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Abstract: Traditional techniques for network traffic classification are no longer effective in handling 
the complexities of dynamic network environments. Moreover, deep learning methods, while 
powerful, demand substantial spatial and computational resources, resulting in increased latency  
and instability. In this paper, we propose an innovative approach to network traffic classification 
utilising an LSTM structure. This approach incorporates network pruning, knowledge refinement,  
and Generative Adversarial Networks (GAN) to reduce model size, accelerate training speed  
without compromising accuracy, and address challenges associated with unbalanced datasets in 
classification problems. Our methodology involves the pruning of unimportant filters from the  
teacher model, followed by retraining and knowledge distillation to generate the student model. 
Experimental show that the size of the pruned teacher model is only 25.69% of the original,  
resulting in a noteworthy 28.16% improvement in training speed. Additionally, the classification 
performance of various unbalanced traffic categories, such as VoIP and streaming, shows significant 
enhancement. 
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1 Introduction 

Traffic classification is the division of traffic into multiple 
priority or service classes based on policies. There are three 
classical approaches to traffic classification: port-based 
approach, load-based approach, and traffic-statistics-based 
approach (Yamansavascilar et al., 2017). Owing to the 
network development, the amount of encrypted traffic has 
been increasing dramatically in recent years, and the 
classification of encrypted traffic has become increasingly 
important. The traditional methods all have their drawbacks. 
As new applications mostly use well-known port numbers or 
do not use standard registered port numbers, they seriously 
affect the accuracy of the port-based method (Rezaei and Liu, 
2019). And payload-based methods, also known as deep  
 
 

packet parsing, are difficult to achieve encrypted traffic 
classification because the traffic is encrypted and the data in 
the payload does not have stable characteristics (Zou et al., 
2018). The traffic-statistics-based methods mostly use 
machine learning algorithms such as random forest and KNN 
methods to classify traffic, but the disadvantage is that they 
are highly dependent on manual design hence they are 
unsuitable for the current complex and changing network 
environment. 

In recent years, deep learning has had great success in 
directions such as image recognition, so researchers have 
applied Convolutional Neural Networks (CNN), Long Short-
Term Memory (LSTM), etc., to traffic classification. 
Compared with traditional methods, deep learning methods 
can not only maintain high accuracy but also adapt to  
 
 



62 Q. Mu and M. Zhang  

complex and variable network environments without relying 
on the manual design. However, for highly redundant data 
sets, existing deep learning methods need to occupy massive 
storage and computational resources to obtain high accuracy 
(Hinton et al., 2015). However, when the models are 
deployed online, it is found that the relationship between 
model size and accuracy is non-linear, and the larger the 
number of model parameters, the slower the improvement of 
knowledge. This indicates that there are many redundant 
parameters in large models, and we can consider compressing 
the models to make them smaller and guarantee the accuracy 
of small models through ingenious training strategies. 

In recent years, rapidly developing model compression 
techniques have provided powerful tools for reducing the 
space occupied by models and increasing their speed. Among 
them, model pruning and knowledge distillation are the most 
representatives. Model pruning is to design a strategy to 
evaluate the network parameters and remove redundant 
parameters on the trained model (Li et al., 2017). Pruning can 
be divided into unstructured pruning and structured pruning. 
Unstructured pruning first judges the importance of weights 
according to the set strategy and sets a certain percentage of 
weights to 0. This will produce an unstructured sparse filter, 
which is not much help for speedup and model reduction. 
Therefore, more consideration is given to using structured 
pruning to compress the model. Structured pruning, which 
removes whole rows and columns of weights, makes the 
number of parameters decrease and makes the model smaller 
while speeding up. The most used structured pruning 
methods are filter pruning, channel pruning, etc. Another 
approach is knowledge distillation, which is divided into two 
phases. First, we train a complex design model with high 
accuracy as the teacher model. Then, the softmax layer output 
of the teacher model is used as the soft target along with the 
softmax layer output of the student model as the total loss to 
train the student model (Hinton et al., 2015). This allows the 
knowledge of the teacher model to be transferred to the 
student model so that the more compact student model can 
achieve accuracy and performance similar to the teacher 
model. 

In this paper, we propose a lightweight network traffic 
classification model using pruning and knowledge distillation 
techniques. The knowledge distillation is divided into two 
parts, the teacher model and the student model. Since LSTM 
networks can learn the spatiotemporal characteristics of 
network traffic well (Zou et al., 2018), the teacher model 
consists of three layers of LSTM and the student model 
consists of one layer of LSTM. To reduce the model as much 
as possible, this paper prunes the teacher model based on 
knowledge distillation. The teacher model is trained first, and 
the model is pruned after the training is finished to remove 
the weights and smaller filters. To compensate for the 
performance degradation caused by pruning, we use a one-
time pruning and retraining strategy to recover the accuracy 
of the model as much as possible while reducing the time 
wasted in retraining. We use the pruned teacher model to 
generate logits to train the student model, where the total loss 
function is weighted by the extraction loss and the ground 

loss (i.e., the cross-entropy of the hard target and the student 
model probability). In the early stages of knowledge 
distillation, the training process of the student model requires 
the use of higher temperatures to help learn information 
between categories, and the presence of noise due to 
correlated information between categories can hinder 
accuracy improvement. To address this issue, we use an 
adaptive temperature function where the temperature changes 
with accuracy, making the value of temperature at different 
stages more reasonable. 

