

International Journal of Wireless and Mobile Computing

ISSN online: 1741-1092 - ISSN print: 1741-1084
https://www.inderscience.com/ijwmc

Memory-efficient detection of large-scale obfuscated malware

Yueming Wang, Meng Zhang

DOI: 10.1504/IJWMC.2023.10061556

Article History:
Received: 08 November 2022
Last revised: 30 January 2023
Accepted: 22 February 2023
Published online: 07 February 2024

Powered by TCPDF (www.tcpdf.org)

Copyright © 2024 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijwmc
https://dx.doi.org/10.1504/IJWMC.2023.10061556
http://www.tcpdf.org

48 Int. J. Wireless and Mobile Computing, Vol. 26, No. 1, 2024

Copyright © 2024 Inderscience Enterprises Ltd.

Memory-efficient detection of large-scale obfuscated
malware

Yueming Wang and Meng Zhang*
College of Computer Science and Technology,
Jilin University,
Changchun, Jilin, China
Email: wangym19970623@outlook.com
Email: zhangmeng@jlu.edu.cn
*Corresponding author

Abstract: Obfuscation techniques are frequently used in malicious programs to evade detection.
However, current effective methods often require much memory space during training. This
paper proposes a machine-learning-based solution to the malware detection problem that
consumes fewer memory resources. We use hash and sparse matrix to build a text bag of words
to reduce memory usage during training. Experiments show that our approach reduces the
memory footprint by 95% when using 110,000 text data for confusion recognition training
compared to the existing model. In the de-obfuscation step, our method improves the recognition
accuracy of the import table function by 40%. Our model achieves shallow memory usage during
confusion recognition training and enhances the accuracy of imported table recognition.
Additionally, the confusion recognition accuracy is only about 10% lower than the confusion
recognition model before the improvement.

Keywords: malware; Naïve Bayes; algorithm.

Reference to this paper should be made as follows: Wang, Y. and Zhang, M. (2024) ‘Memory-
efficient detection of large-scale obfuscated malware’, Int. J. Wireless and Mobile Computing,
Vol. 26, No. 1, pp.48–60.

Biographical notes: Yueming Wang received his BE degree in Computer Science from Jilin
University in 2020. Currently, he is a third-year Graduate student in the College of Computer
Science and Technology at Jilin University. His research interests include malware detection and
network security.

Meng Zhang received his PhD degree in Computer Science from Jilin University in 2003.
Currently, he is a Professor at the College of Computer Science and Technology at Jilin
University. His research interests include stringology, network security and computational
biology.

1 Introduction

Obfuscation technology is frequently used in malicious
programs to evade detection by traditional anti-virus
software, and signature-based or string-based detection
programs often fail to detect such programs. While string
obfuscation is commonly employed in malicious programs,
regular developers also use it to prevent reverse-engineering
of their programs. With the unregulated nature of the Internet
and the ease of access to compilers, software developers can
distribute their programs online anywhere. Although
Microsoft has built the Microsoft App Store into the
Windows operating system, this does not prevent users from
installing applications from other sources nor control the
impact of malicious programs on the Windows operating
system.

In the current scenario, protection against malicious
programs heavily relies on the anti-virus program installed on
the user’s computer. However, many anti-virus programs use
signatures or string-based detection, making it challenging to
identify obfuscated malicious programs. The analysis of
obfuscated malicious programs is more complex and time-
consuming than traditional malicious programs, prosing a
challenge for anti-virus software vendors.

To address the growing threat of obfuscated malicious
programs, obfuscated malware detection has become a highly
active research field. Neural networks and data mining
schemes are currently the most effective methods to combat
obfuscated malicious programs.

The data mining method for detecting obfuscated
malware has been employed by Ali and Soomro (2018), who
used an efficient mining method based on the PSO selection

 Memory-efficient detection of large-scale obfuscated malware 49

technique to analyse and detect obfuscated malware. Darem
et al. (2021) proposed an approach that leverages OpCode-
level features and deep learning to detect obfuscated
malicious programs.

Zhu et al. (2021) proposed a novel neural network scheme.
This task-aware meta-learning-based Siamese neural network
can detect obfuscated malware with high accuracy, even with
only one or a few training samples. The method uses entropy
features of each malware signature and image features as task
input. However, this classification-based approach requires
substantial computational resources during the training process,
significantly demanding computer performance.

