

International Journal of Wireless and Mobile Computing

ISSN online: 1741-1092 - ISSN print: 1741-1084
https://www.inderscience.com/ijwmc

Hybrid compression for LSTM-based encrypted traffic
classification model

Qiaoxu Mu, Meng Zhang

DOI: 10.1504/IJWMC.2023.10061557

Article History:
Received: 07 November 2022
Last revised: 30 January 2023
Accepted: 22 February 2023
Published online: 07 February 2024

Powered by TCPDF (www.tcpdf.org)

Copyright © 2024 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijwmc
https://dx.doi.org/10.1504/IJWMC.2023.10061557
http://www.tcpdf.org

Int. J. Wireless and Mobile Computing, Vol. 26, No. 1, 2024 61

Copyright © 2024 Inderscience Enterprises Ltd.

Hybrid compression for LSTM-based encrypted
traffic classification model

Qiaoxu Mu and Meng Zhang*
College of Computer Science and Technology,
Jilin University,
Changchun, Jilin, China
Email: 632114930@qq.com
Email: zhangmeng@jlu.edu.cn
*Corresponding author

Abstract: Traditional techniques for network traffic classification are no longer effective in handling
the complexities of dynamic network environments. Moreover, deep learning methods, while
powerful, demand substantial spatial and computational resources, resulting in increased latency
and instability. In this paper, we propose an innovative approach to network traffic classification
utilising an LSTM structure. This approach incorporates network pruning, knowledge refinement,
and Generative Adversarial Networks (GAN) to reduce model size, accelerate training speed
without compromising accuracy, and address challenges associated with unbalanced datasets in
classification problems. Our methodology involves the pruning of unimportant filters from the
teacher model, followed by retraining and knowledge distillation to generate the student model.
Experimental show that the size of the pruned teacher model is only 25.69% of the original,
resulting in a noteworthy 28.16% improvement in training speed. Additionally, the classification
performance of various unbalanced traffic categories, such as VoIP and streaming, shows significant
enhancement.

Keywords: encrypted traffic classification; filter pruning; knowledge distillation; deep learning.

Reference to this paper should be made as follows: Mu, Q. and Zhang, M. (2024) ‘Hybrid
compression for LSTM-based encrypted traffic classification model’, Int. J. Wireless and Mobile
Computing, Vol. 26, No. 1, pp.61–73.

Biographical notes: Qiaoxu Mu received his BS degree in Computer Science from Jilin
University in 2020. Currently, he is a Third-Year Graduate student in the College of Computer
Science and Technology at Jilin University. His research interests include deep learning and
network security.

Meng Zhang received his PhD degree in Computer Science from Jilin University
in 2003. Currently, he is a Professor at the College of Computer Science and Technology, Jilin
University. His main research interests include stringology, network security and computational
biology.

1 Introduction

Traffic classification is the division of traffic into multiple
priority or service classes based on policies. There are three
classical approaches to traffic classification: port-based
approach, load-based approach, and traffic-statistics-based
approach (Yamansavascilar et al., 2017). Owing to the
network development, the amount of encrypted traffic has
been increasing dramatically in recent years, and the
classification of encrypted traffic has become increasingly
important. The traditional methods all have their drawbacks.
As new applications mostly use well-known port numbers or
do not use standard registered port numbers, they seriously
affect the accuracy of the port-based method (Rezaei and Liu,
2019). And payload-based methods, also known as deep

packet parsing, are difficult to achieve encrypted traffic
classification because the traffic is encrypted and the data in
the payload does not have stable characteristics (Zou et al.,
2018). The traffic-statistics-based methods mostly use
machine learning algorithms such as random forest and KNN
methods to classify traffic, but the disadvantage is that they
are highly dependent on manual design hence they are
unsuitable for the current complex and changing network
environment.

In recent years, deep learning has had great success in
directions such as image recognition, so researchers have
applied Convolutional Neural Networks (CNN), Long Short-
Term Memory (LSTM), etc., to traffic classification.
Compared with traditional methods, deep learning methods
can not only maintain high accuracy but also adapt to

62 Q. Mu and M. Zhang

complex and variable network environments without relying
on the manual design. However, for highly redundant data
sets, existing deep learning methods need to occupy massive
storage and computational resources to obtain high accuracy
(Hinton et al., 2015). However, when the models are
deployed online, it is found that the relationship between
model size and accuracy is non-linear, and the larger the
number of model parameters, the slower the improvement of
knowledge. This indicates that there are many redundant
parameters in large models, and we can consider compressing
the models to make them smaller and guarantee the accuracy
of small models through ingenious training strategies.

In recent years, rapidly developing model compression
techniques have provided powerful tools for reducing the
space occupied by models and increasing their speed. Among
them, model pruning and knowledge distillation are the most
representatives. Model pruning is to design a strategy to
evaluate the network parameters and remove redundant
parameters on the trained model (Li et al., 2017). Pruning can
be divided into unstructured pruning and structured pruning.
Unstructured pruning first judges the importance of weights
according to the set strategy and sets a certain percentage of
weights to 0. This will produce an unstructured sparse filter,
which is not much help for speedup and model reduction.
Therefore, more consideration is given to using structured
pruning to compress the model. Structured pruning, which
removes whole rows and columns of weights, makes the
number of parameters decrease and makes the model smaller
while speeding up. The most used structured pruning
methods are filter pruning, channel pruning, etc. Another
approach is knowledge distillation, which is divided into two
phases. First, we train a complex design model with high
accuracy as the teacher model. Then, the softmax layer output
of the teacher model is used as the soft target along with the
softmax layer output of the student model as the total loss to
train the student model (Hinton et al., 2015). This allows the
knowledge of the teacher model to be transferred to the
student model so that the more compact student model can
achieve accuracy and performance similar to the teacher
model.