In addition to this, this paper also designed a solution to 
the problem of imbalance in the number of samples in the 
data set. For the experimental results of the traffic 
classification model based on hybrid compression, it can be 
concluded that the classes with an extremely small number of 
samples in the data set. To enhance the learning ability of the 
model for the minority class, this paper used Generative 
Adversarial Network (GAN) to learn the features of  
the minority class samples and then generate data that can be 
‘faked’ by the generator of the generative adversarial 
network. After that, the minority class data generated by  
the generative adversarial network is added to the original 
data set to generate a new data set while maintaining the ratio 
of the training set and test set in the original data set. Finally, 
the new data set is used to train a hybrid compression-based 
cryptographic network traffic classification model. 

This paper is organised as follows. Section 2 describes the 
work related to network traffic classification. Section 3 
describes the framework of the model and the complete 
training process in detail. Section 4 gives the experimental 
evaluation of our model. We conclude our work in Section 5. 

2 Related work 

2.1 Encrypted traffic classification 

Rezaei and Liu (2019) presented a general framework for 
deep learning-based traffic classification, including data 
collection, data cleaning, feature selection and deep learning 
model selection. Shen et al. (2020) guided future research in 
the field of traffic classification. The authors focus their 
attention on the optimisation method of feature selection, 
summarise the cryptographic traffic features and introduce 
the feature selection framework in detail. The feature 
selection framework consists of three parts: feature pre-
processing, feature evaluation and feature combination. 
Feature selection reduces the number and dimensionality of 
features, which in turn reduces overfitting and makes the 
model much more versatile. 

Rachmawati et al. (2021) presented new research 
directions in deep learning-based traffic classification as well 
as a general framework. In addition to describing the 
application of common deep learning methods to traffic 
classification tasks, the authors also presented the work 
involved and the problems that exist. Recent work was 
reviewed in terms of the general framework, data preparation 
and preprocessing. 
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Ma et al. (2021) designed an encrypted traffic 
classification method based on traffic reconstruction, which 
differs from other methods in the processing of payloads. The 
method extracts the first 500 bytes of the payload and inserts 
a length threshold identifier to obtain the reconstructed traffic 
by traffic splitting, cleaning and reconstructing, and then 
classifies the traffic using a one-dimensional convolutional 
neural network. The reconstructed traffic has more key 
features, which in turn reduces the computational cost and 
speeds up the classification of encrypted traffic with high 
accuracy. 

Akbari et al. (2022) designed a traffic classification 
method for encrypted Web protocols with a main neural 
network architecture based on stacked long short-term 
memory layers and convolutional neural network 
composition. The authors focused on new encrypted Web 
protocols, namely HTTP/2 and QUIC. In the method, the 
authors used standard traffic statistics, traffic shapes related to 
packet size, raw bytes from TLS handshake packets and 
arrival time and direction, which differ from common traffic 
classification methods, and the authors showed that the 
proposed feature set is more suitable for encrypted traffic 
classification. With the help of the neural network 
architecture designed by the authors, the number of trainable 
parameters is smaller and the possibility of overfitting is less. 

2.2 Pruning 

A sparse network is obtained after pruning is completed. 
Then retraining is performed and pruning and retraining can 
be iterated many times to reduce the network complexity as 
much as possible. Zhuang et al. (2019) proposed a 
Differentiated sensing Channel Pruning (DCP) scheme. DCP 
allows better results in the pruning and updating model 
phases by making perceptive use of discrimination-aware loss 
and the final loss. The authors propose a greedy algorithm for 
channel selection and parameter optimisation in an iterative 
manner. 

Zheng et al. (2022) proposed a micro-network channel 
pruning method, which searched for the most available sub-
structure that satisfies the resource constraint by gradient 
descent. First optimised the network parameters to make the 
search space continuous, then calculated the probability of the 
channel being retained based on the learnable probability, 
then pruned it, and finally restarted the training to obtain the 
pruned model. 

Salehinejad and Valaee (2022) inspired by the dropout 
concept and used dropout as an energy-based framework for 
pruning neural networks. Unlike most methods, the energy-
based model evolved stochastically to find states with lower 
energy loss, and then the best pruning state was selected and 
applied, cyclically. In this process, iterations were constantly 
switched between managing pruning states and updating  
the retained weights. This way the method allowed the 
pruning of the neural network without modifying the network 
architecture code. 

Rong et al. (2020) designed a method that can correct 
incorrect pruning and does not rely on fine-tuning. This 
method is a gradient-based approach that dynamically 

reduces the complexity. During the pruning process, the 
evaluation criteria are determined based on the gradient and 
will classify the filters into strong and weak filters. The strong 
filter uses the gradients associated with the decay of the 
objective function and weights to update the parameters to 
maintain the model performance. The gradient flow of the 
weak filter will be blocked. As training proceeds, the set of 
blocking filters will continue to shrink and eventually converge 
to a relatively stable set. When pruning errors occur, the model 
can be corrected for pruning errors by reactive pruning filters in 
the next training cycle. That is, the accuracy of the model is 
guaranteed while making it as small as possible. 

Guo and Li (2021) proposed a pruning method that 
combines convolutional kernel pruning and filter pruning. 
This significantly reduced floating point operations (FLOP), 
reduced the number of parameters and maximises the 
compression of the model so that it can be deployed on 
mobile devices. 

