica Mehrotra is presently working as Head of the Department of Computer Science, Jamia
Millia Islamia (Central University). She completed her PhD degree in August 2007 from Jamia
Millia Islamia. She has over 25 years of teaching experience. Her research interests include data
mining, information retrieval and social network analysis. She has won ‘Excellent Researcher
Award (female)’ in 2nd International Academic and Research Excellence Awards (IARE’2020)
ceremony organised by GISR foundation on 3rd October 2020. She is a Member of IEEE.

Taran Singh Bharati is presently working as an Associate Professor in the Department of
Computer Science at Jamia Millia Islamia (Central University). He completed his PhD degree in
Network Security from Jamia Millia Islamia. He has over 20 plus years of teaching experience.
His research interests include cyber security, theoretical computer science, compilers, IoT, data
science and big data. He has various research papers in reputed journals under his name.

1 Introduction

In the field of software development, there are more
challenges for developer and users both for analysing,
maintaining and managing the software applications.
Moreover, industry 4.0 revolution one of the best modern
time techniques for observation of regular transformation of
software development basis of large amount of automating

software technologies (Bolat and Temur, 2019). According to
observation quantity, quality and programming complexity is
consistently increasing leading towards a down fall of
software engineering with defects in software development
from starting phase. It is critical to assemble exceptionally
steady and trustworthy programming frameworks to offer
better assistance (Bhandari and Gupta, 2018). It’s more
important to classify software faults in actual scenario, else

 Developing software predictive model for examining 45

cost of searching faults and hiding efforts inside application
that will also increase very fast. Software fault prediction
motivates the development of automated software faults
prediction models which can predict software faults
(Malhotra, 2015). If software developer identifies the
software defects before releasing the software, it could be
very helpful for in allocating and fixing the defects. Machine
learning approach is more effective for researchers and
developer’s community to solve software fault prediction
(Wang et al., 2021). For findings of latest software defects,
we can apply machine learning algorithms for making
effective outcomes to the consumers (Singh and Mehrotra,
2021). However the disadvantage being a slow training
process and dependence on the nature of the data set used for
training (Singh et al., 2022). For the study in this research
area many relevant machine learning techniques which are
very recent classification were found (Yohannese and Li,
2017). Classifications of such machine learning approach are
applied over several original application repositories which
are concerned to software fault prediction applications. But
we were not able to validate the correctness of feature in
terms of quality of data. Therefore we used machine learning
approach for enhancing the correctness of fault data sets and
removing the unnecessary features (Hudaib et al., 2015).
The goal of research is observing some machine learning
classifiers techniques and automate the techniques to resolve
software faults that were there in the software. Some real
application related data set were taken for testing and finding
the correctness of software faults prediction. Where we have
applied various relevant machine learning algorithms and
made software recovery predictive modules. The use of a
technology that informs testers of the files that are most likely
to malfunction might also have some unfavourable outcomes.
Developers and testers could rely too much on the tool,
failing to take into account actually flawed files that the tool
missed. This false sense of security might cause flaws to be
discovered at later stages of development, which, as
previously said, will incur additional costs to fix. Even in the
field of communications, a number of research have been
done to look into the source code’s defect-prone modules.
Almost all computer programs have bugs that were
introduced when the code was being written. Some of these
flaws are eventually found, e.g., through quality control
testing. The cost of addressing faults increases when they are
found and addressed later in the development process.
Therefore, it is crucial to identify the shortcomings as soon as
feasible. Testing is one method of spotting errors or faults.
Software testing is described as ‘the process of executing a
program with the intent of finding errors’ by the researcher.
Unit testing, function testing, system testing, regression
testing and integration testing are just a few of the testing
layers that are used. Unit tests are the first level of testing, and
they examine a product’s functionality. Machine Learning
deals with the systems that can be learned from data. Machine
learning works in two phases. The initial phase is the model
building and the second is categorisation or classification
using the new data set. The training set is used to build a
model which then uses this trained model as an input for a

classifier. Below diagram depicts the process of machine
learning approach (Challagulla et al., 2008). Machine
Learning algorithm can be distinguished based on the input
data and the expected outcome of the algorithm.

Supervised learning: It is a type of learning which deals
with a known labeled data set to make predictions (García et
al., 2015). It is called supervised learning because there is a
corresponding outcome with each input value in the
algorithm. The main objective is to reduce the error between
the predicted outcome of the model and the expected
outcome. For example, Prediction and forecasting of weather.