In this paper, we propose a lightweight network traffic
classification model using pruning and knowledge distillation
techniques. The knowledge distillation is divided into two
parts, the teacher model and the student model. Since LSTM
networks can learn the spatiotemporal characteristics of
network traffic well (Zou et al., 2018), the teacher model
consists of three layers of LSTM and the student model
consists of one layer of LSTM. To reduce the model as much
as possible, this paper prunes the teacher model based on
knowledge distillation. The teacher model is trained first, and
the model is pruned after the training is finished to remove
the weights and smaller filters. To compensate for the
performance degradation caused by pruning, we use a one-
time pruning and retraining strategy to recover the accuracy
of the model as much as possible while reducing the time
wasted in retraining. We use the pruned teacher model to
generate logits to train the student model, where the total loss
function is weighted by the extraction loss and the ground

loss (i.e., the cross-entropy of the hard target and the student
model probability). In the early stages of knowledge
distillation, the training process of the student model requires
the use of higher temperatures to help learn information
between categories, and the presence of noise due to
correlated information between categories can hinder
accuracy improvement. To address this issue, we use an
adaptive temperature function where the temperature changes
with accuracy, making the value of temperature at different
stages more reasonable.

In addition to this, this paper also designed a solution to
the problem of imbalance in the number of samples in the
data set. For the experimental results of the traffic
classification model based on hybrid compression, it can be
concluded that the classes with an extremely small number of
samples in the data set. To enhance the learning ability of the
model for the minority class, this paper used Generative
Adversarial Network (GAN) to learn the features of
the minority class samples and then generate data that can be
‘faked’ by the generator of the generative adversarial
network. After that, the minority class data generated by
the generative adversarial network is added to the original
data set to generate a new data set while maintaining the ratio
of the training set and test set in the original data set. Finally,
the new data set is used to train a hybrid compression-based
cryptographic network traffic classification model.

This paper is organised as follows. Section 2 describes the
work related to network traffic classification. Section 3
describes the framework of the model and the complete
training process in detail. Section 4 gives the experimental
evaluation of our model. We conclude our work in Section 5.

2 Related work

2.1 Encrypted traffic classification

Rezaei and Liu (2019) presented a general framework for
deep learning-based traffic classification, including data
collection, data cleaning, feature selection and deep learning
model selection. Shen et al. (2020) guided future research in
the field of traffic classification. The authors focus their
attention on the optimisation method of feature selection,
summarise the cryptographic traffic features and introduce
the feature selection framework in detail. The feature
selection framework consists of three parts: feature pre-
processing, feature evaluation and feature combination.
Feature selection reduces the number and dimensionality of
features, which in turn reduces overfitting and makes the
model much more versatile.

Rachmawati et al. (2021) presented new research
directions in deep learning-based traffic classification as well
as a general framework. In addition to describing the
application of common deep learning methods to traffic
classification tasks, the authors also presented the work
involved and the problems that exist. Recent work was
reviewed in terms of the general framework, data preparation
and preprocessing.

 Hybrid compression for LSTM-based encrypted traffic classification model 63

Ma et al. (2021) designed an encrypted traffic
classification method based on traffic reconstruction, which
differs from other methods in the processing of payloads. The
method extracts the first 500 bytes of the payload and inserts
a length threshold identifier to obtain the reconstructed traffic
by traffic splitting, cleaning and reconstructing, and then
classifies the traffic using a one-dimensional convolutional
neural network. The reconstructed traffic has more key
features, which in turn reduces the computational cost and
speeds up the classification of encrypted traffic with high
accuracy.

Akbari et al. (2022) designed a traffic classification
method for encrypted Web protocols with a main neural
network architecture based on stacked long short-term
memory layers and convolutional neural network
composition. The authors focused on new encrypted Web
protocols, namely HTTP/2 and QUIC. In the method, the
authors used standard traffic statistics, traffic shapes related to
packet size, raw bytes from TLS handshake packets and
arrival time and direction, which differ from common traffic
classification methods, and the authors showed that the
proposed feature set is more suitable for encrypted traffic
classification. With the help of the neural network
architecture designed by the authors, the number of trainable
parameters is smaller and the possibility of overfitting is less.

2.2 Pruning

A sparse network is obtained after pruning is completed.
Then retraining is performed and pruning and retraining can
be iterated many times to reduce the network complexity as
much as possible. Zhuang et al. (2019) proposed a
Differentiated sensing Channel Pruning (DCP) scheme. DCP
allows better results in the pruning and updating model
phases by making perceptive use of discrimination-aware loss
and the final loss. The authors propose a greedy algorithm for
channel selection and parameter optimisation in an iterative
manner.

Zheng et al. (2022) proposed a micro-network channel
pruning method, which searched for the most available sub-
structure that satisfies the resource constraint by gradient
descent. First optimised the network parameters to make the
search space continuous, then calculated the probability of the
channel being retained based on the learnable probability,
then pruned it, and finally restarted the training to obtain the
pruned model.

Salehinejad and Valaee (2022) inspired by the dropout
concept and used dropout as an energy-based framework for
pruning neural networks. Unlike most methods, the energy-
based model evolved stochastically to find states with lower
energy loss, and then the best pruning state was selected and
applied, cyclically. In this process, iterations were constantly
switched between managing pruning states and updating
the retained weights. This way the method allowed the
pruning of the neural network without modifying the network
architecture code.

Rong et al. (2020) designed a method that can correct
incorrect pruning and does not rely on fine-tuning. This
method is a gradient-based approach that dynamically

reduces the complexity. During the pruning process, the
evaluation criteria are determined based on the gradient and
will classify the filters into strong and weak filters. The strong
filter uses the gradients associated with the decay of the
objective function and weights to update the parameters to
maintain the model performance. The gradient flow of the
weak filter will be blocked. As training proceeds, the set of
blocking filters will continue to shrink and eventually converge
to a relatively stable set. When pruning errors occur, the model
can be corrected for pruning errors by reactive pruning filters in
the next training cycle. That is, the accuracy of the model is
guaranteed while making it as small as possible.

Guo and Li (2021) proposed a pruning method that
combines convolutional kernel pruning and filter pruning.
This significantly reduced floating point operations (FLOP),
reduced the number of parameters and maximises the
compression of the model so that it can be deployed on
mobile devices.

Chen et al. (2021) proposed a hybrid pruning method to
compress the CNN model. Hybrid pruning consists of filter
pruning and 2:4 pruning. The authors applied filter pruning to
remove the redundant filters in the convolutional layer to
make the model smaller. Next, the authors used 2:4 pruning
to prune the model according to the 2:4 pattern to utilise the
sparse tensor core hardware for acceleration. In addition to
this, the authors proposed a hybrid ranking metric that
retained the filters that were important for both pruning steps,
which allowed the model to obtain higher accuracy.

