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Abstract: Obfuscation techniques are frequently used in malicious programs to evade detection. 
However, current effective methods often require much memory space during training. This 
paper proposes a machine-learning-based solution to the malware detection problem that 
consumes fewer memory resources. We use hash and sparse matrix to build a text bag of words 
to reduce memory usage during training. Experiments show that our approach reduces the 
memory footprint by 95% when using 110,000 text data for confusion recognition training 
compared to the existing model. In the de-obfuscation step, our method improves the recognition 
accuracy of the import table function by 40%. Our model achieves shallow memory usage during 
confusion recognition training and enhances the accuracy of imported table recognition. 
Additionally, the confusion recognition accuracy is only about 10% lower than the confusion 
recognition model before the improvement. 
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1 Introduction 

Obfuscation technology is frequently used in malicious 
programs to evade detection by traditional anti-virus 
software, and signature-based or string-based detection 
programs often fail to detect such programs. While string 
obfuscation is commonly employed in malicious programs, 
regular developers also use it to prevent reverse-engineering 
of their programs. With the unregulated nature of the Internet 
and the ease of access to compilers, software developers can 
distribute their programs online anywhere. Although 
Microsoft has built the Microsoft App Store into the 
Windows operating system, this does not prevent users from 
installing applications from other sources nor control the 
impact of malicious programs on the Windows operating 
system. 
 

In the current scenario, protection against malicious 
programs heavily relies on the anti-virus program installed on 
the user’s computer. However, many anti-virus programs use 
signatures or string-based detection, making it challenging to 
identify obfuscated malicious programs. The analysis of 
obfuscated malicious programs is more complex and time-
consuming than traditional malicious programs, prosing a 
challenge for anti-virus software vendors. 

To address the growing threat of obfuscated malicious 
programs, obfuscated malware detection has become a highly 
active research field. Neural networks and data mining 
schemes are currently the most effective methods to combat 
obfuscated malicious programs. 

The data mining method for detecting obfuscated 
malware has been employed by Ali and Soomro (2018), who 
used an efficient mining method based on the PSO selection  
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technique to analyse and detect obfuscated malware. Darem  
et al. (2021) proposed an approach that leverages OpCode-
level features and deep learning to detect obfuscated 
malicious programs. 

Zhu et al. (2021) proposed a novel neural network scheme. 
This task-aware meta-learning-based Siamese neural network 
can detect obfuscated malware with high accuracy, even with 
only one or a few training samples. The method uses entropy 
features of each malware signature and image features as task 
input. However, this classification-based approach requires 
substantial computational resources during the training process, 
significantly demanding computer performance. 

Traditional machine-learning techniques are often 
preferred over neural networks for malware detection due to 
their lower resource consumption and satisfactory accuracy 
(Anderson et al., 2017). For example, Shang et al. (2018) used 
the Naive Bayes algorithm to detect Android malware and 
achieved promising results. Similarly, Mohammadinodooshan 
et al. (2019) used the Naive polynomial Bayes algorithm to 
model the varying lengths of 235 languages in Wikipedia. They 
achieved high accuracy, indicating that Naive Bayes can 
outperform other machine learning algorithms in malware 
detection under certain circumstances. However, the method 
proposed by Mohammadinodooshan et al. (2019) required 
excessive memory during training, making it impractical for 
some security engineers to training their models. 

Additionally, the authors differ on the treatment of 
Wikipedia data before training. Mohammadinodooshan et al. 
(2019) removed all symbols, including commas, periods and 
spaces, which the authors contend are crucial language 
features. The authors argue that preserving punctuation in 
string data obtained in natural contexts is more realistic. 

The obfuscation of malicious programs is a crucial pre-
processing step before security engineers’ analysis and 
remains a complex and contentious issue. Dychka et al. 
(2018) proposed a program utilising a value-state dependency 
graph. Meanwhile, Kochberger et al. (2021) presented a 
comprehensive survey of existing research on the automatic 
de-obfuscation of virtualisation protectors and introduced a 
novel method. These works highlight the potential of 
virtualisation-based automatic de-obfuscation in specific 
scenarios. However, applying this approach to non-
obfuscated programs may inadvertently ‘de-obfuscate’ and 
obscure the program. 

Existing methods for detecting obfuscated malicious 
programs can achieve relatively high accuracy, but a common 
limitation is their high resource consumption. For instance, 
Mohammadinodooshan et al. (2019) used a Naive Bayesian 
method to identify obfuscated strings, but we found that their 
approach had a large memory footprint. We attempted to 
reproduce their experiment with 60 MB of training text on a 
computer with 32 GB of memory and encountered an out-of-
memory error. Similarly, Zhu et al. (2021) introduced an 
obfuscated malicious program identification method using a 
neural network, which necessitates a GPU with robust 
computing capabilities and substantial memory resources. 
Consequently, the resource-intensive nature of existing 
methods poses challenges for processing large training sets. 

