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Abstract: An estimated 14% of global yield is lost to plant diseases each year, causing suffering to 
billions of people. Plant pathology studies diseases, microbes and climatic conditions that lead to plant 
death. Temperature, pH, humidity and moisture can cause plant diseases. Chemical misuse, 
environmental imbalance and drug resistance can result from misdiagnosis. Diseases can be diagnosed 
by human scouting. Image analysis of plant leaves can help diagnose diseases automatically. 
Automated disease detection involves image selection, pre-processing, segmentation, augmented 
features and model prediction. Crop diseases can be detected and classified accurately by Deep 
Convolutional-Networks since a few years ago. This paper compares deep learning approaches for 
predicting healthy and diseased leaves from Mendley database. We suggest variations that improve 
classification accuracy. In this work for disease, Deep CNNs are implemented including ResNet-50, 
Mobilenet, Densenet121, EfficientnetB0 and the proposed approach. Over 99% accuracy was achieved 
in detecting various crop diseases. 
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1 Introduction 

A key aspect of agriculture is the early detection of plant leaf 
infections. Various techniques have been used to evaluate the 
leaf’s quality, including thermography, fluorescence imaging, 
affinity biosensor based on Ribonucleic Acid (RNA) and 
Deoxyribonucleic Acid (DNA), chain reactions and natural 
gas chromatography. The techniques above were criticised  
for their inadequacy, consistency and extension. Many 
researchers have succeeded in overcoming these challenges 
using image processing and machine learning/deep learning 
techniques. It has been shown that image-processing 
techniques can be used to recognise and categorise plant 
diseases, as proven in studies (Nagaraju and Chawla, 2020; 
Kaur et al., 2019; Rehman et al., 2019; Saleem and Arif,  

2019; Kamilaris and Prenafeta-Boldu, 2018; Dhingra et al., 
2018). There has been a recent trend in that most of the 
research studies in the field of plant disease classification and 
identification have focused on applications of machine 
learning or deep learning algorithms. As a result, this study is 
the first to systematically examine and summarise the various 
research findings currently being conducted on the subject of 
detecting and classifying leaf diseases using ML and  
DL algorithms. Additionally, a summary of the latest 
developments of popular DL models used to identify plant 
diseases will also be included in the proposed study. It was 
also found that in addition to identifying some of the gaps in 
the existing literature to be able to measure the symptoms 
experienced by patients in the classification of plant leaf 
diseases more clearly, a study was conducted to identify some  
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of the research gaps. This field of research has been around 
for a very long time and has also been very popular. It has 
been implemented in most major applications. Convolutional 
Neural Networks (CNN) were used in this paper to solve the 
problem of identifying plant disease by analysing the leaf of a 
plant. From deep within the food chain, plants are a major 
contributor to life on Earth. The various conditions in nature 
make these plants prone to various diseases. Because of these 
diseases, the agricultural industry suffers greatly. This can 
save a great deal of money and effort by detecting and curing 
diseases at the earliest stages possible. Using a leaf image, we 
have developed a system that analyses, detects and classifies 
any disease the plant may have suffered from based on deep 
learning. 

The rest of this paper is organised as follows; Section 2 is 
devoted to presenting a short review of disease-specific 
methods that are known to be used by traditional practitioners 
to diagnose plants. This was followed by a short description 
of the data set in Section 3. We then proceed to Section 4, 
which helps us to understand the proposed analysis process. 
As part of Section 5, a set of experiments is presented 
covering all of the currently available methods for detecting 
plant diseases. This is in addition to introducing novel and 
increasingly efficient methods that significantly improve the 
current state. The conclusions of this paper are presented in 
Section 6, followed by a list of all the literature that is 
relevant to this study. 

2 Literature survey 

Dasari and Prasad (2019) used Convolutional-Neural-
Networks (CNNs) with 120 images for recognising tobacco 
leaf diseases. According to the authors, when compared to 
existing models, the proposed model showed the best 
accuracy of 85.10% or 80% accuracy. To classify nine 
diseases of tomato plants, the authors have devised three  
deep learning meta-architectures: Faster Region-based 
Convolutional Neural Network (Faster R-CNN). 