2.3 Knowledge distillation

In their paper, Li et al. (2022) proposed a new online
knowledge distillation method named Feature Fusion and
Self-Distillation (FFSD) for online knowledge distillation.
The method divided the student part of knowledge distillation
into leading and normal students, and the authors designed a
module with a diversity enhancement strategy to perform
feature fusion and extract knowledge to leading students to
improve the generality of the model. In addition to this, a self-
distillation module was proposed which converts deep feature
maps into shallow feature maps, which helped students to
learn the knowledge better.

Gu et al. (2021) proposed a structured attention
distillation method for lightweight networks. When there was
a large structural difference between the teacher network and
the student network, the method enhanced the refinement of
the spatial attention map by grouping features in the model
according to channels, which in turn improved the feature
extraction ability of students.

A new method called Relational Knowledge Distillation
(RKD) is proposed to convey the structural relationships of
the output (Park et al., 2019). The authors proposed two types
of RKD losses: distance direction distillation loss and angular
direction distillation loss. RKD calculates the relational
potential of each data example as a way to transfer
information from the teacher to the student. RKD is based on
traditional Knowledge Distillation (KD) and can be combined
with other methods to improve performance. RKD can be
seen as a generalisation of the traditional KD and can also be

64 Q. Mu and M. Zhang

combined with other methods to improve performance due to
its complementary nature to the traditional KD.

2.4 Generating adversarial networks

Wang et al. (2019) proposed the FlowGAN method based on
GAN to solve the traffic classification imbalance problem.
Taking advantage of rate GAN data augmentation, flow data
is generated for classes with fewer samples, and then the
generated data is combined with the original data to form a
new flow data set to be used for training. The authors used the
deep learning classification method MLP and conducted
experiments on imbalanced data sets, oversampled data
sets,and generative adversarial network generated data sets,
which showed that the FlowGAN synthesised data sets have
better performance. Guo et al. (2021) used GAN to overcome
the problem that the oversampling technique tends to overfit
and introduce noise. And to ensure the quality of the
generated samples, the authors designed an end-to-end
framework that integrates the generation of a few flow
samples and the training of the target classifier. The authors
designed a feedback mechanism that can better guide the
direction of sample generation while indicating the quality of
the generated samples. Wang et al. (2020) proposed a traffic
data enhancement method PacketCGAN based on a
Conditional Generative Adversarial Network (CGAN), a type
of GAN that controls the pattern of generated data. As a
generative model, PacketCGAN takes advantage of CGAN to
generate synthetic traffic samples by learning the features of

the original traffic data. The synthetic data is then combined
with the original data (i.e., real data) to construct a new traffic
data set, thus maintaining a balance between the primary and
secondary classes of the data set.

3 Methodology

The main body of work in this paper is divided into two parts,
the first part is the design and training of a hybrid
compression-based network traffic classification model, and
the second part is to generate sample images using GAN, put
the sample images into the data set, and retrain the model in
the first part using the new data set.

Figure 1 shows the working framework of the first part.
The first step of the workflow is to train the teacher model,
the body of the model consists of LSTM and the loss function
for training is cross entropy. The second step is to prune the
trained teacher model. The pruning method is filter pruning,
which determines whether to keep the filter based on the
weight and size of the convolutional kernel. The third step is
to retrain the pruned teacher model. The main purpose of
retraining is to compensate for the loss of model accuracy
during the pruning process as much as possible. The fourth
step is to train the student model with knowledge distillation.
The main body of the student model consists of LSTM, and
the loss function of the training consists of the average of
both cross-entropy ce_loss and KL_loss derived from KL
divergence.

Figure 1 Hybrid compression work frame

 Hybrid compression for LSTM-based encrypted traffic classification model 65

The second part is the workflow of the generative adversarial
network part. First, the data set needs to be restored from idx
format to png format, and then the categories to be data
enhanced are selected according to the quantitative
relationship between the categories, after which the images in
the data set are sampled and input to the discriminator, then
the images are generated using random noise and the
generator, and the generated images are added to the
discriminator for discrimination and iterated several times
until the two reach Nash equilibrium. Then, the data
augmentation is completed by adding the newly generated
images to the data set according to their categories. Finally,
the data-enhanced data set is used to train the model
generated in the first part.

3.1 Model structure

3.1.1 Teacher model

Recurrent Neural Networks (RNN) use internal memory to
process arbitrary temporal sequences of inputs and are called
RNN because the current output of a sequence is correlated
with the previous output. The biggest problem with recurrent
neural networks is that they are susceptible to short-term
memory. If a sequence is long enough, it is difficult to pass
earlier time steps to later time steps, so important information
may be missed. In addition, RNN also faces the problem of
gradient disappearance. LSTM has an internal mechanism
called ‘gate’ that regulates the flow of information and has
the function of choosing to keep information and forget it,
which solves the problem in RNN. The flow is time-
dependent within the packet, so we consider the LSTM as the
teacher model and the student model. Specifically, for the
teacher model, we use a three-layer LSTM, with each layer
consisting of 256 cells. We added BatchNormalisation (BN)
after each LSTM layer, and the purpose of adding the BN
layer is to speed up the training and convergence of the
network. In addition, the BN layer controls the gradient
explosion, prevents gradient disappearance and prevents
overfitting. At the end of the model, there is a fully connected
layer, consisting of 12 units.

Between each LSTM layer and BN layer, we added
LeakyReLU activation functions with α of 0.3, 0.2 and 0.1 for
the functions in the teacher model.

3.1.2 Student model

To ensure that the student model can learn better from the
teacher model, the structure of the teacher model and the
student model should be as similar as possible. Therefore, in
this experiment, the student model is also based on LSTM,
but unlike the teacher model, the student model uses one
layer of LSTM, consisting of 16 units and does not use L2
regularisation because the model is small and the number of
parameters is not large. BatchNormalisation is also added
after the LSTM layer, and a LeakyReLU activation function
is added between the LSTM and BN layers with an α of 0.1.