 

In practical production environments, security engineers 
often encounter the requirement of analysing the attack logic 
of malicious programs and designing detection rules after 
identifying an obfuscated program as malicious. However, 
existing classification detection methods have limited utility 
in fulfilling these requirements. 

To address these limitations, this study proposes a novel 
pre-processing method for obfuscated programs. Our objective 
is to develop a technique that can accurately identify 
obfuscated programs and attempt to de-obfuscate them in a 
memory-efficient manner during training. To achieve this goal, 
we divide the problem into two components: detection and de-
obfuscation. The main contributions of our approach are as 
follows: 

1 Our approach to confusion detection builds upon the 
work of Mohammadinodooshan et al. (2019). To address 
the high memory usage during training, we improved 
their method by using a hash word bag technique and 
reducing the n–gram size, resulting in a 95% reduction in 
memory usage. This allowed us to train our obfuscated 
string detection model on large-scale data sets. In the 
data selection stage, we used the log probability of the 
predicted output instead of the probability to minimise 
accuracy loss. 

2 We have added a de-obfuscation part based on 
obfuscation detection. We use the changes before and 
after the import table as indicators for the de-obfuscation 
of the detected obfuscated samples. After de-obfuscation, 
the average accuracy of the content extracted from the 
import table increased by 40%. 

The remainder of this paper is structured as follows: Section 2 
provides background knowledge on obfuscation and de-
obfuscation techniques. Section 3 presents our design of the 
experimental protocol. Section 4 introduces the testing 
procedure and results. In Section 5, we discuss our effects and 
plan directions for future work. The full text is summarised in 
section six. 

Figure 1 The innovation of our method 

First 
Stage

U se H ash and adjust N -gram  
to optim ize m em ory

G et M odel

Second 
Stage

U se log probability to reduce 
precision loss

D e-obfuscate 
Stage

Add D e-obfuscate to increase 
im port table recognition

 



50 Y. Meng and M. Zhang  

2 Background 

This section will introduce some basic knowledge about 
obfuscation and then discuss general de-obfuscation methods. 

2.1 Obfuscation 

To reverse the code produced by the compiler is a complex 
and time-consuming process. If the program undergoes 
obfuscation resistance analysis, the difficulty of program 
analysis will be further increased. Here are some situations 
where obfuscation may be used. 

 Malicious programs: To evade detection by security 
software and analysis by security engineers, evil program 
creators often use this technique to enable them to steal 
data or achieve other purposes. 

 Intellectual property protection: Many commercial 
programs use this technique to prevent unauthorised 
reverse analysis. 

 Digital rights management (DRM): This is the main area 
in which obfuscation techniques are currently used, and 
DRM often uses obfuscation techniques to protect 
encryption keys and protocols. 

Obfuscation techniques can be divided into two categories: 
data-based obfuscation techniques and control-based 
obfuscation techniques. These techniques are combined in the 
actual analysis process. 

In this paper, we mainly discuss the application of 
obfuscation in malicious programs. 

A study of obfuscated malware detection (Zhu et al., 
2021) has shown that malware authors apply different 
obfuscation techniques on the generic feature of malware to 
create new variants to avoid detection. Besides, Darem et al. 
(2021) shown that the usage of obfuscation on malware has 
become prevalent, most of the common anti-malware 
products cannot detect these malwares, especially when the 
new malware is different from the malware before. The worst 
influence (Ali et al., 2018) of the usage of obfuscation on 
malware is that obfuscation disturbs computer scientists to 
judge the function of software examples. As cryptocurrency 
mining is becoming increasingly popular (Hong et al., 2018), 
obfuscation is used for covering crypto-jacking attacks or 
drive-by mining (Konoth et al., 2018). Some obfuscation 
technology (Rusak et al., 2018) is also used for making 
malicious PowerShell. 

To detect whether a program is obfuscated, you can check 
whether it is an obfuscated string by extracting a part of the 
string in the program. The principle of this method is that 
there is usually a string in a standard program. If the string is 
extracted and it is found that the string is an obfuscated string 
(the obfuscated string is a program code or a string that is 
encrypted in some way and then rendered into a human-

unreadable string that has no practical meaning in natural 
language), then the program is confused. In general, since the 
program without string obfuscation is easy to extract essential 
information from the plaintext string in the reverse process, it 
is not meaningful to use other obfuscation methods in this 
case; it can be judged whether it is obfuscated by detecting 
the obfuscated string. 