Unsupervised learning: It is a type of learning which
deals with unlabeled data set to make predictions. It is called
unsupervised learning because for every input value there is
no corresponding output. The main objective of this
algorithm is to predict outcome for each input values and thus
the output predicted is the desired outcome. For example,
Image of cats and dogs of different types.

Decision tree: It is one of the most commonly used
learning methods in the field of machine learning (Hassouneh
et al., 2021). Decision tree is a classification method whose
primary aim is to represent in an understandable form.
Decision tree is based on attribute vectors which comprises of
set of classification attributes along with a category attribute
that assigns the entry of info to a class. Formation of tree is
defined by iteratively splitting the info attribute into the
existing classes and this iteration continues till the criteria is
met. The tree like representation helps the users to understand
and process the information as the visual representation is
easier and faster to understand.

KNN: KNN is known as instance-based learning. As the
name suggests, this algorithm waits for an instance to act
upon. This is often referred as lazy learning method without
the task, no action is performed on the given data set. It is
opposite to decision tree in terms of learning technique as in
decision tree, a structure is generated based on the data with
any instruction to perform task. It is based on the
phenomenon to learn from the similar situations/problem and
thereby provides solution based on known solution of the
similar problems. Owing to this characteristic, it is also
known as nearest neighbor learning (Hudaib and Fakhouri,
2016).

Naïve Bayes: Naïve Bayes classifier is a probabilistic
machine learning model. Naïve Bayes Classifier is based on
Bayes Theorem.

SVM: It is supervised learning classifier. It is a
discriminative classifier defined by separating hyperplane.
The data points that are nearest to the hyperplane are called as
support vectors. SVM is used for both classification and
regression problem. Different SVM uses different kernel
functions. The various types of kernel functions are linear,
polynomial, radial basis function and sigmoid (Jureczko and
Madeyski, 2010).

Logistic regression: It is named logistic regression
because the algorithm used logistic function or sigmoid
function as the core of method. This function is an S-shaped
curved that take real values only between 0 and 1. The output
must be categorical or discrete value, either yes or no, 0 or 1,

46 S. Singh, M. Mehrotra and T.S. Bharati

true or false. The concept of threshold value used in this
classifier (Tanwar and Kakkar, 2019). This technique is used
in classification for predicting the categorical dependent
variable using given set of independent variables (Shepperd
et al., 2013).

Random forest: It is used for both classification and
regression. It is based on concept of ensemble learning.
Itcombines multiple classifiers to solve problem and improve
performance of model. It resolves the issue of overfitting in
decision trees by averaging the decision trees results. It
creates decision trees on the data set and then result are
predicted from these multiple decision trees (Shihab et al.,
2013). Finally, the voting classifier is applied for every result
to find the maximum result.

The remainder of this paper is paraphrased as follows:
Section 2 discusses the related work. Section 3 discusses the
system description, the result and discussion is done in
Section 4 and the conclusion and future directions are
discussed in Section 5.

2 Related work

Much research is done in this field and there is a lot to be
carried out further so as to develop a system that is capable
enough to provide accurate results. As the processing
techniques are developing day by day, it becomes necessary
for us to choose the most appropriate technique of all, which
is termed as most efficient of all the techniques present. For
this, we need to study about the techniques to find out the best
suitable technique for our work and then we need to study the
research work which has already been accomplished in this
field to decide what advances can be bought in this area.

From January 2014 to April 2017, Li et al. (2018)
analysis and discussion of nearly 70 pertinent defect
prediction papers. They distilled the chosen papers into four
categories:data manipulation, machine learning algorithms,
effort-aware prediction and empirical studies. Rathore and
Kumar (2018) looked through multiple digital libraries to
locate pertinent works that were released in the public domain
between 1993 and 2017. A comprehensive review that
identified and evaluated the research published between 2000
and 2018 was carried out by Li et al. (2020). Therefore, their
meta-analysis demonstrated that supervised and unsupervised
models for both CPDP and WPDP models are equivalent.
The SDP survey was given by Akimova et al. (2021) based
on deep learning papers that were divided into approaches
for defect prediction, software metrics and data quality
issues. For each class, the various approaches’ taxonomic
classifications and observations were given. From 1990 until
June 2019, Pandey et al. (2021) evaluated several statistical
techniques and machine learning research for software defect
prediction.