3.2 Filter pruning

In the previous section, we trained a large teacher model
with high accuracy and complex structure. In this section,
we use filter pruning to compress the teacher model. The
pruning criterion is the sum of the weights of the
convolutional kernels, using the L1 paradigm. We consider
that the generation of convolutional kernels with smaller
weights represents that it generates weaker feature maps,
which have little impact on the model because
the information they transmit is negligible, and removing
the corresponding filters does not have a significant impact
on the network. After removing enough filters, the
network is retrained to recover the accuracy. The process of
pruning n filters from the i-th convolutional layer is as
follows.

 For each filter F in that layer, calculate the sum of the
absolute values of the convolutional kernel weights

 S= W i (1)

 Sorting the calculated S

 Pruning weights and minimum filters and their
corresponding feature maps using the Keras-surgeon
library

 Create a new matrix, rearrange the remaining kernel
weights and cycle through the above steps until the
pruning number is reached

After pruning the filter, we need to retrain the network to
compensate for the performance drop. There are two
strategies.

1) Re-training after one-time pruning: Prune the filter of
the desired layer at one time, and retrain it after the
pruning is over to restore accuracy.

2) Pruning and retraining iteration: after pruning a filter
or pruning a layer of filters, retrain once. The pruning
and retraining process is iterated until the desired
number of pruning’s is reached.

The strategy we use is to retrain after a one-time pruning.
This restores the model accuracy as much as possible.
Iterating for pruning and retraining may yield better results
(Li et al., 2022), but the iterative process takes more time,
especially since our teacher model is more complex. It is
more than worthwhile compared to the reduced training
time we compress. Therefore, we use a one-time pruning
and then retrain and fine-tune after the pruning is over.

3.3 Knowledge distillation

The temperature value in knowledge distillation is one of the
key points, and the level of temperature changes how much
attention is paid to the negative labels during the training of
the student model. When the temperature is lower, less
attention is paid to the negative labels; while when the

66 Q. Mu and M. Zhang

temperature is higher, the negative labels receive more
attention. That is, the temperature should be turned up if you
want to learn more from the negative labels, and slightly
lower when you want to reduce the interference from noise.
So, to get better performance, the temperature T is allowed to
increase first, and then gradually decrease the temperature.
For this purpose in this paper, an automatically varying
temperature function is designed, where α is the initial
temperature value:

 3
2 4T accuracy    (2)

Another key in knowledge distillation is the loss function of
the student model. Unlike the teacher model, the loss function
student_loss of the student model consists of KL_loss and
ce_loss, with the following equation:

 student_loss=0.5 KL_loss ce_loss  (3)

Before giving the definitions of KL_loss and ce_loss, the
following definitions are stated:

iv : The output logits of the teacher model at the i-th sample.

iz : The output logits of the student model at the i-th sample

ic : The truth label of the i-th sample

N: Total number of labels

T
ip : The softmax output value of the teacher’s model for the

i-th sample at temperature T, with the following equation:

 

exp

exp

i

T
i N

jj

v
T

p
v

 
 
 


 (4)

T
iq : The softmax output value of the i-th sample of the student

model at temperature T, with the following equation:

 

exp

exp

i

T
i N

jj

z
T

q
z

 
 
 


 (5)

KL_loss is the loss function calculated using the KL
divergence:

    log log
N

T T T
loss i i i

i

KL p p q    (6)

ce_loss is the cross-entropy loss function calculated from
the truth labels and the logits of the student model output:

 1log
N

loss i i
i

ce c q  (7)

As shown in Figure 2, first, the accuracy is initialised to 0 and
the temperature T value is  . Then, the model starts training
by calculating the logits of the teacher model and the student
model separately, then calculating KL_loss and ce_loss
respectively, and then the arithmetic average of the two is
used to find student_loss. To prevent model overfitting, the
student model is also trained using the early stop method and
the completed model is the desired target network model.

Figure 2 Knowledge distillation process

 Hybrid compression for LSTM-based encrypted traffic classification model 67

3.4 Data augmentation based on generative
adversarial networks

3.4.1 The framework of GAN

GAN consists of two models: a generator and a discriminator.
The task of the generator is to input random noise and
create an image using a deconvolutional network. The
discriminator’s task is to input an image and determine
whether it is a ‘real’ image from the data set or a ‘fake’ image
generated by the generator.

The training process of GAN consists of the following
steps:

1 The encrypted traffic data set is sampled to obtain
Pdata(x) and Pdata(x) is fed to the discriminator D to obtain
the discriminant result.

2 Generate the random noise Pz(z), feed the random noise
into the generator G model and then use G to generate
the picture G(z).

3 The generated picture of G is fed into the discriminator
to judge the result.

4 Calculate the loss of the generator and discriminator
using the loss function.

5 Update the parameters

6 Repeat the above steps until G and D reach Nash
equilibrium.

Discriminator Since the work task is a binary classification
problem, this paper uses a binary cross-entropy loss function
to train the discriminator with the following formula:

      1 log log 1
n

loss i
i

D D x D G z
n

     (8)

Since the discriminator always wants to minimise the loss, it
is desirable to minimise the above equation:

      
     

~

~

min max , log

log 1

data

z

x P xG D

z P z

V G D E D x

E D G z

  
   

 (9)

The generator is only involved in the second half of the
expression, so the generator loss function is as follows:

   1 log 1
n

loss
i

D D G z
n

   (10)

In the early stage of training, the discriminator can easily
determine whether the image is a real image or not, precisely

because    ~ 0D G z , in which case    log 1 D G z is

saturated, so    log D G z , which is maximised by

training, is chosen. The loss function is as follows:

  1 log
n

loss
i

D D G z
n

  (11)

3.4.2 Training algorithms

The training of the model generally consists of two parts:
the training of the discriminator and the training of the
generator, in which the weights and bias vectors are updated
using the Adam optimiser. The first step is to train the
discriminator, which consists of an input layer, two Dense
layers and an output layer. The data in the input layer is
derived from the real data set, and the input
multidimensional data is expanded into one-dimensional
data with the distribution  dataP x in the input layer. The

hidden layer contains two Dense layers noted as 1hD and

2hD , and the following results can be obtained according to

the operations implemented by Dense:

 1 1 1
D D

h DD LeakyReLU input W b   (12)