Traditional machine-learning techniques are often
preferred over neural networks for malware detection due to
their lower resource consumption and satisfactory accuracy
(Anderson et al., 2017). For example, Shang et al. (2018) used
the Naive Bayes algorithm to detect Android malware and
achieved promising results. Similarly, Mohammadinodooshan
et al. (2019) used the Naive polynomial Bayes algorithm to
model the varying lengths of 235 languages in Wikipedia. They
achieved high accuracy, indicating that Naive Bayes can
outperform other machine learning algorithms in malware
detection under certain circumstances. However, the method
proposed by Mohammadinodooshan et al. (2019) required
excessive memory during training, making it impractical for
some security engineers to training their models.

Additionally, the authors differ on the treatment of
Wikipedia data before training. Mohammadinodooshan et al.
(2019) removed all symbols, including commas, periods and
spaces, which the authors contend are crucial language
features. The authors argue that preserving punctuation in
string data obtained in natural contexts is more realistic.

The obfuscation of malicious programs is a crucial pre-
processing step before security engineers’ analysis and
remains a complex and contentious issue. Dychka et al.
(2018) proposed a program utilising a value-state dependency
graph. Meanwhile, Kochberger et al. (2021) presented a
comprehensive survey of existing research on the automatic
de-obfuscation of virtualisation protectors and introduced a
novel method. These works highlight the potential of
virtualisation-based automatic de-obfuscation in specific
scenarios. However, applying this approach to non-
obfuscated programs may inadvertently ‘de-obfuscate’ and
obscure the program.

Existing methods for detecting obfuscated malicious
programs can achieve relatively high accuracy, but a common
limitation is their high resource consumption. For instance,
Mohammadinodooshan et al. (2019) used a Naive Bayesian
method to identify obfuscated strings, but we found that their
approach had a large memory footprint. We attempted to
reproduce their experiment with 60 MB of training text on a
computer with 32 GB of memory and encountered an out-of-
memory error. Similarly, Zhu et al. (2021) introduced an
obfuscated malicious program identification method using a
neural network, which necessitates a GPU with robust
computing capabilities and substantial memory resources.
Consequently, the resource-intensive nature of existing
methods poses challenges for processing large training sets.

In practical production environments, security engineers
often encounter the requirement of analysing the attack logic
of malicious programs and designing detection rules after
identifying an obfuscated program as malicious. However,
existing classification detection methods have limited utility
in fulfilling these requirements.

To address these limitations, this study proposes a novel
pre-processing method for obfuscated programs. Our objective
is to develop a technique that can accurately identify
obfuscated programs and attempt to de-obfuscate them in a
memory-efficient manner during training. To achieve this goal,
we divide the problem into two components: detection and de-
obfuscation. The main contributions of our approach are as
follows:

1 Our approach to confusion detection builds upon the
work of Mohammadinodooshan et al. (2019). To address
the high memory usage during training, we improved
their method by using a hash word bag technique and
reducing the n–gram size, resulting in a 95% reduction in
memory usage. This allowed us to train our obfuscated
string detection model on large-scale data sets. In the
data selection stage, we used the log probability of the
predicted output instead of the probability to minimise
accuracy loss.

2 We have added a de-obfuscation part based on
obfuscation detection. We use the changes before and
after the import table as indicators for the de-obfuscation
of the detected obfuscated samples. After de-obfuscation,
the average accuracy of the content extracted from the
import table increased by 40%.

The remainder of this paper is structured as follows: Section 2
provides background knowledge on obfuscation and de-
obfuscation techniques. Section 3 presents our design of the
experimental protocol. Section 4 introduces the testing
procedure and results. In Section 5, we discuss our effects and
plan directions for future work. The full text is summarised in
section six.

Figure 1 The innovation of our method

First
Stage

U se H ash and adjust N -gram
to optim ize m em ory

G et M odel

Second
Stage

U se log probability to reduce
precision loss

D e-obfuscate
Stage

Add D e-obfuscate to increase
im port table recognition

50 Y. Meng and M. Zhang

2 Background

This section will introduce some basic knowledge about
obfuscation and then discuss general de-obfuscation methods.

2.1 Obfuscation

To reverse the code produced by the compiler is a complex
and time-consuming process. If the program undergoes
obfuscation resistance analysis, the difficulty of program
analysis will be further increased. Here are some situations
where obfuscation may be used.

 Malicious programs: To evade detection by security
software and analysis by security engineers, evil program
creators often use this technique to enable them to steal
data or achieve other purposes.

 Intellectual property protection: Many commercial
programs use this technique to prevent unauthorised
reverse analysis.

 Digital rights management (DRM): This is the main area
in which obfuscation techniques are currently used, and
DRM often uses obfuscation techniques to protect
encryption keys and protocols.