Maintainability and localisation of software fault are
represented as modules or software system can be modified to
the exact faults, enhance performance, testing and software
development approach or adapted to change platform

(Elmidaoui et al., 2019). The software projects minimising
the cost, time and maintenance effort through models
predicting defects (Riaz et al., 2009). On the off chance
that extremely less number of failures happen during
programming execution time then we can ensure the good
quality of software (Malhotra and Kamal, 2019). Duration of
software development process has put large impact by
classification of defects on software modules. But in real case
it’s hard, because if developer changes the internal code of
application and related another module also it fails to updates
new version applications. Hence, making software more
feasible to faults (Oman and Hagemeister, 1994). According
to this study software fault proneness is promoting automated
service features every day (Anderson et al., 1985). The author
presented the comparative analysis of some algorithm like,
DT, ANN, SVM, NN, etc., to predict fault modules (Nisa and
Ahsan, 1985). Author works with 3 NASA projects and they
have taken data for analysing the performance of Decision
Tree and getting highest accuracy than normal classifier.
KPWE is best technique of solving the baseline faults. It is
combination of two techniques representing defect prediction
framework (Ahsan and Wotawa, 2011). To predict the
software defect modules representation of comparative
analysis of some widely used algorithms is presented. By
experiment high accuracy is obtained in Random Forest
between classifiers (Radjenović et al., 2013). Developed the
model for feature selection and classifier approach to examine
the benefits of feature selection for cross-product fault
prediction. These techniques can increase the capabilities of
software fault analysis (Malhotra, 2014). There are some
applications which are automatically learning the customer
expectation over multiple applications through semantic
contexts (Xu et al., 2019). The case base reasoning techniques
give capability to developed model for fault prediction inside
suitable system applications (Moeyersoms et al., 2015). Study
of recent research papers related to software bugs or defects,
we find out some better machine learning, artificial
intelligence-based approach than statistical or traditional-based
approach for software defect prediction (Yu et al., 2019). Thus,
we can take open-source data set for maintaining the
consistency, authenticity and reliability, etc. (Hotzkow, 2017).
Finding and eliminating insignificant elements from data can
bring a significant performance change in learning algorithms
and bring down the computational time (Turabieh et al., 2019).

3 System description

3.1 Data collection

For this paper, we have collected a publicly available
PROMISE Software Engineering Database which has been
widely used in previous researches as well. The data had
22 attributes. Inside Table 1, we shown the various attributes
for software bugs data. Using machine learning algorithms,
we have predicted the software defects through software fault
prediction model.

 Developing software predictive model for examining 47

Table 1 Attribute list

S.N. Attributes name Types

1 Line of code McCabe

2 Cyclomatic complexity of code McCabe

3 Crucial Complexity of code McCabe

4 Complexity of design code McCabe

5 Operands and Operators in code Halstead

6 Volume of code Halstead

7 Program length Halstead

8 Difficulty of code Halstead

9 Code Intelligence Halstead

10 Code effort Halstead

11 Code time estimator Halstead

12 Code line count Halstead

13 Code comments count Halstead

14 Code blank line count Halstead

15 Input/output code and comments Miscellaneous

16 Unique Operators Miscellaneous

17 Unique operands Miscellaneous

18 No. of operators in code Miscellaneous

19 No. of operands in code Miscellaneous

20 No. of branches in code Miscellaneous

21 b: numeric Halstead

22 Default code Boolean value

3.2 Classification techniques used

The subset of artificial intelligence, i.e., machine learning has
some effective algorithms which play a vital part in the field
of programming software. From last few years, Machine
learning techniques are most operational approach for solving
the real-world problems with high performance. We have
found in the study of some research papers, the approaches of
machine learning which are used most of the time are
assembling the software fault prediction models like
K-Nearest Neighbours, Support Vector Machine, Naïve
Bayes, Random Forest, etc. (Tumar et al., 2020). Different AI
classifiers strategies were used in this paper such as DT,
KNN, NB, LG, GNB, RF and SVM. These techniques helped
in automating the task of resolving faults that were there in
the software. The data set was trained and tested for finding
the correctness of software faults prediction models.

S.N. Formula

Accuracy p n p p n pT T T F T F

Precision p p pT T F

Recall p p nT T F

F1 2* (Recall*Precision)/(Recall + Precision)

TNR n n pT T F

3.3 Performance measurement

Firstly, we have constructed the predictive models after that
we test the fault models on different machine learning
algorithms. These models are applicable for predicting the
fault on any executable software. In this experiment, we
observed that machine learning prediction models, using
some classification algorithms that are based on distinct
statistical approach (Montani and Anglano, 2008). Those are
defined below in Table 2 with mathematical statistics.