To decrease false positives and to improve accuracy 
during training they applied different techniques to the data, 
such as feature extraction and data augmentation, and 83.6% 
of the disease targets can be classified correctly in the 
proposed model. Brahimi et al. (2017) used machine learning 
to train two architectures to classify nine diseases of tomato 
leaves (Google Net and AlexNet). The pre-processing was 
initially applied to all images to resize them and to get rid of 
the background information on the images. The model was 
later applied to a classification layer to determine the 
classification of the fruit diseases and the diseases of leaf 
tissues of tomato plants with an accuracy of 99.18%. Durmus 
et al. (2017) recommended that AlexNet and SqueezeNet 
could be used as a model for classifying ten diseases of 
tomato plant leaves. Both of the deep learning networks in 
this paper have been trained and validated by the authors in 
this particular case. 

Despite this, AlexNet achieves a greater degree of 
accuracy than these two models, hitting 96.65%. It has been 
proposed by Zhang et al. (2018) that improved Cifar10 and 

GoogleLeNet models are now available for the classification 
of the nine diseases that affect maize plant leaves. The 
researchers changed dropout operations, adjusted aggregate 
accumulation pooling combinations and adjusted parameters. 
GoogleNet performed 99.9% correctly, according to their 
research. Singh et al. (2017) used ten of 500 natural images of 
rice plant diseases to classify by a Deep CNN (DCNN) 
model. An accuracy of 95.48% was achieved by cross-
validating a 10-fold strategy. According to Jain et al. (2017), 
pomegranate leaves could be classified as two diseases based 
on a CNN model. Researchers found that the proposed model 
produced fewer misclassifications with an accuracy of 88.7% 
and using real-time data. Atole and Park (2018) developed a 
classification system for three diseases. They can achieve a 
91.23% accuracy by using their deep learning algorithm and 
AlexNet based on 600 images of rice plants. They tested three 
different learning strategies on different CNN architectures 
for the classification of plant diseases on plant village data 
sets (Brahimi et al., 2018). This model has a 99.76% accuracy 
rate. Moreover, they have developed a method to visualise the 
saliency maps to understand the CNN classification method. 
Plant disease symptoms can be understood better in this 
model, which improves transparency among DL models. 

Liu et al. (2020) used Leaf Generative Adversarial 
Networks (LGAN) to categorise four grape plant leaf 
diseases. A comparison of this model with other GANs, such 
as Deep Convolution GANs (DCGANs) and Wasserstein 
Generative Adversarial Networks (WGANs) suggests it is 
capable of better performance. A set of eight deep learning 
models were used as models for the experiments on the 
Pytorch framework. A better accuracy rating was achieved by 
XceptionNet with 98.70%. Fifty-nine diseases of different 
crops were studied by Hu et al. (2020) and a novel model was 
created called MDFC-ResNet. In this method, automatically 
identifying plant diseases is done through the use of an 
algorithm, which produces symptomatic output and enables 
farmers to react accordingly. Three dimensions make up this 
model: the fine-grained pathogen, species and coarse-grained 
pathogen. Researchers employed the Keras framework and 
designed experiments to examine how to improve the 
accuracy of their results, which was 85.22%. 

Tetila et al. (2020) explored six diseases of soybean 
leaves and developed a classification system to identify them. 
Drones were used to take the images. It should be noted that 
in the course of conducting network training, to avoid 
overfitting, different methods were employed, such as data 
augmentation and dropout. By incorporating fine-tuning and 
Deep Learning techniques, they achieved an accuracy of 
99.04%. Wu et al. (2020) proposed that using Google LeNet 
to classify images of tomato leaves is an effective method  
for the augmentation of data. A CNN architecture modified 
with different generative adversarial networks, adjusted 
hyperparameters and multiple generative adversarial 
networks were able to achieve a 94.33% accuracy rate. 

To classify diseases and healthy leaves of mango plants 
using 2200 images, Singh et al. (2019) proposed a new CNN 
algorithm. 95.13% of the images were correctly classified. To 
detect five diseases from the apple leaf data set, Jiang et al. 
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(2019) proposed an improved CNN. The authors combined 
lab and field images and used annotations and data 
augmentation to achieve 78.80% mAP. The method of 
classifying five apple plant diseases based on three loss 
functions was proposed by Zhong and Zhao (2020) using the 
DenseNet-121 model. Cross-entropy is more effective in the 
classification process than loss functions. Xiong et al. (2020) 
proposed an algorithm capable of automatically segmenting 
images using an automatic technique called MobileNet CNN 
(MCNN). For detecting cash crop diseases, they developed a 
mobile-based smart device. Approximately 80% of samples 
were correctly identified using the proposed method. 