 2 1 2 2
D D

h hD LeakyReLU D W b   (13)

where Dinput is the output result of the input layer, 1
DW and

2
DW are the weight matrices and， 1

Db and 2
Db are the bias

vectors. The activation function used is LeakyReLU, which is
very similar to the ReLU function. However, there is a big
difference between the two when the input is less than 0. The
ReLU input is less than 0, while the LeakyReLU value is
negative and the gradient is smaller. In the backpropagation
process, the gradient can be calculated for the part of the
LeakyReLU activation function less than zero, which avoids
the possible neuron death problem of ReLU, so LeakyReLU
is used as the activation function in this paper. The output
layer aims to output a one-dimensional determination result
as follows:

2 3 3
D D

out hD D W b   (14)

The second step is to train the generator, which has an input
layer with a random vector of dimension 100, followed by
three Dense layers with the number of neurons 256, 512 and
1024. the output of each layer is as follows:

 1 1 1
G G

h GG LeakyReLU input W b   (15)

 2 1 2 2
G G

h hG LeakyReLU G W b   (16)

 3 2 3 3
G G

h hG LeakyReLU G W b   (17)

The input of the output layer is the result of the random
noise  zP z processed by the three Dense layers. The

computed result will be activated by the tanh function, and a
(28,28,1)-dimensional image will be output after the
processing:

 3 4 4tanh G G
out hG G W b   (18)

68 Q. Mu and M. Zhang

4 Evaluation and experimental results

4.1 Data set

4.1.1 Selection of data set

In this paper, we use the public data set ISCX-VPN-non-VPN.
The ISCX data set, published by Gil et al. (2016) is rich in
variety and quantity, containing seven types of regular
encrypted traffic (e.g., P2P, VoIP) and seven types of
encrypted traffic over VPNs. Moreover, the public data set
does not compromise the credibility of the results compared to
self-collected traffic or private traffic. Therefore, it is most
feasible to use the ISCX data set, where the raw traffic does not
have labels, so we need to tag traffic types for these files, where
browser traffic from media may be tagged as browser traffic, a
problem reported by He and Li (2020) and Wang et al. (2017).
Therefore, we decided not to label browser and VPN browser
traffic, and the detailed information is listed in Table 1.

Table 1 ISCX VPN-non-VPN data set

Categories Applications

Chat ICQ, AIM, Skype, Facebook, Hangouts
Email SMPT, POP3, IMAP
File transfer Skype, FTPS, SFTP
VoIP Facebook, Skype, Hangouts, VoIP buster
P2P Torrent
Streaming Vimeo, YouTube, Netflix, Spotify
VPN-Chat ICQ, AIM, Skype, Facebook, Hangouts
VPN-Email SMPT, POP3, IMAP
VPN-File transfer Skype, FTPS, SFTP
VPN-VoIP Facebook, Skype, Hangouts, VoIP buster
VPN-P2P BitTorrent

4.1.2 Data pre-processing

First, session extraction is performed. Our work is based on
sessions and all layers, so we need to extract the sessions of
each pcap file. Session extraction is followed by traffic
clearing, which anonymises the information in the data frame
headers since data frame header information (e.g., MAC
address and IP address) may cause the classifier to overmatch.
Then the IP addresses, TCP\UDP port numbers and data link
layer addresses are randomised. Afterward, duplicate packets
are removed as well as packets with empty payloads.

After performing the above operations, the packets are
unified into the specified length. In this paper, we specify the
packet length to 784 bytes, and the packets with insufficient
length are to be truncated by filling 0 to reach the specified
length, while the packets with lengths beyond the specified
length are to be truncated.

Next, since IDX files are a common data storage file
format in the machine learning field, The training set and the
test set are stored as IDX files and we set the ratio of the
number of training data to the number of test data to 9:1.

4.2 Experimental environment

The experimental platform is Windows 10 with a 2.40 GHz
Intel I5-9300H CPU, an external GPU (Nvidia GeForce

RTX2060) and 8GB of RAM. The software used for
training and pre-processing includes Tensorflow 2.6,
CUDA 11.3 and Jupyter Notebook 6.4. For convenience, the
artificial neural network library Keras is chosen. pruning
tools are used with the third-party open-source tool Keras-
surgeon.

The number of training iterations is 1000, except for the
early stop mechanism, which stops the training when the
accuracy of the model no longer improves, with a patience of
100 for the teacher model and 50 for the student model.

4.3 Evaluation indicators

Four evaluation metrics were used: Accuracy, Precision, Recall
and F1-Score. Accuracy is the number of samples predicted to
be right as a percentage of the total number of samples.
Precision is a prediction-specific metric that is how many of the
samples predicted to be positive are positive samples. Recall is
sample-specific and indicates how many positive cases in the
sample were predicted correctly. Accuracy is used to evaluate
the overall performance of the classifier, while Precision and
Recall are used to evaluate the performance of each traffic
class. TP: the number of positive classes predicted as positive;
FN: the number of positive classes predicted as negative; FP:
the number of negative classes predicted as positive; TN: the
number of negative classes predicted as negative. the F1-Score
takes into account both the precision and recall of the model,
which better balances the two-evaluation metrics. The formula
is as follows:

TP TNAccuracy
TP TN FP FN


  

 (19)

TPPrecision
TP FP




 (20)

TPRecall
TP FN




 (21)

21 Precision RecallF Score
Precision Recall
  


 (22)

In this paper, Macro Average (MA) and Weighted Average
(WA) are used to calculate the mean, respectively. The
formulas for MA and WA are as follows:

1
Q

q
i i

q

MA I
Q

  (23)

 1
Q

q
i q i

q

WA N I
Q

  (24)

where I = {Precision, Recall, F1-score}, Q is the total number
of sample categories, q is the samples in Q, and the total
number of samples is N. The MA metric is calculated using
the arithmetic mean method, which considers the contribution
of all categories, so the categories with more samples
dominate the categories with fewer samples, and then the
value of using MA is severely diminished when there is a
severe category imbalance in the data set. The WA takes into
account the imbalance of the multi-categorical problem by
assigning different weights to each category according to the
sample size and then calculating the average.

 Hybrid compression for LSTM-based encrypted traffic classification model 69

In addition to this, we focus on the compression effect of
the model, which can be known by the model size (Space)
and the number of model parameters (TotalParams). In
addition, we also focus on the training time and prediction
time of the model.