Table 2 Software defect analysis

S. No. ML Techniques Accuracy under developed model

1 DT 99.9%

2 KNN 98.4%

3 LG 98.26%

4 NB 97.91%

5 RF 99.82%

6 SVM 99.73%

3.4 Experimental setup procedure

This section tells us about procedure of experiment and
software defect predictive development models.

The development of proposed models assembling the
duration of primary stage of software life cycle and these
developed models indicates to combine the development
process and using implementation in form of inputs which are
required for analysis predictive model for developments. The
main phases of software defect predictive development model
is testing, and physical design phase which are analysing
defects assigned by study based automated fault recovery of
system applications. And these are leading to predicts bugs
and collect all require information about faulty modules of the
system applications. Representing the proposed model’s
components in Figure 1.

48 S. Singh, M. Mehrotra and T.S. Bharati

Figure 1 Proposed models for predictive development

The above figure displays the brief approach behind
developing this model. In order to develop this model we
firstly take widely used open source data sets from the
repository then divide the whole data sets into training and
testing data set. Then, describe the training data sets and
gets the basic insights of the data sets then pre-process it so
that effective model is obtained. Upon finding the
requirement for this model, we design the appropriate
model. After this, testing of the model on training data sets
is performed if model is giving appropriate result then we
prepare performance report of the model otherwise we

retrain the model by making few changes on the model. We
then further test model on fresh data in order to check if it is
still giving desired result and then the model is ready.
According to experiments, we have taken defects data sets
for constructing software defect model. After which the data
processing techniques were implemented over defect data
sets by using statistical analysis, we found out high
correlation in data for example min-max, feature extraction,
normalisation and missing value, etc. Figure 2 is showing
the complete details of the proposed model on which
software defect predictive model is based.

Figure 2 Defect model flowchart

 Developing software predictive model for examining 49

4 Result and discussion

The results of various classification techniques obtained for
the new developed model are represented in Table 3. They
are based on analysis of software defects with respect to
systematic mapping.

Table 3 Performance of proposed model under decision tree
algorithm

 Precision Recall F1-score Supports

Redesign 1.00 1.00 1.00 375

Successful 1.00 1.00 1.00 1875

Accuracy 1.00 2250

Macro Average 1.00 1.00 1.00 2250

Weighted Average 1.00 1.00 1.00 2250

In this section, machine learning classifiers are used to study
the correlations among the constructs in the proposed model.
Thus, various classification algorithms such as Logistic
Regression (LG), support vector machine (SVM), Naïve
Bayes (NB), Decision Tree (DT), Random Forest (RF) and
K-Nearest Neighbours (KNN) classifiers are employed. The
analysis using these algorithms is carried out using scikit
module of python in Jupyter-Notebook by applying the k-fold
cross-validation technique on data set. Here, we are
considering two cases, viz., Case 1: Affects performance
metrics when using existing machine learning models and
Case 2: Affects performance metrics when using proposed
predictive models. Case 1: Affects performance metrics when
using existing machine learning models: Accuracy of existing
models viz., DL, KNN, LG, NB, RF and SVM are 97.20%,
96.80%, 96.63%, 95.23%, 98.01% and 98.29%, respectively.

Case 2: Affects performance metrics when using proposed
predictive models: Our results show that accuracy of existing
models viz., DL, KNN, LG, NB, RF and SVM are having
99.9%, 98.4%, 98.26%, 97.91%, 99.82% and 99.73%,
respectively.

Figure 3 shows that existing machine learning models
give better accuracy when using proposed predictive model.

Figure 3 Accuracy of existing models under proposed predictive
model (see online version for colours)

Case 1: Affects performance metrics when using existing
machine learning models: precision of existing models viz.,
DL, KNN, LG, NB, RF and SVM are 78.12%, 90.04%,
84.33%, 90.04%, 91.7% and 88.10%, respectively.

Case 2: Affects performance metrics when using proposed
predictive models: Our results show that accuracy of existing
models viz., DL, KNN, LG, NB, RF and SVM are having
80.12%, 91.30%, 88.50%, 93.0%, 94.19% and 90.27%,
respectively. Figure 4 shows that existing machine learning
models give better precision when using proposed predictive
model.