Obfuscation techniques can be divided into two categories:
data-based obfuscation techniques and control-based
obfuscation techniques. These techniques are combined in the
actual analysis process.

In this paper, we mainly discuss the application of
obfuscation in malicious programs.

A study of obfuscated malware detection (Zhu et al.,
2021) has shown that malware authors apply different
obfuscation techniques on the generic feature of malware to
create new variants to avoid detection. Besides, Darem et al.
(2021) shown that the usage of obfuscation on malware has
become prevalent, most of the common anti-malware
products cannot detect these malwares, especially when the
new malware is different from the malware before. The worst
influence (Ali et al., 2018) of the usage of obfuscation on
malware is that obfuscation disturbs computer scientists to
judge the function of software examples. As cryptocurrency
mining is becoming increasingly popular (Hong et al., 2018),
obfuscation is used for covering crypto-jacking attacks or
drive-by mining (Konoth et al., 2018). Some obfuscation
technology (Rusak et al., 2018) is also used for making
malicious PowerShell.

To detect whether a program is obfuscated, you can check
whether it is an obfuscated string by extracting a part of the
string in the program. The principle of this method is that
there is usually a string in a standard program. If the string is
extracted and it is found that the string is an obfuscated string
(the obfuscated string is a program code or a string that is
encrypted in some way and then rendered into a human-

unreadable string that has no practical meaning in natural
language), then the program is confused. In general, since the
program without string obfuscation is easy to extract essential
information from the plaintext string in the reverse process, it
is not meaningful to use other obfuscation methods in this
case; it can be judged whether it is obfuscated by detecting
the obfuscated string.

The study by Mohammadinodooshan et al. (2019)
proposed a method for string detection on Android. Their
approach is based on the Naive Bayes theory and uses the
bag-of-words method to extract string features. After
extracting the string features of the training set, the
corresponding prediction data will be obtained from the input
string of the test set. A c-value will be received by calculating
the predicted data list with the improved formula. Store
c-values of different lengths in different languages and set a
threshold for each c-value. When predicting a confused
string, it will be compared with the c-value, and if it is lower
than this threshold, it will be judged as a confused string.

2.2 Overview of de-obfuscation techniques

For programs, obfuscation is a form of transformation.
Therefore, the essence of de-obfuscation is the inverse
transformation of the obfuscation process using software
analysis techniques.

The current terminology in the literature of various
research fields about de-obfuscation is not uniform, and the
research process is relatively scattered. A reasonably
consistent standard or definition in the field of de-obfuscation
cannot be found.

The widely used technology in de-obfuscation technology
is software analysis technology. According to common
classification, software analysis techniques can be divided into
static and dynamic analysis (Smaragdakis and Csallner, 2007).
Analysing a program is determining whether the program
satisfies a particular property. Fully recovering an obfuscated
program is nearly impossible statistically; only an
approximation of the semantics of a program can be made.
Program analysis is also described as an excess approximation
and insufficient approximation. For the program’s dynamic and
static analysis, the difference between static and dynamic
analysis is not as big as imagined. According to Ernst (2003),
static and dynamic analysis have synergy and duality. Synergy
performs in static and dynamic analyses are often performed
together, while duality is the opposite.

3 Method design

The objective of our method is to build a low-resource
obfuscated program identification and (trial) processing
process and improve the accuracy of malicious obfuscated
program identification.

 Memory-efficient detection of large-scale obfuscated malware 51

Figure 2 The flow chart of our method

Training
database

Training
Computer

Training

Model

Record and select

Threshold
value

Test
database

Unknown
Program

Extract String

Strings
data

Model

Input

Predict
data

c
om

p
ar

e

Is obfuscated string?

Yes! No!

Try to
deobfusca

te

End End

The whole process is shown in the figure above. We roughly
divide confusion recognition into two processes, training and
recognition recording process.

In the training process, we train an existing machine
learning model based on the Naive Bayes method. Since the
differences between different languages are very large, we
decided to build different models for different languages. It is
expected to use 235 types in Wikipedia Language to build
235 models.

After building the machine learning model, we will use
the model and input the test data set to identify different
languages. The Naive Bayesian model will output a list of
possibilities. The maximum value in the prediction list must
tend to be concentrated in a certain area, so a threshold can be
set to define the obfuscation procedure. In addition,
considering that there is a huge difference in the distribution
of the maximum value of the list of strings of different
lengths in the same language, thresholds are set for different
lengths.