4.4 Experimental results

To have a better performance of the traffic classification
model based on hybrid compression, an automatically
varying temperature function is designed in this paper in the
knowledge distillation method. First, experiments will be
conducted to investigate α in the temperature function. The
experimental results are shown in Figure 3. It can be observed
that the model has the best performance when 8  . The
model has the worst performance when 20  , which is due
to the initial temperature is too high, resulting in the
temperature not being able to drop to the right range later in
the training period.

Figure 3 Initial temperature parameters versus model
performance

When 8  , the temperature function curve is shown in
Figure 4. According to the multifaceted work (Hinton et al.,
2018; Wu and Zhang, 2021), the range of temperature in this
paper is set between [2, 20]. With the increasing training
time, the accuracy of the model is also rising, when the
automatically changing temperature function will gradually
decrease, reducing the model can be affected by noise in the
late training period, making the model can learn more
knowledge from difficult features and difficult samples,
improving the learning ability of the model and ensuring that
a model with high performance can be obtained.

To measure the performance of the models in terms of
compression, the storage and computational resources of the
models need to be considered, and the experimental results
are shown in Table 2 below. Among the models, T_Model
and S_Model are using only the knowledge distillation
method, and models PT_Model, PS_Model, GAN_T and
GAN_S are derived from the hybrid compression method in
this paper. Models GAN_T and GAN_S are the models
derived from training using data-enhanced data sets. It can be
observed that the volume of model PT_Model and GAN_T is
4079 KB, which is 25.8% of model T_Model, and the

number of model parameters is 25.3% of model HCETC_T.
The volume of model PS_Model and model GAN_S is only
33KB compared to model HCETC_PT, and the number of
model parameters is only 0.9% of model HCETC_PT. In
terms of computational resources of the model, the training
time of model PT_Model decreases from 31.03 to 21.16 ms
per step, and the inference time decreases by 58.3%. The
training time of model GAN_T decreased to 22.29 ms, and
the inference time decreased by 13.8%. Model PS_Model
training time decreased by 21% and prediction time decreased
by 27.7%. Model GAN_S training time decreased by 35.4%
and inference time decreased by 47.2%. The PS_Model and
GAN_S models that undergo filter pruning and knowledge
distillation largely reduce the demand for storage and
computational resources. In addition to this, the experiments
include student models noKD_Model and PT_noKD derived
from direct training without knowledge distillation, and
models KD_Model and PT_KD are trained using the fixed
temperature knowledge distillation method. It can be seen
from the table that the models noKD_Model and PT_noKD
are much faster than the other models in terms of training
speed, which is due to the need to calculate the loss values
during the training of the other models, including soft labels
and student model logits, but this time consumption is
acceptable compared to the reduction of the model’s demand
for storage and computational resources.

Figure 4 Temperature curve

Table 2 Comparison of storage and computational resources
between models

 Space (KB) TotalParams TT (ms/step) PT(s)

T_Model 15786 1348620 31.03 2.16

noKD_Model 33 3148 7.63 0.58

KD_Model 33 3148 15.28 1.04

S_Model 33 3148 18.27 0.64

PT_Model 4079 341388 21.16 0.9

PT_noKD 33 3148 7.86 0.54

PT_KD 33 3148 14.6 1.09

PS_Model 33 3148 16.71 0.65

GAN_T 4079 341388 22.29 1.86

GAN_S 33 3148 11.8 1.14

It is worth mentioning that although the model PT_Model
and model GAN_T are compressed, the performance is very

70 Q. Mu and M. Zhang

similar to T_Model, if not better. The experimental results
are shown in the following Table 3, in general, the
performance difference between the student model
PS_Model and GAN_S and the teacher model is not large,
and the accuracy of model PS_Model and teacher model
PT_Model is only 0.38% lower than the teacher model, the
most serious decrease is MARecall , which is 0.97% lower.

The most serious drop is MARecall , which decreases by

0.56%. The performance of model noKD_Model is the
worst. This model has not undergone knowledge distillation
and has poor learning ability for teacher model T_Model.
Although model KD_Model used the knowledge distillation
technique, the noise problem seriously affected the feature
learning ability of the model in the later stage of training
due to the fixed value of the temperature parameter, which
in turn seriously reduced the performance of the model. The
models S_Model, PS_Model, and GAN_S with adaptive
temperature functions have better performance by
adaptively adjusting the temperature parameters, using a
lower temperature in the early stage so that the model can
learn knowledge quickly, and appropriately increasing the
temperature in the later stage in the face of the noise
problem, focusing on the processing of hard labels and thus
improving the learning ability for difficult features and
samples. Compared with model PS_Model and GAN_S and
model S_Model, although they both use the adaptive
temperature function designed in this paper, the teacher
models of the former two models are pruned by filters to
remove some of the redundant parameters, making the
models have better performance and therefore the student
models also have better performance. This proves the
effectiveness of the hybrid compression method in this
paper.

Table 3 Experimental results of the eight methods

 Accuracy
Precision Recall F1-Score

MA WA MA WA MA WA

T_Model 0.9987 0.9921 0.9988 0.9957 0.9987 0.9937 0.9987

noKD_Model 0.9693 0.9721 0.9704 0.9703 0.9693 0.9709 0.9693

KD_Model 0.9896 0.9780 0.9897 0.9800 0.9896 0.9790 0.9896

S_Model 0.9926 0.9807 0.9927 0.9824 0.9926 0.9813 0.9927

PT_Model 0.9997 0.9983 0.9998 0.9998 0.9997 0.9990 0.9997

PT_noKD 0.9744 0.9778 0.9765 0.9653 0.9744 0.9707 0.9743

PT_KD 0.9909 0.9826 0.9910 0.9844 0.9909 0.9833 0.9909

PS_Model 0.9959 0.9940 0.9960 0.9901 0.9959 0.9919 0.9959

GAN_T 0.9998 0.9998 0.9998 0.9992 0.9998 0.9995 0.9998

GAN_S 0.9978 0.9952 0.9978 0.9936 0.9978 0.9944 0.9978

In the experiments of this paper, to obtain the best-performing
model, the early stop method is used to end the training in this
paper, when the performance of the model does not improve
for a long time, which also leads to different training epochs
for each model. At the same time, the early stop method can
prevent the model from overfitting. In addition, since the loss
functions of different models are not the same, resulting in the
obtained loss values not having the same criteria, they cannot

be compared directly. To compare the learning ability of
different models, the loss values of the models were first
normalised so that the loss values ranged within [0, 1], which
solved the proposition that the loss functions of the models
were different. After that, the loss values of each model were
compared at 1 to N*10, which solved the problem of the
different number of training iterations for different models.
The experimental results are shown in Figure 5. In terms of
model loss values, it can be observed that model PT_KD has
significant fluctuations in loss value drop in the later stages of
training because it uses a fixed knowledge distillation
temperature, while models S_Model and PS_Model both use
an adaptive temperature function so there is less fluctuation in
the later stages. In addition, because the model PS_Model
uses the filter pruning method to remove some redundant
parameters, the model PS_Model has the fastest decline in the
loss value and smoother fluctuations in the later stages of the
experiment. In terms of the accuracy of the model, each
model converges very well. Therefore, the model PS_Model
proposed in this paper has the highest accuracy and the fastest
learning speed among the student models.