Chen et al. (2021) proposed a hybrid pruning method to 
compress the CNN model. Hybrid pruning consists of filter 
pruning and 2:4 pruning. The authors applied filter pruning to 
remove the redundant filters in the convolutional layer to 
make the model smaller. Next, the authors used 2:4 pruning 
to prune the model according to the 2:4 pattern to utilise the 
sparse tensor core hardware for acceleration. In addition to 
this, the authors proposed a hybrid ranking metric that 
retained the filters that were important for both pruning steps, 
which allowed the model to obtain higher accuracy. 

2.3 Knowledge distillation 

In their paper, Li et al. (2022) proposed a new online 
knowledge distillation method named Feature Fusion and 
Self-Distillation (FFSD) for online knowledge distillation. 
The method divided the student part of knowledge distillation 
into leading and normal students, and the authors designed a 
module with a diversity enhancement strategy to perform 
feature fusion and extract knowledge to leading students to 
improve the generality of the model. In addition to this, a self-
distillation module was proposed which converts deep feature 
maps into shallow feature maps, which helped students to 
learn the knowledge better. 

Gu et al. (2021) proposed a structured attention 
distillation method for lightweight networks. When there was 
a large structural difference between the teacher network and 
the student network, the method enhanced the refinement of 
the spatial attention map by grouping features in the model 
according to channels, which in turn improved the feature 
extraction ability of students. 

A new method called Relational Knowledge Distillation 
(RKD) is proposed to convey the structural relationships of 
the output (Park et al., 2019). The authors proposed two types 
of RKD losses: distance direction distillation loss and angular 
direction distillation loss. RKD calculates the relational 
potential of each data example as a way to transfer 
information from the teacher to the student. RKD is based on 
traditional Knowledge Distillation (KD) and can be combined 
with other methods to improve performance. RKD can be 
seen as a generalisation of the traditional KD and can also be 
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combined with other methods to improve performance due to 
its complementary nature to the traditional KD. 

2.4 Generating adversarial networks 

Wang et al. (2019) proposed the FlowGAN method based on 
GAN to solve the traffic classification imbalance problem. 
Taking advantage of rate GAN data augmentation, flow data 
is generated for classes with fewer samples, and then the 
generated data is combined with the original data to form a 
new flow data set to be used for training. The authors used the 
deep learning classification method MLP and conducted 
experiments on imbalanced data sets, oversampled data 
sets,and generative adversarial network generated data sets, 
which showed that the FlowGAN synthesised data sets have 
better performance. Guo et al. (2021) used GAN to overcome 
the problem that the oversampling technique tends to overfit 
and introduce noise. And to ensure the quality of the 
generated samples, the authors designed an end-to-end 
framework that integrates the generation of a few flow 
samples and the training of the target classifier. The authors 
designed a feedback mechanism that can better guide the 
direction of sample generation while indicating the quality of 
the generated samples. Wang et al. (2020) proposed a traffic 
data enhancement method PacketCGAN based on a 
Conditional Generative Adversarial Network (CGAN), a type 
of GAN that controls the pattern of generated data. As a  
generative model, PacketCGAN takes advantage of CGAN to 
generate synthetic traffic samples by learning the features of  
 

the original traffic data. The synthetic data is then combined 
with the original data (i.e., real data) to construct a new traffic 
data set, thus maintaining a balance between the primary and 
secondary classes of the data set. 

3 Methodology 

The main body of work in this paper is divided into two parts, 
the first part is the design and training of a hybrid 
compression-based network traffic classification model, and 
the second part is to generate sample images using GAN, put 
the sample images into the data set, and retrain the model in 
the first part using the new data set. 

Figure 1 shows the working framework of the first part. 
The first step of the workflow is to train the teacher model, 
the body of the model consists of LSTM and the loss function 
for training is cross entropy. The second step is to prune the 
trained teacher model. The pruning method is filter pruning, 
which determines whether to keep the filter based on the 
weight and size of the convolutional kernel. The third step is 
to retrain the pruned teacher model. The main purpose of 
retraining is to compensate for the loss of model accuracy 
during the pruning process as much as possible. The fourth 
step is to train the student model with knowledge distillation. 
The main body of the student model consists of LSTM, and 
the loss function of the training consists of the average of 
both cross-entropy ce_loss and KL_loss derived from KL 
divergence. 

Figure 1 Hybrid compression work frame 
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The second part is the workflow of the generative adversarial 
network part. First, the data set needs to be restored from idx 
format to png format, and then the categories to be data 
enhanced are selected according to the quantitative 
relationship between the categories, after which the images in 
the data set are sampled and input to the discriminator, then 
the images are generated using random noise and the 
generator, and the generated images are added to the 
discriminator for discrimination and iterated several times 
until the two reach Nash equilibrium. Then, the data 
augmentation is completed by adding the newly generated 
images to the data set according to their categories. Finally, 
the data-enhanced data set is used to train the model 
generated in the first part. 