After completing the obfuscation identification, we
consider adding a de-obfuscation solution. According to the
survey, obfuscation can significantly reduce the accuracy of
malicious program identification. Therefore, we will add a
de-obfuscation scheme to prepare for possible subsequent
identification of malicious programs.

The specific details of our method are presented below.

3.1 Obfuscation recognition model design

Our innovation for the first part of confusion identification is
to adjust the n-gram parameters and use sparse matrices and

hashes. Doing so can make the memory occupied by the
model training as small as possible, making the model
suitable for large-scale training data sets.

Our method is based on Naive Bayes, which is a machine
learning algorithm that can be used to construct classifiers. In
recent years, Naive Bayes has handled imbalanced data such
as fake news and spam detection (Granik and Mesyura,
2017). Naive Bayes is a conditional probability model: when
faced with a problem that requires classification, the n
features or independent variables of the problem can be
abstracted into the following vector:

 1, ..., nx x x (1)

For a class variable y, the probability that x supports y can be
expressed as:

 1| , ..., np y x x (2)

y can be calculated as:

1
1

1

, , |
| , .,

, ,
n

n
n

p y p x x y
y x x

p x x

 (3)

In natural scenarios, we use the following formula:

1

xˆ ma |
n

i
y

i

y arg p y p x y

 (4)

Alternatively, we can use the posterior maximum likelihood
(MAP) estimate p y . It is the relative probability of class

y in the training set and |ip x y is ix belongs to class y

52 Y. Meng and M. Zhang

probability. The main difference between the different Naive
Bayes classifiers is the assumptions they make when dealing
with |ip x y .

From the above formula, we can easily conclude that if
we have several classes 1, , , nm m m and a feature f

waiting to be classified, we can calculate the probability that f
belongs to each model. We name it | ip f m and compare

these probabilities to choose the maximum value. It is worth
noting that these probabilities are not ‘absolute’ probabilities
but some ‘relative probabilities’. In other words, these
probabilities cannot represent accurate probabilities but can
only mean that a feature is more inclined to belong to a
specific model than other models. This is an essential feature
of Naive Bayes methods: Naive Bayes methods are suitable
for classification but not for estimation (Zhang, 2004).

Polynomial Bayes is one of two classic Naive Bayes
variants in text classification, and since it works well for text
classification, we also take the form of Multinomial Bayes.

We use the following formula:

1
max

log |
log

N

ii
P L x

C x P x
N

 (5)

 maxP x is the maximum value of the list of Naive Bayes

predictors. A machine learning model trained in many
languages can give a list of predicted values. The number of
list entries depends on the number of languages used to train
the machine-learning model. The number of list entries is the

value of N. In this case, the value of
1

log |
N

i
i

P L x

 is easy

to understand and can be calculated by adding all the values
in the list of predicted values. Therefore, the formula can also
be replaced by the following:

1
max

log |
log |

N

ii
i

P L x
C x P L x

N
 (6)

Note that our method uses log probabilities instead of the
probabilities themselves, since some of the possibilities in the
list of predicted values are small, using log probabilities
reduces the error.

For the second part, we collect the maximum value in the
list of predictions output by the naive Bayes model at
recognition for each language input. We also collect the
results for different lengths for each language. After statistics,
the fifth percentile (in all statistics, about 95% of the values
are greater than this value and 5% less than this value) is used
as the threshold for each length of each language. Regarding
the length of strings, we found that the accuracy of strings
with a length of less than 10 is very low in actual recognition,
so it is meaningless, and the increase in the recognition value
of strings with a length of more than 80 is minimal. We
determined the threshold for the length of 10–80 strings. In
the natural environment, the maximum value of the
recognition results for strings longer than 80 will be
compared with the threshold of 80 for predicting language.

3.2 De-obfuscation model design

To improve the accuracy of subsequent possible automatic
malicious program identification processes, our method
attempts to de-obfuscate the programs identified by applying
the obfuscation technique after identifying the obfuscation.
After we proposed this method, we were worried that the
de-obfuscation of non-malicious programs might cause
copyright-related problems. After actual investigation, we
found that companies or individuals capable of applying the
obfuscation method to protect software generally use a set
of obfuscation developed by themselves. Algorithms or
procedures; and malicious programs or exploit programs to
obtain maximum benefits from zero-day vulnerabilities in the
shortest time, malicious program writers often apply open-
source obfuscation solutions to save program writing time.
Therefore, we also decided to design our method using an
open-source de-obfuscation scheme. Of course, this method
may still have errors, but after applying the wrong de-
obfuscator, the complete program instructions cannot be
obtained, so it does not cause copyright problems.