Figure 5 Comparison of PT_KD, HCETC_S and HCETC_PS
models

As shown in Figure 6, the ablation experiment of adaptive
temperature was performed. It can be observed that the
metrics of PT_Model are much better than KD_Model and
PT_KD, which can prove that the adaptive temperature
function is significant. The metrics of PT_KD are similar to
S_Model and even better in accuracy, which also proves that
our pruning algorithm which ensures the model accuracy and
reduces the model size.

Figures 7 and 8 show the confusion matrices of the
classification performance of model GAN_S and model
PS_Model for different sample classifications. The
confusion matrix focuses on the Precision of the model
classification, and it can be found that model PS_Model has
more categories where classification errors occur, while
model GAN_S has classification errors in categories 7
and 8. This indicates that the data enhancement method
designed in this paper plays an excellent role in solving the
classification difficulty problem caused by data imbalance.
The specific classification performance is shown in
Figure 7.

 Hybrid compression for LSTM-based encrypted traffic classification model 71

Figure 6 The ablation experiment of adaptive temperature

Figure 7 Confusion matrix of the model PS_Model

Figure 8 Confusion matrix of the model GAN_S

Figure 9 shows the classification performance of model
GAN_S and model PS_Model for different samples, and it
can be found that the GAN-S model is better than the
HCETC_PS model in classifying most of the categories.
Firstly, we focus on the data categories VPN-Email, Vpn-
VoIP, and VPN-P2P that have been enhanced using
generative adversarial networks. the Vpn-VoIP category is
the most difficult category to classify by model HCETC-PS,
and it can be observed from the figure that both evaluation
metrics, Recall and F1-Score, have been improved by
different degrees through data enhancement, by 6.33% and
3.34%, respectively. In addition, there are improvements in

the categories of file transfer, VoIP and P2P. This indicates
that the method designed in this paper to enhance the data set
based on generating adversarial networks is effective. Finally,
for the VPN-P2P category, the classification performance of
both models is high, with 100% for all three-evaluation
metrics, and it can be found that the performance remains
unchanged after data enhancement, which indicates that the
data generated by the generative adversarial network does not
bring adverse effects on the data set. In addition to the above
category, the VPN-Chat category is also one of the more
difficult categories for the model HCETC_PS to classify.
Although this paper did not perform data augmentation on
this category, the classification performance of this category
also has a considerable improvement, which is because some
difficult categories are mistaken as VPN-Chat categories in
the classification process, resulting in the degradation of the
classification performance of this category.

Figure 9 Sample classification performance comparison

72 Q. Mu and M. Zhang

Our models are compared with more established models
Wang et al. (2018). Owing to the different configurations of
the experimental equipment, we do not compare the
prediction time of the models, we compare the three aspects
of size, number of parameters and F1 score. The results are
shown in Table 4, where we can observe that our method not
only has the smallest model size but also has the highest
accuracy. Even the size of the teacher model is in the middle
of the range. It can be said that our method outperforms the
state-of-the-art methods in all measurements.

Table 4 Comparison of the model in this paper with the
mature model

 Space TotalParams F1-Score

MLP 178 KB 12943 0.9653

SAE 12681 KB 1359463 0.9882

CNN 1467 KB 182927 0.9843

GAN_T 4079 KB 341388 0.9995

GAN_S 33 KB 3148 0.9944

5 Conclusion and future work

In this paper, we propose a hybrid compression-based
network traffic classification model, PS_Model, which
applies filter pruning based on knowledge distillation and
uses an adaptive temperature function for better classification
of network traffic. Compared with the traditional model, our
model maintains accuracy and greatly reduces the size of the
model, and speeds up the training. Filter pruning makes the
teacher model required for knowledge distillation reduce the
occupied storage and computational resources. In addition,
this paper also designs a data augmentation method using
generative adversarial networks. Experiments show that the
model GAN_S obtained by training with the data-enhanced
data set has the best classification performance and solves the
classification difficulty caused by sample imbalance in the
classification process.

In the future, we will continue to experiment with the
use of other compression methods in combination with
knowledge distillation, considering further compression of
the model size. In addition, we will pay more attention to
the problem of an unbalanced sample size and try to propose
a better solution.

References

Akbari, I., Salahuddin, M.A., Ven, L., Limam, N., Boutaba, R.,
Mathieu, B. and Moteau, S. et al. (2022) ‘Traffic classification
in an increasingly encrypted web’, Communications of the
ACM, Vol. 65, No. 10, pp.75–83.

Chen, A-T., Liu, P., Hong, D-Y. and Wu, J-J. (2021) ‘Accelerate
CNN models via filter pruning and sparse tensor core’,
Proceedings of the 10th International Symposium on
Computing and Networking (CANDAR), IEEE, Matsue, Japan,
pp.1–9.

Gil, D., Lashkari, A.H., Mamun, M. and Ghorbani, A.A. (2016)
‘Characterization of encrypted and vpn traffic using time-related’,
Proceedings of the 2nd international conference on information
systems security and privacy (ICISSP), pp.407–414.

Gu, X., Tian, H. and Dai, Z. (2021) ‘Structured attention knowledge
distillation for lightweight networks’, Proceedings of the 33rd
Chinese Control and Decision Conference (CCDC), IEEE,
Kunming, China, pp.1726–1730.