The study by Mohammadinodooshan et al. (2019) 
proposed a method for string detection on Android. Their 
approach is based on the Naive Bayes theory and uses the 
bag-of-words method to extract string features. After 
extracting the string features of the training set, the 
corresponding prediction data will be obtained from the input 
string of the test set. A c-value will be received by calculating 
the predicted data list with the improved formula. Store  
c-values of different lengths in different languages and set a 
threshold for each c-value. When predicting a confused 
string, it will be compared with the c-value, and if it is lower 
than this threshold, it will be judged as a confused string. 

2.2 Overview of de-obfuscation techniques 

For programs, obfuscation is a form of transformation. 
Therefore, the essence of de-obfuscation is the inverse 
transformation of the obfuscation process using software 
analysis techniques. 

The current terminology in the literature of various 
research fields about de-obfuscation is not uniform, and the 
research process is relatively scattered. A reasonably 
consistent standard or definition in the field of de-obfuscation 
cannot be found. 

The widely used technology in de-obfuscation technology 
is software analysis technology. According to common 
classification, software analysis techniques can be divided into 
static and dynamic analysis (Smaragdakis and Csallner, 2007). 
Analysing a program is determining whether the program 
satisfies a particular property. Fully recovering an obfuscated 
program is nearly impossible statistically; only an 
approximation of the semantics of a program can be made. 
Program analysis is also described as an excess approximation 
and insufficient approximation. For the program’s dynamic and 
static analysis, the difference between static and dynamic 
analysis is not as big as imagined. According to Ernst (2003), 
static and dynamic analysis have synergy and duality. Synergy 
performs in static and dynamic analyses are often performed 
together, while duality is the opposite. 

3 Method design 

The objective of our method is to build a low-resource 
obfuscated program identification and (trial) processing 
process and improve the accuracy of malicious obfuscated 
program identification. 
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Figure 2 The flow chart of our method 
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The whole process is shown in the figure above. We roughly 
divide confusion recognition into two processes, training and 
recognition recording process. 

In the training process, we train an existing machine 
learning model based on the Naive Bayes method. Since the 
differences between different languages are very large, we 
decided to build different models for different languages. It is 
expected to use 235 types in Wikipedia Language to build 
235 models. 

After building the machine learning model, we will use 
the model and input the test data set to identify different 
languages. The Naive Bayesian model will output a list of 
possibilities. The maximum value in the prediction list must 
tend to be concentrated in a certain area, so a threshold can be 
set to define the obfuscation procedure. In addition, 
considering that there is a huge difference in the distribution 
of the maximum value of the list of strings of different 
lengths in the same language, thresholds are set for different 
lengths. 

After completing the obfuscation identification, we 
consider adding a de-obfuscation solution. According to the 
survey, obfuscation can significantly reduce the accuracy of 
malicious program identification. Therefore, we will add a 
de-obfuscation scheme to prepare for possible subsequent 
identification of malicious programs. 

The specific details of our method are presented below. 

3.1 Obfuscation recognition model design 

Our innovation for the first part of confusion identification is 
to adjust the n-gram parameters and use sparse matrices and  

hashes. Doing so can make the memory occupied by the 
model training as small as possible, making the model 
suitable for large-scale training data sets. 

Our method is based on Naive Bayes, which is a machine 
learning algorithm that can be used to construct classifiers. In 
recent years, Naive Bayes has handled imbalanced data such 
as fake news and spam detection (Granik and Mesyura, 
2017). Naive Bayes is a conditional probability model: when 
faced with a problem that requires classification, the n 
features or independent variables of the problem can be 
abstracted into the following vector: 

 1, ..., nx x x   (1) 

For a class variable y, the probability that x supports y can be 
expressed as: 

 1| , ..., np y x x   (2) 

y can be calculated as: 

     
 

1
1

1

, , |
| , .,

, ,
n

n
n

p y p x x y
y x x

p x x


 


  (3) 

In natural scenarios, we use the following formula: 

   
1

xˆ ma |
n

i
y

i

y arg p y p x y


    (4) 

Alternatively, we can use the posterior maximum likelihood 
(MAP) estimate  p y . It is the relative probability of class 

y  in the training set and  |ip x y  is ix  belongs to class y  
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probability. The main difference between the different Naive 
Bayes classifiers is the assumptions they make when dealing 
with  |ip x y . 

From the above formula, we can easily conclude that if 
we have several classes  1, , , nm m m  and a feature f 

waiting to be classified, we can calculate the probability that f 
belongs to each model. We name it  | ip f m  and compare 

these probabilities to choose the maximum value. It is worth 
noting that these probabilities are not ‘absolute’ probabilities 
but some ‘relative probabilities’. In other words, these 
probabilities cannot represent accurate probabilities but can 
only mean that a feature is more inclined to belong to a 
specific model than other models. This is an essential feature 
of Naive Bayes methods: Naive Bayes methods are suitable 
for classification but not for estimation (Zhang, 2004). 