Sambasivam and Opiyo (2020) proposed detecting five 
diseases of cassava leaves with class-labelled 10,000 images 
collected. The researchers used weighting, focus loss and 
Synthetic Minority Oversampling Technique (SMOT) to 
achieve over 93% accuracy. Based on INC-VGG, Junde et al. 
(2020) developed a model for classifying rice and maize 
diseases. To enhance the ability to extract features, the 
proposed model replaces the last two VGG-19 layers with 
Inception modules. This improved performance of rice and 
maize. A CNN model named depthwise separable was 
proposed by Kc et al. (2019) for classifying plants’ leaf 
diseases. By using MobileNet, the accuracy of classification 
was 98.34% rather than the previous VGGNet level. Deep 
Learning with feature extraction is proposed as a way to 
classify millet diseases (Coulibaly et al., 2019). There are 124 
millet leaf images used for the experiments, and the 
experiments are conducted with a 95% degree of accuracy 
using the Keras framework. 

Twenty-five (25) diseases of 58 crops were classified 
according to VGGNet by Ferentinos (2018). Based on the 
results of the experiments, 99.5% of classification accuracy 
was achieved on the torch framework. To classify the fungi 
that infect wheat leaves, Picon et al. (2018) proposed DCNN. 
An accuracy of 96% was achieved in three consecutive years 
by collecting real-time images at different locations. Four 
grape leaf diseases were classified using an improved DCNN 
by Xie et al. (2020). The experiment included 4449 images of 
grape leaves. With 81.1% mean Average Precision (mAP), 
the Inception-ResNet-v2 module produced better results. 

To detect the location of tomato plant diseases and 
classify the diseases under natural conditions, Liu and Wang 
(2020) proposed an improved YOLOv3 model. CaffeNet and 
the darknet framework have been tested and showed an 
accuracy of 92.39%. To classify tomato plant diseases, 
Fuentes et al. (2018) used a framework called Filter Bank. 
There are three units in the system: the first unit creates 
bounding boxes to pinpoint the location and class of the 
infected area. In the second unit, CNN Filter Bank is used to 
eliminate misclassified samples. Lastly, the third unit 
combines data from the first and second units such as True 
Positives and False Positives. It is 90% reliable. 

An Intuitionistic Fuzzy Random Vector Functional Link 
(IFRVFL) classifier is proposed by Mishra et al. (2022). The 
IFRVFL classifier is a hybrid model that combines the 
advantages of the Random Vector Functional Link (RVFL) 
neural network and the Intuitionistic Fuzzy Set (IFS) theory. 
The experimental results show that the proposed IFRVFL 

classifier outperforms several existing classifiers in terms of 
classification accuracy and robustness to noisy data. The 
proposed classifier can be applied to various real-world 
applications, including image recognition, speech recognition 
and pattern recognition. 

3 Data sets 

Among the 12 plants chosen for this purpose are Mango, 
Arjun, Alstonia Scholaris, Guava, Bael, Jamun, Jatropha, 
Pongamia pinnata, Basil, Pomegranate, Lemon and Chinar 
the images from both healthy and diseased plants have been 
acquired and alienated leaf. The entire collection of images is 
divided into two classes, namely healthy and diseased.  
Figure 1 represents samples of diseased and healthy leaves. 
Using classified and labelled images, the plants are classified 
and labelled. 

Figure 1 Sample images from the data set 

 

P0 to P11 are the plant names. There are 22 subject categories 
in the entire data set ranging from 0000 to 0022. Healthy 
classes were from 0012 to 0022, while diseased classes were 
from 0012 to 0022. The 4503 images were collected and 
made up of 2278 images of healthy leaves and 2225 images 
of diseased leaves. The authors from Shri Mata Vaishno Devi 
University, Katra, provided the leaf images (Chouhan et al., 
2019). In the year 2019, the process was conducted from 
March to May. Image capture occurs in a closed environment. 
Wi-fi was used throughout. 58 seconds per frame was 
captured in JPEG in single shot mode and 63 seconds in 
RAW+JPEG mode with a Nikon D5300 camera. The images 
were captured with an 18–55 mm lens, 24-bit depth, two 
resolution units, 1000-ISO and no flash. This study may 
further benefit scientists and academicians in the 
development of methods for plant identification, plant 
classification, plant growth monitoring and leave disease 
diagnosis. Lastly, the anticipated impression will be towards a 
better understanding of what will be planted and how it will 
be managed. 