3.1 Model structure 

3.1.1 Teacher model  

Recurrent Neural Networks (RNN) use internal memory to 
process arbitrary temporal sequences of inputs and are called 
RNN because the current output of a sequence is correlated 
with the previous output. The biggest problem with recurrent 
neural networks is that they are susceptible to short-term 
memory. If a sequence is long enough, it is difficult to pass 
earlier time steps to later time steps, so important information 
may be missed. In addition, RNN also faces the problem of 
gradient disappearance. LSTM has an internal mechanism 
called ‘gate’ that regulates the flow of information and has 
the function of choosing to keep information and forget it, 
which solves the problem in RNN. The flow is time-
dependent within the packet, so we consider the LSTM as the 
teacher model and the student model. Specifically, for the 
teacher model, we use a three-layer LSTM, with each layer 
consisting of 256 cells. We added BatchNormalisation (BN) 
after each LSTM layer, and the purpose of adding the BN 
layer is to speed up the training and convergence of the 
network. In addition, the BN layer controls the gradient 
explosion, prevents gradient disappearance and prevents 
overfitting. At the end of the model, there is a fully connected 
layer, consisting of 12 units. 

Between each LSTM layer and BN layer, we added 
LeakyReLU activation functions with α of 0.3, 0.2 and 0.1 for 
the functions in the teacher model. 

3.1.2 Student model  

To ensure that the student model can learn better from the 
teacher model, the structure of the teacher model and the 
student model should be as similar as possible. Therefore, in 
this experiment, the student model is also based on LSTM, 
but unlike the teacher model, the student model uses one 
layer of LSTM, consisting of 16 units and does not use L2 
regularisation because the model is small and the number of 
parameters is not large. BatchNormalisation is also added 
after the LSTM layer, and a LeakyReLU activation function 
is added between the LSTM and BN layers with an α of 0.1. 

3.2 Filter pruning 

In the previous section, we trained a large teacher model  
with high accuracy and complex structure. In this section,  
we use filter pruning to compress the teacher model. The 
pruning criterion is the sum of the weights of the 
convolutional kernels, using the L1 paradigm. We consider 
that the generation of convolutional kernels with smaller 
weights represents that it generates weaker feature maps, 
which have little impact on the model because  
the information they transmit is negligible, and removing  
the corresponding filters does not have a significant impact  
on the network. After removing enough filters, the  
network is retrained to recover the accuracy. The process of 
pruning n filters from the i-th convolutional layer is as 
follows. 

 For each filter F in that layer, calculate the sum of the 
absolute values of the convolutional kernel weights 

 S= W i   (1) 

 Sorting the calculated S 

 Pruning weights and minimum filters and their 
corresponding feature maps using the Keras-surgeon 
library 

 Create a new matrix, rearrange the remaining kernel 
weights and cycle through the above steps until the 
pruning number is reached 

After pruning the filter, we need to retrain the network to 
compensate for the performance drop. There are two 
strategies. 

1) Re-training after one-time pruning: Prune the filter of 
the desired layer at one time, and retrain it after the 
pruning is over to restore accuracy. 

2) Pruning and retraining iteration: after pruning a filter 
or pruning a layer of filters, retrain once. The pruning 
and retraining process is iterated until the desired 
number of pruning’s is reached. 

The strategy we use is to retrain after a one-time pruning. 
This restores the model accuracy as much as possible. 
Iterating for pruning and retraining may yield better results 
(Li et al., 2022), but the iterative process takes more time, 
especially since our teacher model is more complex. It is 
more than worthwhile compared to the reduced training 
time we compress. Therefore, we use a one-time pruning 
and then retrain and fine-tune after the pruning is over. 

3.3 Knowledge distillation 

The temperature value in knowledge distillation is one of the 
key points, and the level of temperature changes how much 
attention is paid to the negative labels during the training of 
the student model. When the temperature is lower, less 
attention is paid to the negative labels; while when the  
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temperature is higher, the negative labels receive more  
attention. That is, the temperature should be turned up if you 
want to learn more from the negative labels, and slightly 
lower when you want to reduce the interference from noise. 
So, to get better performance, the temperature T is allowed to 
increase first, and then gradually decrease the temperature. 
For this purpose in this paper, an automatically varying 
temperature function is designed, where α is the initial 
temperature value: 

 3
2 4T accuracy      (2) 

Another key in knowledge distillation is the loss function of 
the student model. Unlike the teacher model, the loss function 
student_loss of the student model consists of KL_loss and 
ce_loss, with the following equation: 

 student_loss=0.5 KL_loss ce_loss    (3) 

Before giving the definitions of KL_loss and ce_loss, the 
following definitions are stated: 

iv : The output logits of the teacher model at the i-th sample. 

iz : The output logits of the student model at the i-th sample 

ic : The truth label of the i-th sample 

N: Total number of labels 

T
ip : The softmax output value of the teacher’s model for the  

i-th sample at temperature T, with the following equation: 

 

exp

exp

i

T
i N

jj

v
T

p
v

 
 
 


  (4) 

T
iq : The softmax output value of the i-th sample of the student 

model at temperature T, with the following equation: 

 

exp

exp

i

T
i N

jj

z
T

q
z

 
 
 


  (5) 

KL_loss is the loss function calculated using the KL 
divergence: 

    log log
N

T T T
loss i i i

i

KL p p q      (6) 

ce_loss is the cross-entropy loss function calculated from 
the truth labels and the logits of the student model output: 

 1log
N

loss i i
i

ce c q    (7) 

As shown in Figure 2, first, the accuracy is initialised to 0 and 
the temperature T value is  . Then, the model starts training 
by calculating the logits of the teacher model and the student 
model separately, then calculating KL_loss and ce_loss 
respectively, and then the arithmetic average of the two is 
used to find student_loss. To prevent model overfitting, the 
student model is also trained using the early stop method and 
the completed model is the desired target network model. 