Polynomial Bayes is one of two classic Naive Bayes 
variants in text classification, and since it works well for text 
classification, we also take the form of Multinomial Bayes. 

We use the following formula: 

   
 

1
max

log |
log

N

ii
P L x

C x P x
N

     (5) 

 maxP x  is the maximum value of the list of Naive Bayes 

predictors. A machine learning model trained in many 
languages can give a list of predicted values. The number of 
list entries depends on the number of languages used to train 
the machine-learning model. The number of list entries is the 

value of N. In this case, the value of   
1

log |
N

i
i

P L x

  is easy 

to understand and can be calculated by adding all the values 
in the list of predicted values. Therefore, the formula can also 
be replaced by the following: 

   
 

1
max

log |
log |

N

ii
i

P L x
C x P L x

N
     (6) 

Note that our method uses log probabilities instead of the 
probabilities themselves, since some of the possibilities in the 
list of predicted values are small, using log probabilities 
reduces the error. 

For the second part, we collect the maximum value in the 
list of predictions output by the naive Bayes model at 
recognition for each language input. We also collect the 
results for different lengths for each language. After statistics, 
the fifth percentile (in all statistics, about 95% of the values 
are greater than this value and 5% less than this value) is used 
as the threshold for each length of each language. Regarding 
the length of strings, we found that the accuracy of strings 
with a length of less than 10 is very low in actual recognition, 
so it is meaningless, and the increase in the recognition value 
of strings with a length of more than 80 is minimal. We 
determined the threshold for the length of 10–80 strings. In 
the natural environment, the maximum value of the 
recognition results for strings longer than 80 will be 
compared with the threshold of 80 for predicting language. 

3.2 De-obfuscation model design 

To improve the accuracy of subsequent possible automatic 
malicious program identification processes, our method 
attempts to de-obfuscate the programs identified by applying 
the obfuscation technique after identifying the obfuscation. 
After we proposed this method, we were worried that the  
de-obfuscation of non-malicious programs might cause 
copyright-related problems. After actual investigation, we 
found that companies or individuals capable of applying the 
obfuscation method to protect software generally use a set  
of obfuscation developed by themselves. Algorithms or 
procedures; and malicious programs or exploit programs to 
obtain maximum benefits from zero-day vulnerabilities in the 
shortest time, malicious program writers often apply open-
source obfuscation solutions to save program writing time. 
Therefore, we also decided to design our method using an 
open-source de-obfuscation scheme. Of course, this method 
may still have errors, but after applying the wrong de-
obfuscator, the complete program instructions cannot be 
obtained, so it does not cause copyright problems. 

Our innovation in de-obfuscation model design is as 
follows: 

a) Applying the model to automatic identification of 
obfuscation followed by de-obfuscation. 

b) A multiple de-obfuscation scheme is proposed for 
programs that apply multiple obfuscations. 

There are many kinds of open-source de-obfuscators, and 
the key lies in how to efficiently and automatically apply 
these de-obfuscators. 

The easier-to-deploy solution is to use all de-obfuscators 
to traverse the obfuscated program. However, the advantage 
of this method is that it is easy to implement, and the 
disadvantage is also obvious: it is very inefficient. Further 
research found that the characteristics of the obfuscated 
strings in the programs that applied different obfuscation 
methods differed. Based on this point of view, our approach 
uses de4dot’s obfuscated string feature comparison to 
determine which obfuscator or obfuscation method is used by 
the obfuscation program and uses the de-obfuscator supported 
by its open-source plugin for de-obfuscation. Our approach 
divides de-obfuscators into two broad categories: static de-
obfuscation and dynamic de-obfuscation. This classification 
is due to the high similarity between the feature strings 
extracted from the statically obfuscated program; similarly, 
the strings extracted from the dynamically obfuscated 
program also have more similarities. Although it has been 
recognised twice, this can reduce the accuracy of the 
recognition. 

However, this process still has a problem: some malicious 
programs may apply two or more kinds of obfuscation. We 
adopted a solution to detect and attempt to de-obfuscate only 
one type of obfuscation at a time, using the de-obfuscation 
scheme multiple times for the obfuscated program. This is 
because, in a program that adopts multiple obfuscation 
schemes, if the de-obfuscation is performed simultaneously, it 
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may cause the problem of changing the original semantics of 
the program or making the program unable to run. 

In addition, considering the personal needs of security 
engineers and to make our method more flexible, in addition 
to the default automatic de-obfuscation mode, a manual mode 
option should also be provided so that security engineers 
know the obfuscation method applied by the obfuscation 
program. A specialised de-obfuscator can be used. 