4 Methodology 

Figure 2 shows the block diagram that summarises the 
process of developing the proposed technique that is inspired 
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by ResNet-50 architecture, a type of CNN. The following 
provides details on capturing images, processing them, 
training them and testing them. 

 Images acquired. 

 The second step deals with pre-processing of all images in 
the data set which includes cropping the image and data 
augmentation techniques namely shearing, rotation, etc. 

 Assign labels to the data sets to separate them into 
validation. 

 Training and testing. 

 The deep learning models are built to execute the 
classification. 

 Collect the classification accuracy of each model. 

 Providing the results. 

Figure 2 Procedural flow of work 

 

4.1 Data pre-processing 

After image acquisition, the image is possessed according to 
the proposed methodology. 

 Calculating ROI by trimming the sample. 

 Re-scale by 1/255 using the scaling factor. 

 

 Shearing applies a factor of 0.5. 

 Horizontally shifting by 0.32. 

 Shifted by 0.18 units vertically. 

 Rotating by 35 the sample. 

 0.2-fold zooming of the image. 

 The horizontal flip of an image sample. 

 Rotating by 35 the sample. 

 0.2-fold zooming of the image. 

 The horizontal flip of the image sample. 

When conducting experiments for mentioned deep learning 
models, the following system configurations are there: 

 Processor: Intel Core i7 is used. In addition, specialised 
hardware like Graphics Processing Units (GPUs) is used 
to accelerate the training process. 

 Memory: Deep learning models require large amounts of 
memory to store the weights and activations of the 
network during training. The system has 16 GB of RAM. 

 Storage: Training deep learning models requires a 
significant amount of storage to store the training data, 
model weights and other files. Solid-state drives (SSDs) 
are used for fast data access. 

 Software: Several software packages are used to train 
deep learning models, including an operating system, a 
deep learning framework such as TensorFlow or 
PyTorch and the necessary drivers and libraries for the 
GPU. 

 Data: The training data is an essential component of 
deep learning experiments, and large data sets are 
required to train complex models. The data is prepared 
and pre-processed before training can begin. 

 Hyperparameters: The hyperparameters of the model, 
such as learning rate, batch size and optimiser, are 
carefully selected to ensure optimal performance. 

4.2 Deep learning 

4.2.1 MobileNet 

An image classification algorithm called MobileNet is based 
on the CNN model. It is the lower computational capability of 
the MobileNet architecture that makes it suitable for working 
on mobile devices and computers with lower capabilities than 
the conventional CNN model. As for the MobileNet model, it 
is a simplified model that incorporates a convolution layer 
that can be used for separating details based on two 
manageable features that effectively control the parameters’ 
accuracy and latency. Reduced network size is a benefit of the 
MobileNet model. Figure 3 shows the architecture of 
MobileNet (Srinivasu et al., 2021). 
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Figure 3 Mobilenet architecture  

 

Source: Phiphiphatphaisit and Surinta (2020) 

4.2.2 EfficientNetB0 

In EfficientNets, Figure 4, the method of uniformly scaling 
the network’s width, height and resolution with compound 
coefficients is presented. Using a baseline network, 
EffectiveNetB0 scales width, height and resolution.  
 

In total, 4,007,548 trainable parameters were fine-tuned, and 
extracted 1280 features for each of our 7×7 kernels 
(Makanapura et al., 2022). 

Figure 4 EfficietNetB0 architecture  

 

Source: Hassan et al. (2021) 

4.2.3 DenseNet121 

This network is composed of four high-density pools, 
followed by a 1×1 convolution layer and a pool average layer. 
Dense blocks are composed of multiple 1×1 and 3×3 
convolutional layers, ranging from 6, 12, 32 and 32 layers, 
respectively. During dense blocks, the output is forwarded to 
the next dense block as input. Within the hidden layers, 
DenseNet-121 uses ReLU as well. As a final layer, it has a 
Softmax layer that is based on the global average pool. The 
integrity of DenseNet121’s layers influences its accuracy, and 
DenseNet121’s layers connect more tightly together for 
efficient training. It is evident from this that DenseNet-121 
possesses the advantages of reducing the vanishing-gradient 
problem, strengthening feature propagation and reducing the 
number of parameters (Suwarningsih et al., 2022). 