Our innovation in de-obfuscation model design is as
follows:

a) Applying the model to automatic identification of
obfuscation followed by de-obfuscation.

b) A multiple de-obfuscation scheme is proposed for
programs that apply multiple obfuscations.

There are many kinds of open-source de-obfuscators, and
the key lies in how to efficiently and automatically apply
these de-obfuscators.

The easier-to-deploy solution is to use all de-obfuscators
to traverse the obfuscated program. However, the advantage
of this method is that it is easy to implement, and the
disadvantage is also obvious: it is very inefficient. Further
research found that the characteristics of the obfuscated
strings in the programs that applied different obfuscation
methods differed. Based on this point of view, our approach
uses de4dot’s obfuscated string feature comparison to
determine which obfuscator or obfuscation method is used by
the obfuscation program and uses the de-obfuscator supported
by its open-source plugin for de-obfuscation. Our approach
divides de-obfuscators into two broad categories: static de-
obfuscation and dynamic de-obfuscation. This classification
is due to the high similarity between the feature strings
extracted from the statically obfuscated program; similarly,
the strings extracted from the dynamically obfuscated
program also have more similarities. Although it has been
recognised twice, this can reduce the accuracy of the
recognition.

However, this process still has a problem: some malicious
programs may apply two or more kinds of obfuscation. We
adopted a solution to detect and attempt to de-obfuscate only
one type of obfuscation at a time, using the de-obfuscation
scheme multiple times for the obfuscated program. This is
because, in a program that adopts multiple obfuscation
schemes, if the de-obfuscation is performed simultaneously, it

 Memory-efficient detection of large-scale obfuscated malware 53

may cause the problem of changing the original semantics of
the program or making the program unable to run.

In addition, considering the personal needs of security
engineers and to make our method more flexible, in addition
to the default automatic de-obfuscation mode, a manual mode
option should also be provided so that security engineers
know the obfuscation method applied by the obfuscation
program. A specialised de-obfuscator can be used.

After de-obfuscation, our method is designed to output a
de-obfuscated program that can be distinguished from the
original program and analysed by security engineers.

3.3 Analysis and innovation

Our method mainly proposes a pre-processing scheme for
obfuscating malicious programs: by extracting and
identifying obfuscated strings, we can determine whether
there is obfuscation in the program and try to de-obfuscate the
obfuscated program. Based on this, if subsequent malicious
programs need to be identified, the de-obfuscated program
samples can make the following evil program detection parts
more accurate.

Our innovation lies in:

a) N-gram is a language model based on the assumption
that the appearance of the N-th word is only related to the
previous N-1 words and not related to any other words.
The probability of the entire sentence is each product of
word occurrence probabilities. Therefore, the larger the
value of N, the larger the memory space occupied during
training. Based on this theory, adjusting the N-gram to 1
optimises the memory footprint during training.

Although the accuracy rate before taking 40 strings is
significantly lower according to Figure 5, and the training
time becomes longer, our method still lowers the resource
threshold for training. This method can be used for lower-
performing hardware that does not render out-of-memory
errors. In addition, we combined a de-obfuscation scheme to
try to de-obfuscate the programs identified using obfuscation
to provide preparations for the subsequent identification of
malicious programs.

Specifically, we use N-grams to build a bag-of-words
model. For an n-gram, suppose it uses a text containing
t characters, where ,n t N has 1 t n strings, where each
A string requires units of space. Therefore, the total space
required for this n-gram is 1t n n which simplifies to

 2 1n t n . To choose the value of n in an n-gram

model, it is necessary to find the suitable trade-off between
the stability of the estimate and its appropriateness. This
means that triples (i.e., triples of words) are a common choice
for large training corpora (millions of words), while bigrams
are often used for smaller corpora. Based on this, n-grams
alone may not require much space and even training with
very large corpora may only require hundreds of megabytes
of memory. However, the actual situation is more
complicated. In the whole training process of using n-gram to
build a naive Bayesian model, a range value of n is often
taken; that is to say, all integer value length strings before the

maximum value nmax are extracted; in this case, as the n-gram
maximum value increases, the memory footprint is

 2

1

1
n

i

n t n

 (6)

At the cost of this increased memory footprint, the gain in
accuracy is not significant. In contrast, in the recognition
process, the accuracy rate that can be improved by taking a
longer obfuscated string is far greater than the accuracy rate
that can be improved by adjusting the Naive Bayesian machine
learning training model. Still, the more resources consumed are
the opposite. Therefore, we decided to use a unigram model in
the training phase to maximise the optimised memory
footprint; the upper limit of n in n-grams is 1.

b) Use hash and sparse matrix to build text word storage to
optimise the storage space of words.