After de-obfuscation, our method is designed to output a 
de-obfuscated program that can be distinguished from the 
original program and analysed by security engineers. 

3.3 Analysis and innovation 

Our method mainly proposes a pre-processing scheme for 
obfuscating malicious programs: by extracting and 
identifying obfuscated strings, we can determine whether 
there is obfuscation in the program and try to de-obfuscate the 
obfuscated program. Based on this, if subsequent malicious 
programs need to be identified, the de-obfuscated program 
samples can make the following evil program detection parts 
more accurate. 

Our innovation lies in: 

a) N-gram is a language model based on the assumption 
that the appearance of the N-th word is only related to the 
previous N-1 words and not related to any other words. 
The probability of the entire sentence is each product of 
word occurrence probabilities. Therefore, the larger the 
value of N, the larger the memory space occupied during 
training. Based on this theory, adjusting the N-gram to 1 
optimises the memory footprint during training. 

Although the accuracy rate before taking 40 strings is 
significantly lower according to Figure 5, and the training 
time becomes longer, our method still lowers the resource 
threshold for training. This method can be used for lower-
performing hardware that does not render out-of-memory 
errors. In addition, we combined a de-obfuscation scheme to 
try to de-obfuscate the programs identified using obfuscation 
to provide preparations for the subsequent identification of 
malicious programs. 

Specifically, we use N-grams to build a bag-of-words 
model. For an n-gram, suppose it uses a text containing  
t characters, where ,n t N  has 1 t n  strings, where each 
A string requires  units of space. Therefore, the total space 
required for this n-gram is  1t n n    which simplifies to 

 2 1n t n   . To choose the value of n in an n-gram 

model, it is necessary to find the suitable trade-off between 
the stability of the estimate and its appropriateness. This 
means that triples (i.e., triples of words) are a common choice 
for large training corpora (millions of words), while bigrams 
are often used for smaller corpora. Based on this, n-grams 
alone may not require much space and even training with 
very large corpora may only require hundreds of megabytes 
of memory. However, the actual situation is more 
complicated. In the whole training process of using n-gram to 
build a naive Bayesian model, a range value of n is often 
taken; that is to say, all integer value length strings before the 

maximum value nmax are extracted; in this case, as the n-gram 
maximum value increases, the memory footprint is 

 2

1

1
n

i

n t n


     (6) 

At the cost of this increased memory footprint, the gain in 
accuracy is not significant. In contrast, in the recognition 
process, the accuracy rate that can be improved by taking a 
longer obfuscated string is far greater than the accuracy rate 
that can be improved by adjusting the Naive Bayesian machine 
learning training model. Still, the more resources consumed are 
the opposite. Therefore, we decided to use a unigram model in 
the training phase to maximise the optimised memory 
footprint; the upper limit of n in n-grams is 1. 

b) Use hash and sparse matrix to build text word storage to 
optimise the storage space of words. 

An n-gram is the first step in building a bag-of-words model, 
followed by storing words in the text. If the method of 
converting the words in the text into a word frequency matrix 
is used, the problem described above still exists. When the 
vocabulary is very large, the memory footprint of the 
dictionary is quite large. Therefore, you can use a hash and 
store the compiled matrix with a sparse matrix, which can 
solve this problem very well. Compared with the original 
word frequency matrix, the disadvantage of the hash method 
is that there is no way to achieve inverse transformation due 
to the use of an index and not putting the dictionaries into 
memory, so the established model cannot examine the 
influence of each feature on the model. However, this is not a 
problem in our method, which is dedicated to identifying 
obfuscating procedures and is not concerned with factors 
affecting classification confounding. 

c) Add de-obfuscation to the method to improve the 
recognition accuracy of the imported table. 

The import table is one of the crucial references for 
identifying malicious programs. After obfuscation, the PE 
analysis program may not recognise the import table. A 
typical example is when the program is packed, the execution 
logic of the program will be changed to ‘decompress’ the 
original program in memory first. Therefore, for the PE 
analysis program, the packaged import table is changed to  
the import table of a decompression program, and the  
original program is only the data segment of the current 
decompression program. To sum up, the obfuscated program 
cannot identify malicious programs well due to the change of 
the import table. After de-obfuscation, it is equivalent to 
manually executing the ‘decompression’ process. After the 
software shell is taken out, the program is restored, and the 
import table is also restored to its original state. Under the 
circumstance that the de-obfuscation is relatively thorough, 
the malicious program identification based on the import 
table can obtain the same effect as before the obfuscation. 

4 Experiments and results 

This section will show the experimental environment we 
used, including the software and hardware conditions we 



54 Y. Meng and M. Zhang  

used. We will describe our experiments, evaluate our 
results, compare our results with other people’s work, and 
analyse the reasons for the differences. 