Figure 2 Knowledge distillation process 
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3.4 Data augmentation based on generative 
adversarial networks 

3.4.1 The framework of GAN 

GAN consists of two models: a generator and a discriminator. 
The task of the generator is to input random noise and  
create an image using a deconvolutional network. The 
discriminator’s task is to input an image and determine 
whether it is a ‘real’ image from the data set or a ‘fake’ image 
generated by the generator. 

The training process of GAN consists of the following 
steps: 

1 The encrypted traffic data set is sampled to obtain 
Pdata(x) and Pdata(x) is fed to the discriminator D to obtain 
the discriminant result. 

2 Generate the random noise Pz(z), feed the random noise 
into the generator G model and then use G to generate 
the picture G(z). 

3 The generated picture of G is fed into the discriminator 
to judge the result. 

4 Calculate the loss of the generator and discriminator 
using the loss function. 

5 Update the parameters 

6 Repeat the above steps until G and D reach Nash 
equilibrium. 

Discriminator Since the work task is a binary classification 
problem, this paper uses a binary cross-entropy loss function 
to train the discriminator with the following formula: 

      1 log log 1
n

loss i
i

D D x D G z
n

       (8) 

Since the discriminator always wants to minimise the loss, it 
is desirable to minimise the above equation: 

      
     

~

~

min max , log

log 1

data

z

x P xG D

z P z

V G D E D x

E D G z

  
   

  (9) 

The generator is only involved in the second half of the 
expression, so the generator loss function is as follows: 

   1 log 1
n

loss
i

D D G z
n

     (10) 

In the early stage of training, the discriminator can easily 
determine whether the image is a real image or not, precisely 

because    ~ 0D G z , in which case    log 1 D G z  is 

saturated, so    log D G z , which is maximised by 

training, is chosen. The loss function is as follows: 

  1 log
n

loss
i

D D G z
n

    (11) 

 

3.4.2 Training algorithms 

The training of the model generally consists of two parts: 
the training of the discriminator and the training of the 
generator, in which the weights and bias vectors are updated 
using the Adam optimiser. The first step is to train the 
discriminator, which consists of an input layer, two Dense 
layers and an output layer. The data in the input layer is 
derived from the real data set, and the input 
multidimensional data is expanded into one-dimensional 
data with the distribution  dataP x  in the input layer. The 

hidden layer contains two Dense layers noted as 1hD  and 

2hD , and the following results can be obtained according to 

the operations implemented by Dense: 

 1 1 1
D D

h DD LeakyReLU input W b     (12) 

 2 1 2 2
D D

h hD LeakyReLU D W b     (13) 

where Dinput  is the output result of the input layer, 1
DW  and 

2
DW  are the weight matrices and， 1

Db  and 2
Db  are the bias 

vectors. The activation function used is LeakyReLU, which is 
very similar to the ReLU function. However, there is a big 
difference between the two when the input is less than 0. The 
ReLU input is less than 0, while the LeakyReLU value is 
negative and the gradient is smaller. In the backpropagation 
process, the gradient can be calculated for the part of the 
LeakyReLU activation function less than zero, which avoids 
the possible neuron death problem of ReLU, so LeakyReLU 
is used as the activation function in this paper. The output 
layer aims to output a one-dimensional determination result 
as follows: 

2 3 3
D D

out hD D W b     (14) 

The second step is to train the generator, which has an input 
layer with a random vector of dimension 100, followed by 
three Dense layers with the number of neurons 256, 512 and 
1024. the output of each layer is as follows: 

 1 1 1
G G

h GG LeakyReLU input W b     (15) 

 2 1 2 2
G G

h hG LeakyReLU G W b     (16) 

 3 2 3 3
G G

h hG LeakyReLU G W b     (17) 

The input of the output layer is the result of the random  
noise  zP z  processed by the three Dense layers. The 

computed result will be activated by the tanh function, and a 
(28,28,1)-dimensional image will be output after the 
processing: 

 3 4 4tanh G G
out hG G W b     (18) 
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4 Evaluation and experimental results 

4.1 Data set 

4.1.1 Selection of data set 

In this paper, we use the public data set ISCX-VPN-non-VPN. 
The ISCX data set, published by Gil et al. (2016) is rich in 
variety and quantity, containing seven types of regular 
encrypted traffic (e.g., P2P, VoIP) and seven types of 
encrypted traffic over VPNs. Moreover, the public data set 
does not compromise the credibility of the results compared to 
self-collected traffic or private traffic. Therefore, it is most 
feasible to use the ISCX data set, where the raw traffic does not 
have labels, so we need to tag traffic types for these files, where 
browser traffic from media may be tagged as browser traffic, a 
problem reported by He and Li (2020) and Wang et al. (2017). 
Therefore, we decided not to label browser and VPN browser 
traffic, and the detailed information is listed in Table 1. 