An n-gram is the first step in building a bag-of-words model,
followed by storing words in the text. If the method of
converting the words in the text into a word frequency matrix
is used, the problem described above still exists. When the
vocabulary is very large, the memory footprint of the
dictionary is quite large. Therefore, you can use a hash and
store the compiled matrix with a sparse matrix, which can
solve this problem very well. Compared with the original
word frequency matrix, the disadvantage of the hash method
is that there is no way to achieve inverse transformation due
to the use of an index and not putting the dictionaries into
memory, so the established model cannot examine the
influence of each feature on the model. However, this is not a
problem in our method, which is dedicated to identifying
obfuscating procedures and is not concerned with factors
affecting classification confounding.

c) Add de-obfuscation to the method to improve the
recognition accuracy of the imported table.

The import table is one of the crucial references for
identifying malicious programs. After obfuscation, the PE
analysis program may not recognise the import table. A
typical example is when the program is packed, the execution
logic of the program will be changed to ‘decompress’ the
original program in memory first. Therefore, for the PE
analysis program, the packaged import table is changed to
the import table of a decompression program, and the
original program is only the data segment of the current
decompression program. To sum up, the obfuscated program
cannot identify malicious programs well due to the change of
the import table. After de-obfuscation, it is equivalent to
manually executing the ‘decompression’ process. After the
software shell is taken out, the program is restored, and the
import table is also restored to its original state. Under the
circumstance that the de-obfuscation is relatively thorough,
the malicious program identification based on the import
table can obtain the same effect as before the obfuscation.

4 Experiments and results

This section will show the experimental environment we
used, including the software and hardware conditions we

54 Y. Meng and M. Zhang

used. We will describe our experiments, evaluate our
results, compare our results with other people’s work, and
analyse the reasons for the differences.

4.1 Experimental environment

The experimental environment we use is Windows 11 Pro
for WorkStation version 21H2. CPU: Intel Core I7-9750H
GPU: NVIDIA GeForce RTX 2060 for notebook. Memory:
32 GB 2667 MHZ

Our method is based on the obfuscated string recognition
part implemented by the HashVectoriser class of the python
open-source machine learning library SciKit-learn (Pedregosa
et al., 2011). We use 500 lines of characters in 235 languages
extracted from Wikipedia for the data set, for a total of
115,000 lines of data and the balanced WiLi data set (Thoma,
2018). For the de-obfuscation part, we use a de4dot-based
solution.

4.2 Experiment content

We conducted four experiments, in these experiments, we
choose M’s method and the SVC method as the control
group. The SVC method is a traditional machine learning
method, it performs well in text classification missions.
Besides, the SVC method could output probability as Naïve
Bayes, so we can use the same method to assess their result.

The first experiment will be to build multiple language
models, and we will record and compare the memory usage
of different methods.

The second experiment will use the modified method and
test set to select the fifth percentile and give the overall
memory footprint of the modified form. We do not provide
the memory footprint before the second stage of improvement
because the memory footprint of the method before the
improvement is too large, and there is no way to complete the
first stage.

The third experiment uses the obfuscated string to test the
effect of the trained model which is trained in the first stage,
and we will provide different methods’ accuracy.

The fourth experiment uses the obfuscated and de-
obfuscated program import table to compare entries with the
original program import table. Since the import table is an
essential reference for identifying malicious programs, the
use of the change in the import table can show that the de-
obfuscation is effective for subsequent malicious programs. It
improved program recognition.

For each string that is not obfuscated in the training and
test sets, we use the data from the Wi-Li data set (Thoma,
2018) for input and train models of different lengths and
languages. In detail, we use the training set data to generate

80-length models in 235 languages. We take the first x
characters in the sentence for different string lengths in the
same language. The reason why we take the string in this way
is as follows: because in the natural environment, the string
before obfuscation has its actual meaning, and the
programming language, such as C-like statements, these
programming statements have extensively borrowed the
usage habits of English, so this value is closer to the natural
environment.

For obfuscated strings, our point is that since these
obfuscated strings are also derived from natural language, we
decided to use the original natural language obfuscated
strings instead of the combined obfuscated strings.

Since the number of obfuscated strings that can be
extracted from existing programs is too small and not
universal, we use the following four schemes to generate
obfuscated strings as a test set (Mohammadinodooshan et al.,
2019):

 Base64 (B64): Base64 encoding is often used to
obfuscate the encoding of malicious programs. Base64
encoding itself is excellent for use as an obfuscation as
well as an encryption scheme. Therefore, we apply the
actual Base64 encoding to the not obfuscated string to
generate the obfuscated string.