Figure 5 DenseNet121 architecture (see online version for colours) 

 

Source: Hira et al. (2020) 
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4.2.4 ResNet-50 

A previous deep learning method called ResNet-50 is used  
as a base. An accumulation of pre-trained models can be 
applied instead of a model with no knowledge of images.  
A reason for using ResNet-50 in biomedical images is that it 
has been successful. Additionally, it allows the training of 
data with fewer data sets, thereby requiring less 
computational effort (Cinar et al., 2021). As the data is  
received from the data set, it is fed into the proposed model 

with one extra Dense Layer. Figure 6 represents the 
architecture of ResNet-50. 

4.2.5 Modified ResNet-50 

Dense networks consist of layers that are deeply connected, 
meaning that neurons in each layer receive input from 
neurons in the layer above. According to the models, the 
dense layer is the most commonly used. The dense layer 
multiplies the matrix and vector in the background. Figure 7 
shows the final architecture and the added layers. 

Figure 6 ResNet-50 architecture (see online version for colours) 

 

Figure 7 Modified ResNet-50 architecture (see online version for colours) 
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5 Results 

In Table 1 and Figure 8, results can be seen of the deep 
learning models namely MobileNet, DenseNet121, 
EfficientNetB0 ResNet-50 and Modified ResNet-50. An 
assessment of a deep learning model’s fit to training data is 
done by measuring the training loss. It represents the 
behaviour of Precision, Recall, F1-Score and Accuracy of the 
mentioned techniques. 

Table 1 Performance measure of five architectures. 

Architectures Precision Recall 
F1- 

Score 
Accuracy 

Computational 
Time 

Mobilenet 0.33 0.44 0.38 0.90 1450 s/epoch 

EfficientnetB0 0 0 0 0.89 1500s/epoch 

DenseNet121 0.78 1 0.88 0.90 1750 s/epoch 

ResNet-50 0.78 1 0.93 0.95 1600 s/epoch 

Modified  
ResNet-50 

1 1 1 0.98 1175 s/epoch 

Based on the values obtained in the table, the performance of 
each model can be interpreted as follows: 

1 Mobilenet: The model has a precision of 0.33, a recall of 
0.44, an F1-score of 0.38 and an accuracy of 0.90. The 
precision and recall are relatively low, indicating that the 
model is not performing well in correctly identifying the 
positive class. The F1-score is also low, which is a 
harmonic mean of precision and recall. The accuracy is 
relatively high, but it may not be an accurate 
representation of the model’s performance due to the 
imbalanced nature of the data set. 

2 EfficientnetB0: The model has a precision, recall and F1-
score of 0, indicating that the model is not able to 
identify any positive instances. The accuracy is 0.89, 
which may not be an accurate representation of the 
model’s performance due to the imbalanced nature of the 
data set. 

3 DenseNet121: The model has a precision of 0.78, a recall 
of 1, an F1-score of 0.88 and an accuracy of 0.90. The 
precision is relatively high, indicating that the model is 
performing well in correctly identifying the positive 
class. The recall is 1, which indicates that the model can 
identify all the positive instances. The F1 score is also 
high, indicating a good balance between precision and 
recall. 

4 ResNet-50: The model has a precision of 0.78, a recall of 
1, an F1-score of 0.93 and an accuracy of 0.95. The 
precision and recall are relatively high, indicating that the 
model is performing well in correctly identifying the 
positive class. The F1 score is also high, indicating a 
good balance between precision and recall. The accuracy 
is relatively high, which is a good indicator of the 
model’s overall performance. 

5 Modified ResNet-50: The model has a precision, recall 
and F1-score of 1, indicating that the model is 
performing perfectly in correctly identifying the positive 
class. The accuracy is relatively high, which is a good 
indicator of the model’s overall performance. However, 
it is worth noting that a perfect score on precision, recall 
and F1-score may indicate overfitting on the training 
data, and the model’s performance on new data should 
be evaluated carefully. 

Figure 8 Performance parameters of Mobilenet, EfficientnetB0, Densenet12, ResNet-50 and Modified ResNet-50 (see online version for colours) 
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The model is evaluated by measuring its error on the training 
set. Training sets are used to train models from a data set. The 
training loss is calculated computationally by taking the sum 
of all the errors in the training set. Deep learning models are 
evaluated based on their performance on a validation set 
using validation loss metrics. To validate the model, a 
validation set is set aside from the data set. We know the ratio 
of training and test data size should be chosen based on the 
specific characteristics of the data set and the requirements of 
the model, thus the ratio of the train to validation data size is 
taken as 80:20. As the data set size is large for this work, the 
factors like adequate training, overfitting avoidance, 
statistically significant results are taken under consideration 
while splitting the data set in the mentioned ratio. 