Figure 4 Precision of existing models under proposed predictive
model (see online version for colours)

Case 1: Affects performance metrics when using existing
machine learning models: Recall of existing models viz., DL,
KNN, LG, NB, RF and SVM are 91.9%, 98.1%, 92.70%,
91.9%, 97.20% and 84.8%, respectively.

Case 2: Affects performance metrics when using proposed
predictive models: Our results show that recall of existing
models viz., DL, KNN, LG, NB, RF and SVM are having
93.15%, 99.24%, 94.20%, 92.89%, 98.90% and 86.06%,
respectively. Figure 5 shows that existing machine learning
models give better recall when using proposed predictive
model.

Figure 5 Recall of existing models under proposed predictive
model (see online version for colours)

Case 1: Affects performance metrics when using existing
machine learning models: F-measure of existing models viz.,
DL, KNN, LG, NB, RF and SVM are 91.2%, 93.5%, 87.70%,
91.3%, 93.60% and 86.9%, respectively. Case 2: Affects
performance metrics when using proposed predictive models:
Our results show that F-measure of existing models viz., DL,
KNN, LG, NB, RF and SVM are having 93.40%, 94.92%,
89.45%, 93.43%, 95.05% and 88.11%, respectively. Figure 6
shows that existing machine learning models give better
F-measure when using proposed predictive model.

50 S. Singh, M. Mehrotra and T.S. Bharati

Figure 6 F-measure of existing models under proposed
predictive model (see online version for colours)

We worked on automated software fault recovery by
proposing predictive model and observed the defective
software and not faulty software both. Defective models are
more critical models compared with non-faulty models. But
in our model experiments, we consider the cross-validation
approach to evaluate the capability of some classification
approach. In this process, we regulate the variables for the
software defect models. And performed several distinct data
processing techniques which were able to improve the model
accuracy and representing classification models consistency.
Some of the experimented results are shown in Tables 4
below performance wise.

Table 4 Performance of proposed model under k-nearest
neighbour algorithm

 Precision Recall F1-score Supports

Redesign 0.966 0.955 0.954 366

Successful 0.999 0.999 0.992 1884

Accuracy 0.984 2250

Macro Average 0.971 0.971 0.971 2250

Weighted Average 0.984 0.984 0.984 2250

We have performed the decision tree algorithm on developed
model and we are getting accuracy of 0.999555 while 0.984
in case of k-nearest neighbour algorithm.

4.1 Complexity evaluation

During the preprocessing phase, we get the insights of
data like frequency count of different complexities presents
in the code in our case we obtained two values successful
and redesign while training the model (Catal and
Diri, 2009).

From these values we get to know the number of software
that were successful and number of software that needs to be
redesigned. Complexity was calculated for our new
developed model which gave us the frequency of successful
software designs and re-designs that were needed. Figure 7
shows a complexity evaluation between redesigns and
successful designs.

Figure 7 Complexity evaluation graph b/w frequency vs.
successful-redesign (see online version for colours)

Figure 8 display the relation between the number of bugs in
the code and the volume of code. From this figure, we
observed that chances of bug are directly proportional to the
volume of code up to some extends then if the volume of
code is much higher than the chances of bug in code is less.

Figure 8 Visualisation of volume bugs

Figure 9 also comes under the pre-processing phase of model
training. From this graph, we get the insights of data like
frequency count of different defects presents in the data. In
above graph we observed two values true and false where true
count represents the number of default software presents in
the data sets while the false count in the graph shown the
number of correct software presents in the data sets.

Figure 9 Visualisation of defects counts (see online version
for colours)

 Developing software predictive model for examining 51

5 Conclusion and future work

Studies of this research, we present an automated software
technique for software defect predictive models on the
software life cycle. The principal objective of this research is
evaluating capability of some machine learning classification
approach that predict defect modules using open source data-
sets. The outcomes of experiment using different attribute
represented ability and proficiency of newly developed
models to recognise the defects and upgrade the software
standard. This model helps in detecting faults through
collection of actual software setup data from aimed
applications. The proposed techniques uses software fault
recovery in software and upgrading through machine learning
approach making the software prediction model better in
retrieving faults offering more functionality. The future plan
is to authenticate the efficiency of software defect prediction
by experimenting with new data sets and implementing more
classifications algorithm. Testing the tool set against metrics
from publicly accessible data corpora like the NASA and
Eclipse data sets would also be beneficial. Given that the
results of previous studies are largely dependent on the
underlying data and that generalising between two different
projects is a challenging task, this may be the only objective
approach to compare the prediction performance of the tool to
those of other studies.