Table 1 ISCX VPN-non-VPN data set 

Categories Applications 

Chat ICQ, AIM, Skype, Facebook, Hangouts 
Email SMPT, POP3, IMAP 
File transfer Skype, FTPS, SFTP 
VoIP Facebook, Skype, Hangouts, VoIP buster 
P2P Torrent 
Streaming Vimeo, YouTube, Netflix, Spotify 
VPN-Chat ICQ, AIM, Skype, Facebook, Hangouts 
VPN-Email SMPT, POP3, IMAP 
VPN-File transfer Skype, FTPS, SFTP 
VPN-VoIP Facebook, Skype, Hangouts, VoIP buster 
VPN-P2P BitTorrent 

4.1.2 Data pre-processing 

First, session extraction is performed. Our work is based on 
sessions and all layers, so we need to extract the sessions of 
each pcap file. Session extraction is followed by traffic 
clearing, which anonymises the information in the data frame 
headers since data frame header information (e.g., MAC 
address and IP address) may cause the classifier to overmatch. 
Then the IP addresses, TCP\UDP port numbers and data link 
layer addresses are randomised. Afterward, duplicate packets 
are removed as well as packets with empty payloads. 

After performing the above operations, the packets are 
unified into the specified length. In this paper, we specify the 
packet length to 784 bytes, and the packets with insufficient  
length are to be truncated by filling 0 to reach the specified 
length, while the packets with lengths beyond the specified 
length are to be truncated. 

Next, since IDX files are a common data storage file 
format in the machine learning field, The training set and the 
test set are stored as IDX files and we set the ratio of the 
number of training data to the number of test data to 9:1. 

4.2 Experimental environment 

The experimental platform is Windows 10 with a 2.40 GHz 
Intel I5-9300H CPU, an external GPU (Nvidia GeForce 

RTX2060) and 8GB of RAM. The software used for  
training and pre-processing includes Tensorflow 2.6,  
CUDA 11.3 and Jupyter Notebook 6.4. For convenience, the 
artificial neural network library Keras is chosen. pruning  
tools are used with the third-party open-source tool Keras-
surgeon. 

The number of training iterations is 1000, except for the 
early stop mechanism, which stops the training when the 
accuracy of the model no longer improves, with a patience of 
100 for the teacher model and 50 for the student model. 

4.3 Evaluation indicators 

Four evaluation metrics were used: Accuracy, Precision, Recall 
and F1-Score. Accuracy is the number of samples predicted to 
be right as a percentage of the total number of samples. 
Precision is a prediction-specific metric that is how many of the 
samples predicted to be positive are positive samples. Recall is 
sample-specific and indicates how many positive cases in the 
sample were predicted correctly. Accuracy is used to evaluate 
the overall performance of the classifier, while Precision and 
Recall are used to evaluate the performance of each traffic 
class. TP: the number of positive classes predicted as positive; 
FN: the number of positive classes predicted as negative; FP: 
the number of negative classes predicted as positive; TN: the 
number of negative classes predicted as negative. the F1-Score 
takes into account both the precision and recall of the model, 
which better balances the two-evaluation metrics. The formula 
is as follows: 

TP TNAccuracy
TP TN FP FN


  

  (19) 

TPPrecision
TP FP




  (20) 

TPRecall
TP FN




  (21) 

21 Precision RecallF Score
Precision Recall
  


  (22) 

In this paper, Macro Average (MA) and Weighted Average 
(WA) are used to calculate the mean, respectively. The 
formulas for MA and WA are as follows: 

1
Q

q
i i

q

MA I
Q

    (23) 

 1
Q

q
i q i

q

WA N I
Q

    (24) 

where I = {Precision, Recall, F1-score}, Q is the total number 
of sample categories, q is the samples in Q, and the total 
number of samples is N. The MA metric is calculated using 
the arithmetic mean method, which considers the contribution 
of all categories, so the categories with more samples 
dominate the categories with fewer samples, and then the 
value of using MA is severely diminished when there is a 
severe category imbalance in the data set. The WA takes into 
account the imbalance of the multi-categorical problem by 
assigning different weights to each category according to the 
sample size and then calculating the average. 
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In addition to this, we focus on the compression effect of 
the model, which can be known by the model size (Space) 
and the number of model parameters (TotalParams). In 
addition, we also focus on the training time and prediction 
time of the model. 

4.4 Experimental results 

To have a better performance of the traffic classification 
model based on hybrid compression, an automatically 
varying temperature function is designed in this paper in the 
knowledge distillation method. First, experiments will be 
conducted to investigate α in the temperature function. The 
experimental results are shown in Figure 3. It can be observed 
that the model has the best performance when 8  . The 
model has the worst performance when 20  , which is due 
to the initial temperature is too high, resulting in the 
temperature not being able to drop to the right range later in 
the training period. 

Figure 3 Initial temperature parameters versus model 
performance 

 

When 8  , the temperature function curve is shown in 
Figure 4. According to the multifaceted work (Hinton et al., 
2018; Wu and Zhang, 2021), the range of temperature in this 
paper is set between [2, 20]. With the increasing training 
time, the accuracy of the model is also rising, when the 
automatically changing temperature function will gradually 
decrease, reducing the model can be affected by noise in the 
late training period, making the model can learn more 
knowledge from difficult features and difficult samples, 
improving the learning ability of the model and ensuring that 
a model with high performance can be obtained. 