 Rotation cipher (ROT): ROT cipher is a variant of Caesar
cipher, and its essence is still a permutation cipher. Our
method uses ROT13 for implementation.

 Fully Uniform Random Sampling (FU): This method is
not inherently obfuscated; this method is a combination
of character sequences sampled from the entire Unicode
character using uniform random sampling, Representing
a self-developed form of obfuscation.

 Linguistic Uniform Random Sampling (LU): This is a
variant of completely uniform random sampling, which
solves the problem of an entirely consistent random
sample biased towards languages with many letters. When
generating this string, we randomly choose a language in
the data set, choosing a character with average probability.

For the final stage of obfuscation and de-obfuscation testing,
we will use the UPX encryption algorithm as the obfuscation
algorithm to test the effect of obfuscation and de-obfuscation
on imported tables.

4.3 Results evaluation

Figure 3 shows the memory usage of our method and other
methods.

 Memory-efficient detection of large-scale obfuscated malware 55

Figure 3 The first stage of memory usage of our method (b) The first stage of memory usage of M’s method (c) The first stage of memory
usage of SVC

(a) (b)

(c)

Since our method refers to the work of
Mohammadinodooshan et al. (2019), we try to reproduce the
first stage training experiment of Mohammadinodooshan et
al. (2019). However, it is not entirely successful because our
memory is only 32 GB, and the program still needs more
memory to complete the training. We used about 60 MB of
text data for training during this process. In a natural
production environment, 32 GB is already a vast memory and
a 60 MB data set is common in the natural environment. Such
memory usage is unreasonable. We, therefore, improve upon
the method of Mohammadinodooshan et al. (2019) by trying
to minimise memory to make the training program adaptable
to as many computer environments as possible.

We compared the memory usage of the above three
methods in our experiments. Figure 3(b) shows the memory
usage during training without our method optimisation in the
first training phase: it can be observed that during the training
process, the peak memory usage reached about 27 GB, and
the memory usage plummeted to 0 after about 4–5 minutes.

This is not because the training process had ended; when the
memory descended, we observed that the experimental
program reported an out-of-memory error and exited. The
out-of-memory error message shows that 19.3 GB of memory
is still required to continue the experiment. Therefore, this
method does not take up to 27GB at most. Still, because our
experimental physical machine has only 32 GB of memory,
after removing the memory occupation of the system and
other processes, the free memory is only 27–28 GB; it may
require 57 GB or even more memory to complete the
experiment.

Figure 3(c) shows the memory usage of the SVC method
during the first stage of training. Although this method does
use not so much memory, the training process continues for
about 53 minutes.

Figure 3(a) shows our method’s memory occupied in the
first training stage. It can be observed that the peak memory
occupancy during the training process is only about 1.8 GB,
and the training task is completed in only about 20 seconds.

56 Y. Meng and M. Zhang

The reason for this vast difference is as we conjectured
earlier: N-gram-based triplet models perform well when
training large corpora, and the space complexity increases
linearly; however, in this case, the word frequency matrix is
constructed. Since the word frequency matrix’s space
complexity increases squarely with the vocabulary increase,
the memory occupied by the final program will be very large
under the superposition of the two factors.

After we adopted our experiments to use sparse matrices
and unary tuples, the space complexity dropped dramatically,
and the training program completed the task in a fraction of
the time. Although using a sparse matrix will make it
impossible to use some features of the original word
frequency matrix, and replacing triples with a tuple will also
cause a decrease in the final recognition accuracy, we will not
use the discarded features of the word frequency matrix in
this article. And the slight reduction in accuracy reduces more
than ten times the program memory usage. Our method
can now run on personal computers with relatively small
memory, which is an increase compared to training
methods that only run on large servers. Therefore, we believe
that the price is worth it. Moreover, the reduced accuracy can
be compensated by taking longer strings during the
recognition process, which will be explained in the following
paragraphs.

Table 1 shows the training time of all experiments. The
SVC second stage training uses 13.2 hours and our method
only uses 7.5 hours

Table 1 The peak memory of our method and another method

Method Max memory Training time

M’s first stage 27 GB 5 Min(With Error)

Our first stage 1.75 GB 30 sec

SVC first stage 3.4 GB 53 Min

M’s second stage – –

Our second stage 1.8 GB 7.5 hours

SVC second stage 2.4 GB 13.2 hours

Figure 4(a) shows the memory usage in selecting the 5th
percentile using the improved method and the test set. Since
memory usage fluctuates significantly at this stage, we
randomly selected the distribution during the experiment. Of
course, these ten-time points are evenly distributed over the
entire period of the experiment. It can be observed in the
figure that the peak memory usage is around 1.8 GB.