4.1 Experimental environment 

The experimental environment we use is Windows 11 Pro 
for WorkStation version 21H2. CPU: Intel Core I7-9750H 
GPU: NVIDIA GeForce RTX 2060 for notebook. Memory: 
32 GB 2667 MHZ 

Our method is based on the obfuscated string recognition 
part implemented by the HashVectoriser class of the python 
open-source machine learning library SciKit-learn (Pedregosa 
et al., 2011). We use 500 lines of characters in 235 languages 
extracted from Wikipedia for the data set, for a total of 
115,000 lines of data and the balanced WiLi data set (Thoma, 
2018). For the de-obfuscation part, we use a de4dot-based 
solution. 

4.2 Experiment content 

We conducted four experiments, in these experiments, we 
choose M’s method and the SVC method as the control 
group. The SVC method is a traditional machine learning 
method, it performs well in text classification missions. 
Besides, the SVC method could output probability as Naïve 
Bayes, so we can use the same method to assess their result. 

The first experiment will be to build multiple language 
models, and we will record and compare the memory usage 
of different methods. 

The second experiment will use the modified method and 
test set to select the fifth percentile and give the overall 
memory footprint of the modified form. We do not provide 
the memory footprint before the second stage of improvement 
because the memory footprint of the method before the 
improvement is too large, and there is no way to complete the 
first stage. 

The third experiment uses the obfuscated string to test the 
effect of the trained model which is trained in the first stage, 
and we will provide different methods’ accuracy. 

The fourth experiment uses the obfuscated and de-
obfuscated program import table to compare entries with the 
original program import table. Since the import table is an 
essential reference for identifying malicious programs, the 
use of the change in the import table can show that the de-
obfuscation is effective for subsequent malicious programs. It 
improved program recognition. 

For each string that is not obfuscated in the training and 
test sets, we use the data from the Wi-Li data set (Thoma, 
2018) for input and train models of different lengths and 
languages. In detail, we use the training set data to generate  
 

80-length models in 235 languages. We take the first x 
characters in the sentence for different string lengths in the 
same language. The reason why we take the string in this way 
is as follows: because in the natural environment, the string 
before obfuscation has its actual meaning, and the 
programming language, such as C-like statements, these 
programming statements have extensively borrowed the 
usage habits of English, so this value is closer to the natural 
environment. 

For obfuscated strings, our point is that since these 
obfuscated strings are also derived from natural language, we 
decided to use the original natural language obfuscated 
strings instead of the combined obfuscated strings. 

Since the number of obfuscated strings that can be 
extracted from existing programs is too small and not 
universal, we use the following four schemes to generate 
obfuscated strings as a test set (Mohammadinodooshan et al., 
2019): 

 Base64 (B64): Base64 encoding is often used to 
obfuscate the encoding of malicious programs. Base64 
encoding itself is excellent for use as an obfuscation as 
well as an encryption scheme. Therefore, we apply the 
actual Base64 encoding to the not obfuscated string to 
generate the obfuscated string. 

 Rotation cipher (ROT): ROT cipher is a variant of Caesar 
cipher, and its essence is still a permutation cipher. Our 
method uses ROT13 for implementation. 

 Fully Uniform Random Sampling (FU): This method is 
not inherently obfuscated; this method is a combination 
of character sequences sampled from the entire Unicode 
character using uniform random sampling, Representing 
a self-developed form of obfuscation. 

 Linguistic Uniform Random Sampling (LU): This is a 
variant of completely uniform random sampling, which 
solves the problem of an entirely consistent random 
sample biased towards languages with many letters. When 
generating this string, we randomly choose a language in 
the data set, choosing a character with average probability. 

For the final stage of obfuscation and de-obfuscation testing, 
we will use the UPX encryption algorithm as the obfuscation 
algorithm to test the effect of obfuscation and de-obfuscation 
on imported tables. 

4.3 Results evaluation 

Figure 3 shows the memory usage of our method and other 
methods. 
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Figure 3 The first stage of memory usage of our method (b) The first stage of memory usage of M’s method (c) The first stage of memory 
usage of SVC 

   

(a) (b) 

 

(c) 

Since our method refers to the work of 
Mohammadinodooshan et al. (2019), we try to reproduce the 
first stage training experiment of Mohammadinodooshan et 
al. (2019). However, it is not entirely successful because our 
memory is only 32 GB, and the program still needs more 
memory to complete the training. We used about 60 MB of 
text data for training during this process. In a natural 
production environment, 32 GB is already a vast memory and 
a 60 MB data set is common in the natural environment. Such 
memory usage is unreasonable. We, therefore, improve upon 
the method of Mohammadinodooshan et al. (2019) by trying 
to minimise memory to make the training program adaptable 
to as many computer environments as possible. 