References

Ahsan, S.N. and Wotawa, F. (2011) ‘Fault prediction capability of
program file’s logical-coupling metrics’, Proceedings of the
Conference of the 21st International Workshop on Software
Measurement and the 6th International Conference on
Software Process and Product Measurement, pp.257–262.

Akimova, E.N., Bersenev, A.Y., Deikov, A.A., Kobylkin, K.S.,
Konygin, A.V., Mezentsev, I.P. and Misilov, V.E. (2021) ‘A
survey on software defect prediction using deep learning’,
Mathematics, Vol. 9 Doi: 10.3390/math9111180.

Anderson, T., Barrett, P.A., Halliwell, D.N. and Moulding, M.R.
(1985) ‘Software fault tolerance’, IEEE Transactions on
Software Engineering, Vol. 12, pp.1502–1510.

Bhandari, G.P. and Gupta, R. (2018) ‘Machine learning based
software fault prediction utilizing source code metrics’,
Proceedings of the IEEE 3rd International Conference on
Computing, Communication and Security (ICCCS), pp.40–45.

Bolat, H.B. and Temur, G.T. (2019) Agile Approaches for
Successfully Managing and Executing Projects in the Fourth
Industrial Revolution, IGI Globa.

Catal, C. and Diri, B. (2009) ‘A systematic review of software fault
prediction studies’, Expert Systems with Applications, Vol. 36,
pp.7346–7354.

Challagulla, V.U.B., Bastani, F.B. and Yen, I-L. and Paul, R.A.
(2021) ‘Empirical assessment of machine learning based
software defect prediction techniques’, International Journal on
Artificial Intelligence Tools, Vol. 17, pp.389–400.

Elmidaoui, S., Cheikhi, L. and Idri, A. (2019) ‘Towards a taxonomy
of software maintainability predictors’, New Knowledge in
Information Systems and Technologies, Vol. 1, pp.823–832.

García, S., Luengo, J. and Herrera, F. (2015) Data Preprocessing in
Data Mining, Springer.

Hassouneh, Y., Turabieh, H., Thaher, T., Tumar, I., Chantar, H. and
Too, J. (2021) ‘Boosted whale optimization algorithm with
natural selection operators for software fault prediction’, IEEE
Access, Vol. 9, pp.14239-14258.

Hotzkow, J. (2017) ‘Automatically inferring and enforcing user
expectations’, Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis,
pp.420–423.

Hudaib, A., Al-Zaghoul, F.F., Saadeh, M. and Saadeh, H. et al.
(2015) ‘ADTEM-architecture design testability evaluation
model to assess software architecture based on testability
metrics’, Journal of Software Engineering and Applications,
Vol. 8, pp.647–655.

Hudaib, A.A. and Fakhouri, H.N. (2016) ‘An automated approach
for software fault detection and recovery’, Communications and
Network, Vol. 8, pp.158–169.

Jureczko, M. and Madeyski, L. (2010) ‘Towards identifying
software project clusters with regard to defect prediction’,
Proceedings of the 6th International Conference on Predictive
Models in Software Engineering, pp.1–10.

Li, N., Shepperd, M. and Guo, Y. (2020) ‘A systematic review of
unsupervised learning techniques for software defect
prediction’, Information and Software Technology, Vol. 51,
pp.106–287.

Li, Z.., Jing, X.Y. and Zhu, X. (2018) ‘Progress on approaches
to software defect prediction’, IET Software, Vol. 12,
pp.161–175.

Malhotra, R. (2014) ‘Comparative analysis of statistical and machine
learning methods for predicting faulty modules’, Applied Soft
Computing, Vol. 21 pp.286–297.

Malhotra, R. (2015) ‘A systematic review of machine learning
techniques for software fault prediction’, Applied Soft
Computing, Vol. 27, pp.504–518.

Malhotra, R. and Kamal, S. (2019) ‘An empirical study to
investigate oversampling methods for improving software
defect prediction using imbalanced data’, Neurocomputing,
Vol. 343, pp.120–140.

Moeyersoms, J., De Fortuny, E.J., Dejaeger, K., Baesens, B. and
Martens, D. (2015) ‘Comprehensible software fault and effort
prediction: a data mining approach’, Journal of Systems and
Software, Vol. 100 pp.80–90.