Guo, C.Y. and Li, P. (2021) ‘Hybrid pruning for convolutional
neural network convolution kernel’, Proceedings of the 4th
International Conference on Advanced Electronic Materials,
Computers and Software Engineering (AEMCSE), IEEE,
Changsha, China, pp.432–438.

Guo, Y., Xiong, G., Li, Z., Shi, J., Cui, M., Gou, G. (2021) ‘TA-
GAN: GAN based traffic augmentation for imbalanced network
traffic classification’, International Joint Conference on Neural
Networks (IJCNN), IEEE, Shenzhen, China, pp.1–8.

He, Y.J. and Li, W. (2020) ‘Image-based encrypted traffic
classification with convolution neural networks’, IEEE Fifth
International Conference on Data Science in Cyberspace
(DSC), IEEE, Hong Kong, pp.271–278.

Hinton, G., Vinyals, O. and Dean, J. (2015) ‘Distilling the
knowledge in a neural Network’, arXiv:1503.02531 [stat.ML].
Available online at: http://arxiv.org/abs/1503.02531 (accessed
29 October 2022).

Li, H., Kadav, A., Durdanovic, I., Samet, H. and Graf, H.P. (2017)
Pruning Filters for Efficient ConvNets, arXiv:1608.08710
[cs.CV]. Available online at: http://arxiv.org/abs/1608.08710
(accessed on 29 October 2022).

Li, S., Lin, M., Wang, Y., Wu, Y., Tian, Y., Shao, L. and Ji, R.
(2022) ‘Distilling a powerful student model via online
knowledge distillation’, IEEE Transactions on Neural
Networks and Learning Systems, pp.1–10.

Ma, Q., Huang, W., Jin, Y. and Mao, J. (2021) ‘Encrypted traffic
classification based on traffic reconstruction’, Proceedings of
the 4th International Conference on Artificial Intelligence and
Big Data (ICAIBD), IEEE, Chengdu, China, pp.572–576.

Park, W., Kim, D., Lu, Y. and Cho, M. (2019) Relational knowledge
distillation, arXiv:1904.05068 [cs.CV]. Available online at:
http://arxiv.org/abs/1904.05068 (accessed on 29 October 2022).

Rachmawati, S.M., Kim, D-S. and Lee, J-M. (2021) ‘Machine
learning algorithm in network traffic classification’,
Proceedings of the International Conference on Information
and Communication Technology Convergence (ICTC), IEEE,
Jeju Island, Korea, pp.1010–1013.

Rezaei, S. and Liu, X. (2019) ‘Deep learning for encrypted traffic
classification: an overview’, IEEE Communications Magazine,
Vol. 57, No. 5, pp.76–81.

Rong, J., Yu, X., Zhang, M. and Ou, L. (2020) ‘Soft taylor pruning for
accelerating deep convolutional neural networks’, Proceedings of
the 46th Annual Conference of the IEEE Industrial Electronics
Society, IEEE, Singapore, Singapore, pp.5343–5349.

Salehinejad, H. and Valaee, S. (2022) ‘EDropout: energy-based
dropout and pruning of deep neural networks’, IEEE
Transactions on Neural Networks and Learning Systems,
Vol. 33, No. 10, pp.5279–5292.

Shen, M., Liu, Y., Zhu, L., Xu, K., Du, X. and Guizani, N. (2020)
‘Optimizing feature selection for efficient encrypted traffic
classification: a systematic approach’, IEEE Network, Vol. 34,
No. 4, pp.20–27.

Wang, P., Li, S., Ye, F., Wang, Z., Zhang, M. (2020) ‘PacketCGAN:
exploratory study of class imbalance for encrypted traffic
classification using CGAN’, Proceedings of the IEEE
International Conference on Communications (ICC), IEEE,
Dublin, Ireland, pp.1–7.

 Hybrid compression for LSTM-based encrypted traffic classification model 73

Wang, P., Ye, F., Chen, X. and Qian, Y. (2018) ‘Datanet: deep
learning based encrypted network traffic classification in SDN
home gateway’, IEEE Access, Vol. 6, pp.55380–55391.

Wang, W., Zhu, M., Wang, J., Zeng, X. and Yang, Z. (2017) ‘End-
to-end encrypted traffic classification with one-dimensional
convolution neural networks’, Proceedings of the International
Conference on Intelligence and Security Informatics (ISI),
IEEE, Beijing, China, pp.43–48.

Wang, Z., Wang, P., Zhou, X., Li, S., Zhang, M. (2019)
‘FLOWGAN: unbalanced network encrypted traffic
identification method based on GAN’, Proceedings of the IEEE
International Conference on Parallel & Distributed Processing
with Applications, Big Data & Cloud Computing, Sustainable
Computing & Communications, Social Computing &
Networking (ISPA/BDCloud/SocialCom/SustainCom), IEEE,
Xiamen, China, pp.975–983.

Wu, Y. and Zhang, M. (2021) ‘Lightweight network traffic
classification model based on knowledge distillation’, Web
Information Systems Engineering – WISE, Springer, Cham,
pp.107–121.

Yamansavascilar, B., Guvensan, M.A., Yavuz, A.G. and Karsligil,
M.E. (2017) ‘Application identification via network traffic
classification’, Proceedings of the International Conference
on Computing, Networking and Communications (ICNC),
pp.843–848.

Zheng, Y-J., Chen, S-B., Ding, C.H.Q. and Luo, B. (2022) ‘Model
compression based on differentiable network channel pruning’,
IEEE Transactions on Neural Networks and Learning Systems,
pp.1–10.

Zhuang, Z., Tan, M., Zhuang, B., Liu, J., Guo, Y., Wu, Q., Huang, J.
et al. (2019) ‘Discrimination-aware channel pruning for deep
neural networks’, arXiv:1810.11809 [cs.CV]. Available online
at: http://arxiv.org/abs/1810.11809 (accessed 29 October 2022).

Zou, Z., Ge, J., Zheng, H., Wu, Y., Han, C. and Yao, Z. (2018)
‘Encrypted traffic classification with a convolutional long short-
term memory neural network’, Proceedings of the IEEE 20th
International Conference on High Performance Computing and
Communications; IEEE 16th International Conference on Smart
City; IEEE 4th International Conference on Data Science and
Systems (HPCC/SmartCity/DSS), pp.329–334.