We compared the memory usage of the above three 
methods in our experiments. Figure 3(b) shows the memory 
usage during training without our method optimisation in the 
first training phase: it can be observed that during the training 
process, the peak memory usage reached about 27 GB, and 
the memory usage plummeted to 0 after about 4–5 minutes.  
 

This is not because the training process had ended; when the 
memory descended, we observed that the experimental 
program reported an out-of-memory error and exited. The 
out-of-memory error message shows that 19.3 GB of memory 
is still required to continue the experiment. Therefore, this 
method does not take up to 27GB at most. Still, because our 
experimental physical machine has only 32 GB of memory, 
after removing the memory occupation of the system and 
other processes, the free memory is only 27–28 GB; it may 
require 57 GB or even more memory to complete the 
experiment. 

Figure 3(c) shows the memory usage of the SVC method 
during the first stage of training. Although this method does 
use not so much memory, the training process continues for 
about 53 minutes. 

Figure 3(a) shows our method’s memory occupied in the 
first training stage. It can be observed that the peak memory 
occupancy during the training process is only about 1.8 GB, 
and the training task is completed in only about 20 seconds. 
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The reason for this vast difference is as we conjectured 
earlier: N-gram-based triplet models perform well when 
training large corpora, and the space complexity increases 
linearly; however, in this case, the word frequency matrix is 
constructed. Since the word frequency matrix’s space 
complexity increases squarely with the vocabulary increase, 
the memory occupied by the final program will be very large 
under the superposition of the two factors. 

After we adopted our experiments to use sparse matrices 
and unary tuples, the space complexity dropped dramatically, 
and the training program completed the task in a fraction of 
the time. Although using a sparse matrix will make it 
impossible to use some features of the original word 
frequency matrix, and replacing triples with a tuple will also 
cause a decrease in the final recognition accuracy, we will not 
use the discarded features of the word frequency matrix in 
this article. And the slight reduction in accuracy reduces more 
than ten times the program memory usage. Our method  
can now run on personal computers with relatively small 
memory, which is an increase compared to training  
methods that only run on large servers. Therefore, we believe 
that the price is worth it. Moreover, the reduced accuracy can 
be compensated by taking longer strings during the 
recognition process, which will be explained in the following 
paragraphs. 

Table 1 shows the training time of all experiments. The 
SVC second stage training uses 13.2 hours and our method 
only uses 7.5 hours 

 

Table 1 The peak memory of our method and another method 

Method Max memory Training time 

M’s first stage 27 GB 5 Min(With Error) 

Our first stage 1.75 GB 30 sec 

SVC first stage 3.4 GB 53 Min 

M’s second stage – – 

Our second stage 1.8 GB 7.5 hours 

SVC second stage 2.4 GB 13.2 hours 

Figure 4(a) shows the memory usage in selecting the 5th 
percentile using the improved method and the test set. Since 
memory usage fluctuates significantly at this stage, we 
randomly selected the distribution during the experiment. Of 
course, these ten-time points are evenly distributed over the 
entire period of the experiment. It can be observed in the 
figure that the peak memory usage is around 1.8 GB. 

According to Figure 4(b) and Table 1, the SVC second 
stage training uses more memory the first time and uses 
nearly memory in the latter half. 

Figure 5(a) is the result of obfuscation recognition using 
the trained model and data, and we use four encoding 
methods to replace obfuscation. From Figure 5(a), we can 
easily observe that the longer the string used for recognition, 
the higher the recognition accuracy. Therefore, the loss of 
precision caused by using one-tuples instead of triples can be 
solved by taking longer strings. 

Figure 4 (a) The second stage of memory usage of our method (b) The second stage memory usage of the SVC method 

    

(a) (b) 
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Figure 5 (a) The various obfuscated strings’ recognition rate in different string lengths of our method (b) The various obfuscated strings’ 
recognition rate in different string lengths of M’s method (c) The various obfuscated strings’ recognition rate in different string 
lengths of SVC’s method (see online version for colours) 

    

(a) (b) 

 

(c) 

For the four obfuscation methods, it can be observed from 
Figure 5(a) that for Base64 encoding, utterly random 
sampling, and unified language random sampling, when the 
string length is more than 60, the accuracy rate can reach 
more than 80%. The effect is the worst. After analysis, the 
reason is that the rotating password equivalently changes the 
frequency of occurrence of characters; that is, the number of 
characters with higher frequency remains unchanged, and 
only the type of characters is changed. It is equivalent to 
changing the arrangement rules of characters, and the 
machine learning model may recognise them as different 
languages in the same language family. Hence, the 
recognition effect is relatively poor. 