To measure the performance of the models in terms of 
compression, the storage and computational resources of the 
models need to be considered, and the experimental results 
are shown in Table 2 below. Among the models, T_Model 
and S_Model are using only the knowledge distillation 
method, and models PT_Model, PS_Model, GAN_T and 
GAN_S are derived from the hybrid compression method in 
this paper. Models GAN_T and GAN_S are the models 
derived from training using data-enhanced data sets. It can be 
observed that the volume of model PT_Model and GAN_T is 
4079 KB, which is 25.8% of model T_Model, and the 

number of model parameters is 25.3% of model HCETC_T. 
The volume of model PS_Model and model GAN_S is only 
33KB compared to model HCETC_PT, and the number of 
model parameters is only 0.9% of model HCETC_PT. In 
terms of computational resources of the model, the training 
time of model PT_Model decreases from 31.03 to 21.16 ms 
per step, and the inference time decreases by 58.3%. The 
training time of model GAN_T decreased to 22.29 ms, and 
the inference time decreased by 13.8%. Model PS_Model 
training time decreased by 21% and prediction time decreased 
by 27.7%. Model GAN_S training time decreased by 35.4% 
and inference time decreased by 47.2%. The PS_Model and 
GAN_S models that undergo filter pruning and knowledge 
distillation largely reduce the demand for storage and 
computational resources. In addition to this, the experiments 
include student models noKD_Model and PT_noKD derived 
from direct training without knowledge distillation, and 
models KD_Model and PT_KD are trained using the fixed 
temperature knowledge distillation method. It can be seen 
from the table that the models noKD_Model and PT_noKD 
are much faster than the other models in terms of training 
speed, which is due to the need to calculate the loss values 
during the training of the other models, including soft labels 
and student model logits, but this time consumption is 
acceptable compared to the reduction of the model’s demand 
for storage and computational resources. 

Figure 4 Temperature curve 

 

Table 2 Comparison of storage and computational resources 
between models 

 Space (KB) TotalParams TT (ms/step) PT(s) 

T_Model 15786 1348620 31.03 2.16 

noKD_Model 33 3148 7.63 0.58 

KD_Model 33 3148 15.28 1.04 

S_Model 33 3148 18.27 0.64 

PT_Model 4079 341388 21.16 0.9 

PT_noKD 33 3148 7.86 0.54 

PT_KD 33 3148 14.6 1.09 

PS_Model 33 3148 16.71 0.65 

GAN_T 4079 341388 22.29 1.86 

GAN_S 33 3148 11.8 1.14 

It is worth mentioning that although the model PT_Model 
and model GAN_T are compressed, the performance is very 
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similar to T_Model, if not better. The experimental results 
are shown in the following Table 3, in general, the 
performance difference between the student model 
PS_Model and GAN_S and the teacher model is not large, 
and the accuracy of model PS_Model and teacher model 
PT_Model is only 0.38% lower than the teacher model, the 
most serious decrease is MARecall , which is 0.97% lower. 

The most serious drop is MARecall , which decreases by 

0.56%. The performance of model noKD_Model is the 
worst. This model has not undergone knowledge distillation 
and has poor learning ability for teacher model T_Model. 
Although model KD_Model used the knowledge distillation 
technique, the noise problem seriously affected the feature 
learning ability of the model in the later stage of training 
due to the fixed value of the temperature parameter, which 
in turn seriously reduced the performance of the model. The 
models S_Model, PS_Model, and GAN_S with adaptive 
temperature functions have better performance by 
adaptively adjusting the temperature parameters, using a 
lower temperature in the early stage so that the model can 
learn knowledge quickly, and appropriately increasing the 
temperature in the later stage in the face of the noise 
problem, focusing on the processing of hard labels and thus 
improving the learning ability for difficult features and 
samples. Compared with model PS_Model and GAN_S and 
model S_Model, although they both use the adaptive 
temperature function designed in this paper, the teacher 
models of the former two models are pruned by filters to 
remove some of the redundant parameters, making the 
models have better performance and therefore the student 
models also have better performance. This proves the 
effectiveness of the hybrid compression method in this 
paper. 

Table 3 Experimental results of the eight methods 

 Accuracy 
Precision Recall F1-Score 

MA WA MA WA MA WA 

T_Model 0.9987 0.9921 0.9988 0.9957 0.9987 0.9937 0.9987

noKD_Model 0.9693 0.9721 0.9704 0.9703 0.9693 0.9709 0.9693

KD_Model 0.9896 0.9780 0.9897 0.9800 0.9896 0.9790 0.9896

S_Model 0.9926 0.9807 0.9927 0.9824 0.9926 0.9813 0.9927

PT_Model 0.9997 0.9983 0.9998 0.9998 0.9997 0.9990 0.9997

PT_noKD 0.9744 0.9778 0.9765 0.9653 0.9744 0.9707 0.9743

PT_KD 0.9909 0.9826 0.9910 0.9844 0.9909 0.9833 0.9909

PS_Model 0.9959 0.9940 0.9960 0.9901 0.9959 0.9919 0.9959

GAN_T 0.9998 0.9998 0.9998 0.9992 0.9998 0.9995 0.9998

GAN_S 0.9978 0.9952 0.9978 0.9936 0.9978 0.9944 0.9978

In the experiments of this paper, to obtain the best-performing 
model, the early stop method is used to end the training in this 
paper, when the performance of the model does not improve 
for a long time, which also leads to different training epochs 
for each model. At the same time, the early stop method can 
prevent the model from overfitting. In addition, since the loss 
functions of different models are not the same, resulting in the 
obtained loss values not having the same criteria, they cannot  
 