Montani, S. and Anglano, C. (2008) ‘Achieving self-healing in
service delivery software systems by means of case-based
reasoning’, Applied Inteliigence, Vol. 28, pp.139–152.

Nisa, I.U. and Ahsan, S.N. (1985) ‘Fault prediction model for
software using soft computing techniques’, International
Conference on Open Source Systems and Technologies
(ICOSST), pp.78–83.

Oman, P. and Hagemeister, J. (1994) ‘Construction and testing of
polynomials predicting software maintainability’, Journal of
Systems and Software, Vol. 24, pp.251–266.

Pandey, S.K., Mishra, R.B. snd Tripathi, A.K. (2021) ‘Machine
learning based methods for software fault prediction: a survey’,
Expert Systems with Applications, Vol. 172. Doi:
10.1016/j.eswa.2021.114595.

Radjenović, D., Heričko, M., Torkar, R. and Živkovič, A. (2013)
‘Software fault prediction metrics: a systematic literature
review’, Information and Software Technology, Vol. 55,
pp.1397–1418.

Rathore, S.S. and Kumar, S. (2018) ‘A study on software
fault prediction techniques’, Artifical Intelligence, Vol. 51,
pp.255–327.

52 S. Singh, M. Mehrotra and T.S. Bharati

Riaz, M., Mendes, E. and Tempero, E. (2009) ‘A systematic review
of software maintainability prediction and metrics’,
Proceedings of the 3rd International Symposium on Empirical
Software Engineering and Measurement, pp.367–377.

Shepperd, M., Song, Q., Sun, Z. and Mair, C. (2013) ‘Data quality:
some comments on the NASA software defect datasets’, IEEE
Transactions on Software Engineering, Vol. 39, pp.1208–1215.

Shihab, E., Ihara, A., Kamei, Y., Ibrahim, W.M., Ohira, M., Adams,
B., Hassan, A.E. and Matsumoto, K-I. (2013) ‘Studying re-
opened bugs in open source software’, Empirical Software
Engineering, Vol. 18, pp.1005–1042.

Singh, S. and Mehrotra, M. (2021) ‘Prediction models for software
reliability: an insight’, Design Engineering, pp.15638–15654.

Singh, S., Mehrotra, M. and Bharti, T.S. (2022) ‘A comparison of
4-parameter mathematical logistic growth model with other
srgm based on bugs appearing in the software’, Proceedings
of the IOT with Smart Systems, Vol. 2, pp.409–507.

Tanwar, H. and Kakkar, M. (2019) ‘A review of software defect
prediction models’, Data Management, Analytics and
Innovation: Proceedings of ICDMAI, pp.89–97.

Taradeh, M., Mafarja, M., Heidari, A.A., Faris, H., Aljarah, I.,
Mirjalili, S. and Fujita, H. (2019) ‘An evolutionary
gravitational search-based feature selection’, IEEE Access,
Vol. 497, pp.219–239.

Tumar, I., Hassouneh, Y., Turabieh, H. and Thaher, T. (2020)
’Enhanced binary moth flame optimization as a feature
selection algorithm to predict software fault prediction’,
IEEE Access, Vol. 8, pp.8041–8055.

Turabieh, H., Mafarja, M. and Li, X. (2019) ‘Iterated feature
selection algorithms with layered recurrent neural network for
software fault prediction’, Expert Systems with Applications,
Vol. 122, pp.27–42.

Wang, S. and Wang, J., Nam, J. and Nagappan, N. (2021)
‘Continuous software bug prediction’, Proceedings of the
15th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), pp.1–12.

Xu, Z., Liu, J., Luo, X., Yang, Z., Zhang, Y., Yuan, P., Tang, Y.
and Zhang, T. (2019) ‘Software defect prediction based
on kernel PCA and weighted extreme learning machine’,
Information and Software Technology, Vol. 106,
pp.182–200.

Yohannese, C.W. and Li, T. (2017) ‘A combined-learning based
framework for improved software fault prediction’, Atlantis
Press BV, Vol. 10, pp.647–655.

Yu, Q., Qian, J., Jiang, S., Wu, Z. and Zhang, G. (2019) ’An
empirical study on the effectiveness of feature selection for
cross-project defect prediction’, IEEE Access, Vol. 19,
pp.35710–35718.