Figure 5(b) shows the various obfuscated strings’ 
recognition rates of M’s method. Our method’s recognition is 
slightly lower than their method. But it is necessary to reduce 
about 95% of training process memory. 

Figure 5(c) shows the obfuscated strings’ recognition rate 
of the SVC method. Although the SVC method performs well 
on normal text classification missions, it performs extremely  
 

badly on obfuscated strings classification. And this model 
classifies all of the Base64 strings to other normal languages. 
We check the SVC model’s output probabilities and we found 
SVC model output very high predicted probability for Base64 
examples to classify them to other language classes. 

To study the effect of obfuscation and de-obfuscation on 
the import table, we used the UPX encryption algorithm to 
obfuscate and de-obfuscate the test program and observe the 
changes in the import table before and after the process. To 
test the program, we used a Crackme program. Before 
starting, record the 52 entries of the import table. After 
obfuscation with UPX 3.95, 14,690 entries were extracted, 
but all were junk data. After de-obfuscation, 1076 entries are 
extracted, of which the first 1024 entries are garbage entries 
with no practical significance, and the last 52 entries are 
consistent with the previously extracted 52 import entries. 
This shows that de-obfuscation can indeed restore the entries 
of the import table. Although there may be garbage data and 
garbage instructions, these garbage data and garbage 
instructions are easy to deal with. After de-obfuscation, the  
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critical import table entries have been exposed. It can become 
an essential feature for subsequent malicious program 
identification. 

5 Discussion and future work 

This section discusses some of the limitations of our 
suspected obfuscator pre-processing scheme and the  
methods used to evaluate it. We also outline directions for 
future work. 

The first problem is that we are committed to optimising 
the memory usage during model training for obfuscated  
string recognition, which slightly degrades the model’s 
performance. It is necessary to extract longer strings to 
compensate for the accuracy when identifying strings. This is 
because the higher the value of the n-gram during the actual 
experiment, the higher the accuracy the model can achieve, 
which also requires more memory. To achieve the highest 
optimisation level, our method sets the value of n-gram to the 
default value of 1. Although a high level of memory 
optimisation is completed, part of this memory optimisation 
comes at the cost of wasting CPU performance by using 
multi-layer loop structures in the program, which makes the 
program less efficient and therefore takes longer to train. 
Therefore, there is still room for optimisation in terms of time 
complexity, and we will consider how to optimise time 
complexity while maintaining a low memory footprint in 
future work. 

The second problem lies in de-obfuscation. We construct 
a de-obfuscation scheme by integrating open-source de-
obfuscators. After designing the system, we found that the 
difficulty lies in efficiently identifying the used obfuscator 
according to the features of the extracted obfuscated strings, 
especially after the integrated de-obfuscator reaches a higher 
order of magnitude. We can only incorporate a limited 
number of de-obfuscators in the current experimental stage 
for experiments. When the obfuscation features are relatively 
straightforward, such as some codes will add unique symbols 
or symbol sequences, there will be almost no false positives. 
Suppose some kinds of obfuscated features are similar, and 
there is no particular symbol sequence. In that case, there will 
be a very high false positive rate, and since the search cost 
will become expensive in the case of a large number of de-
obfuscators, it will be a wasted in this case more time; in 
addition, due to the use of the wrong de-obfuscator 
processing after false positives, the processed program may 
still look like an obfuscated program, which will cause an 
infinite loop of the program in this case. In this case, manual 
intervention by a security engineer may be required to see if 
the program is applying multiple layers of obfuscation or is 
stuck in an infinite loop of errors. 

The third problem is that we used real strings encrypted 
with various methods, not real obfuscated malicious  
program strings. Therefore, in the future stage, it can be 
considered to add real-world obfuscated strings for training 
and recognition. 

6 Summary 

Obfuscated malicious programs are threats to the internet. 
Malicious programs using obfuscation technology achieve high 
concealment and high-attack feasibility. We improved the 
Bayesian-based strategy for identifying obfuscated programs 
that require less training memory than the previous model. We 
added a process to this model to de-obfuscate the recognised 
obfuscated programs. This can improve the accuracy of 
program import table recognition. Using the WiLi data set 
(Thoma, 2018), we evaluate our countermeasures’ memory 
footprint and accuracy when applied to confusion recognition 
training. Our evaluation results show that the longer the string 
is, the higher the recognition accuracy of confusion is; the 
highest can reach more than 80%, which is 10% lower than the 
previous model, but the memory usage is reduced by about 
95%. We used obfuscation and the change of the import table 
after de-obfuscation to prove that de-obfuscation can improve 
the recognition accuracy of the import table by about 40%, and 
the import table is an essential basis for identifying malicious 
programs. This suggests that our countermeasures can be 
integrated into obfuscating the identification of malicious 
programs. 
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