be compared directly. To compare the learning ability of 
different models, the loss values of the models were first 
normalised so that the loss values ranged within [0, 1], which 
solved the proposition that the loss functions of the models 
were different. After that, the loss values of each model were 
compared at 1 to N*10, which solved the problem of the 
different number of training iterations for different models. 
The experimental results are shown in Figure 5. In terms of 
model loss values, it can be observed that model PT_KD has 
significant fluctuations in loss value drop in the later stages of 
training because it uses a fixed knowledge distillation 
temperature, while models S_Model and PS_Model both use 
an adaptive temperature function so there is less fluctuation in 
the later stages. In addition, because the model PS_Model 
uses the filter pruning method to remove some redundant 
parameters, the model PS_Model has the fastest decline in the 
loss value and smoother fluctuations in the later stages of the 
experiment. In terms of the accuracy of the model, each 
model converges very well. Therefore, the model PS_Model 
proposed in this paper has the highest accuracy and the fastest 
learning speed among the student models. 

Figure 5 Comparison of PT_KD, HCETC_S and HCETC_PS 
models 

 

As shown in Figure 6, the ablation experiment of adaptive 
temperature was performed. It can be observed that the 
metrics of PT_Model are much better than KD_Model and 
PT_KD, which can prove that the adaptive temperature 
function is significant. The metrics of PT_KD are similar to 
S_Model and even better in accuracy, which also proves that 
our pruning algorithm which ensures the model accuracy and 
reduces the model size. 

Figures 7 and 8 show the confusion matrices of the 
classification performance of model GAN_S and model 
PS_Model for different sample classifications. The 
confusion matrix focuses on the Precision of the model  
classification, and it can be found that model PS_Model has 
more categories where classification errors occur, while 
model GAN_S has classification errors in categories 7  
and 8. This indicates that the data enhancement method 
designed in this paper plays an excellent role in solving the 
classification difficulty problem caused by data imbalance. 
The specific classification performance is shown in  
Figure 7. 
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Figure 6 The ablation experiment of adaptive temperature 

 

Figure 7 Confusion matrix of the model PS_Model 

 

Figure 8 Confusion matrix of the model GAN_S 

 

Figure 9 shows the classification performance of model 
GAN_S and model PS_Model for different samples, and it 
can be found that the GAN-S model is better than the 
HCETC_PS model in classifying most of the categories. 
Firstly, we focus on the data categories VPN-Email, Vpn-
VoIP, and VPN-P2P that have been enhanced using 
generative adversarial networks. the Vpn-VoIP category is 
the most difficult category to classify by model HCETC-PS, 
and it can be observed from the figure that both evaluation 
metrics, Recall and F1-Score, have been improved by 
different degrees through data enhancement, by 6.33% and 
3.34%, respectively. In addition, there are improvements in 

the categories of file transfer, VoIP and P2P. This indicates 
that the method designed in this paper to enhance the data set 
based on generating adversarial networks is effective. Finally, 
for the VPN-P2P category, the classification performance of 
both models is high, with 100% for all three-evaluation 
metrics, and it can be found that the performance remains 
unchanged after data enhancement, which indicates that the 
data generated by the generative adversarial network does not 
bring adverse effects on the data set. In addition to the above 
category, the VPN-Chat category is also one of the more 
difficult categories for the model HCETC_PS to classify. 
Although this paper did not perform data augmentation on 
this category, the classification performance of this category 
also has a considerable improvement, which is because some 
difficult categories are mistaken as VPN-Chat categories in 
the classification process, resulting in the degradation of the 
classification performance of this category. 

Figure 9 Sample classification performance comparison 
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Our models are compared with more established models 
Wang et al. (2018). Owing to the different configurations of 
the experimental equipment, we do not compare the 
prediction time of the models, we compare the three aspects 
of size, number of parameters and F1 score. The results are 
shown in Table 4, where we can observe that our method not 
only has the smallest model size but also has the highest 
accuracy. Even the size of the teacher model is in the middle 
of the range. It can be said that our method outperforms the 
state-of-the-art methods in all measurements. 

Table 4 Comparison of the model in this paper with the 
mature model 

 Space TotalParams F1-Score 

MLP 178 KB 12943 0.9653 

SAE 12681 KB 1359463 0.9882 

CNN 1467 KB 182927 0.9843 

GAN_T 4079 KB 341388 0.9995 

GAN_S 33 KB 3148 0.9944 

5 Conclusion and future work 

In this paper, we propose a hybrid compression-based 
network traffic classification model, PS_Model, which 
applies filter pruning based on knowledge distillation and 
uses an adaptive temperature function for better classification 
of network traffic. Compared with the traditional model, our 
model maintains accuracy and greatly reduces the size of the 
model, and speeds up the training. Filter pruning makes the 
teacher model required for knowledge distillation reduce the 
occupied storage and computational resources. In addition, 
this paper also designs a data augmentation method using 
generative adversarial networks. Experiments show that the 
model GAN_S obtained by training with the data-enhanced 
data set has the best classification performance and solves the 
classification difficulty caused by sample imbalance in the 
classification process. 

In the future, we will continue to experiment with the 
use of other compression methods in combination with 
knowledge distillation, considering further compression of 
the model size. In addition, we will pay more attention to 
the problem of an unbalanced sample size and try to propose 
a better solution. 
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