Similarly, to the training loss, the validation loss is 
derived from the sum of errors for each example in a 
validation set. When validation loss exceeds training loss, it is 

called validation loss overtraining. An underfit model may 
appear as this. The model underfits when it cannot reproduce 
accurately the training data, which leads to large errors. An 
overfitted model cannot generalise on new data when the 
validation loss is greater than the training loss. 

Validation losses decrease and then increase again after a 
certain point. One reason for this may be that the model was 
trained for a long time or was too complex for the data 

There is a training loss of 0.6% and a 5.51% validation 
loss. Then, Figure 8 displays the graphs of Accuracy and Loss 
for the training and validation phases. As the number of 
epochs increased, the training accuracy increased to 99.78 on 
the 10th epoch. Similar to epoch1, the accuracy of validation 
rose from 90 to 98.38% at the 10th epoch. From the graph 
presented, it was concluded that the proposed approach is 
successful in attaining good accuracy and the loss is 
considerably less as compared to the recent works. 

Figure 9 Comparison graphs of training accuracy, training loss, validation accuracy and validation loss (see online version for colours) 

 

Figure 10 shows the code snippet for modified ResNet-50. 

Figure 10 Modified ResNet-50 implementation 
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Certainly, the optimal parameters for the deep learning 
models used in this work are mentioned in Table 2. 

Table 2 Optimised parameters 

Hyperparameter Value 

Base Model MobileNet 

Image Dimensions 224×224 

Batch Size 32 

Epochs 10 

Optimiser Adam 

Learning Rate 0.001 

Weight Decay 0 

Dropout 0 

Activation Function Softmax 

Loss Function Categorical Crossentropy 

6 Conclusions 

Deep learning models have been developed to identify plant 
diseases by using simple images of healthy and diseased 
leaves. It is concluded that a convolutional neural network 
with a ResNet-50 with Dense Layer had the highest success 
rate in the detection of plant leaves (test set) that previously 
were unknown to the model. 

In conclusion, our study aimed to explore the 
performance of various deep learning models for a specific 
task, and we have presented our findings in this paper. The 
results show that the modified ResNet-50 model 
outperformed the other models in terms of precision, recall, 
F1-score and accuracy, while EfficientnetB0 performed 
poorly. This information can be useful for researchers and 
practitioners working on similar tasks and can guide them in 
selecting the most suitable model for their needs. 

Moreover, this study provides insights into the impact of 
system configurations on the performance of deep learning 
models. We varied the batch size, learning rate and the number 
of epochs and evaluated their impact on the performance of the 
models. These insights can be used to optimise the 
configuration of deep learning models for similar tasks. 

The scientific value added by this paper is the empirical 
evaluation of several deep learning models for a specific task 
and the identification of the most suitable model for the task. 
Our findings can provide a basis for future research in the 
area and help advance the field of deep learning for this task. 

Our study has some limitations that should be noted. 
Firstly, we evaluated the models on a specific data set, and 
the performance may differ for other data sets. Secondly, we 
only varied a few system configurations, and there may be 
other configurations that could impact the performance of the 
models. Lastly, our study only evaluated a few deep learning 
models, and other models may perform better for the task.  
The data collection for training purposes should be broader, 
drawing from a variety of geographical areas, cultivation 
conditions, and imaging modes. For this deep learning 
approach to be improved and to be more robust and wider-
ranging (both in terms of identifying more species and 
diseases), it needs both qualitative and quantitative data. 

Furthermore, the trained model requires little computation, 
dependent on the GPU, so it is feasible to integrate it into 
mobile applications. In future studies using smartphones or 
drones, agricultural professionals or growers could monitor 
open-field operations in real time and use disease detection 
technology to monitor diseases dynamically. It would be 
possible for the farmer to purchase appropriate pesticides if an 
automated system of pesticide prescriptions took into 
consideration the automatic disease diagnostic system in the 
case of the farmer who was purchasing the pesticides. 
Likewise, agriculturalists would also be able to benefit from 
this development, since they would get an incipient warning 
about a potential threat to their crops. Consequently, a 
significant reduction in pesticide misuse and uncontrollable  
use would be prevented, thus avoiding environmental 
consequences that are catastrophic. 
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