According to Figure 4(b) and Table 1, the SVC second
stage training uses more memory the first time and uses
nearly memory in the latter half.

Figure 5(a) is the result of obfuscation recognition using
the trained model and data, and we use four encoding
methods to replace obfuscation. From Figure 5(a), we can
easily observe that the longer the string used for recognition,
the higher the recognition accuracy. Therefore, the loss of
precision caused by using one-tuples instead of triples can be
solved by taking longer strings.

Figure 4 (a) The second stage of memory usage of our method (b) The second stage memory usage of the SVC method

(a) (b)

 Memory-efficient detection of large-scale obfuscated malware 57

Figure 5 (a) The various obfuscated strings’ recognition rate in different string lengths of our method (b) The various obfuscated strings’
recognition rate in different string lengths of M’s method (c) The various obfuscated strings’ recognition rate in different string
lengths of SVC’s method (see online version for colours)

(a) (b)

(c)

For the four obfuscation methods, it can be observed from
Figure 5(a) that for Base64 encoding, utterly random
sampling, and unified language random sampling, when the
string length is more than 60, the accuracy rate can reach
more than 80%. The effect is the worst. After analysis, the
reason is that the rotating password equivalently changes the
frequency of occurrence of characters; that is, the number of
characters with higher frequency remains unchanged, and
only the type of characters is changed. It is equivalent to
changing the arrangement rules of characters, and the
machine learning model may recognise them as different
languages in the same language family. Hence, the
recognition effect is relatively poor.

Figure 5(b) shows the various obfuscated strings’
recognition rates of M’s method. Our method’s recognition is
slightly lower than their method. But it is necessary to reduce
about 95% of training process memory.

Figure 5(c) shows the obfuscated strings’ recognition rate
of the SVC method. Although the SVC method performs well
on normal text classification missions, it performs extremely

badly on obfuscated strings classification. And this model
classifies all of the Base64 strings to other normal languages.
We check the SVC model’s output probabilities and we found
SVC model output very high predicted probability for Base64
examples to classify them to other language classes.

To study the effect of obfuscation and de-obfuscation on
the import table, we used the UPX encryption algorithm to
obfuscate and de-obfuscate the test program and observe the
changes in the import table before and after the process. To
test the program, we used a Crackme program. Before
starting, record the 52 entries of the import table. After
obfuscation with UPX 3.95, 14,690 entries were extracted,
but all were junk data. After de-obfuscation, 1076 entries are
extracted, of which the first 1024 entries are garbage entries
with no practical significance, and the last 52 entries are
consistent with the previously extracted 52 import entries.
This shows that de-obfuscation can indeed restore the entries
of the import table. Although there may be garbage data and
garbage instructions, these garbage data and garbage
instructions are easy to deal with. After de-obfuscation, the

58 Y. Meng and M. Zhang

critical import table entries have been exposed. It can become
an essential feature for subsequent malicious program
identification.

5 Discussion and future work

This section discusses some of the limitations of our
suspected obfuscator pre-processing scheme and the
methods used to evaluate it. We also outline directions for
future work.

The first problem is that we are committed to optimising
the memory usage during model training for obfuscated
string recognition, which slightly degrades the model’s
performance. It is necessary to extract longer strings to
compensate for the accuracy when identifying strings. This is
because the higher the value of the n-gram during the actual
experiment, the higher the accuracy the model can achieve,
which also requires more memory. To achieve the highest
optimisation level, our method sets the value of n-gram to the
default value of 1. Although a high level of memory
optimisation is completed, part of this memory optimisation
comes at the cost of wasting CPU performance by using
multi-layer loop structures in the program, which makes the
program less efficient and therefore takes longer to train.
Therefore, there is still room for optimisation in terms of time
complexity, and we will consider how to optimise time
complexity while maintaining a low memory footprint in
future work.

The second problem lies in de-obfuscation. We construct
a de-obfuscation scheme by integrating open-source de-
obfuscators. After designing the system, we found that the
difficulty lies in efficiently identifying the used obfuscator
according to the features of the extracted obfuscated strings,
especially after the integrated de-obfuscator reaches a higher
order of magnitude. We can only incorporate a limited
number of de-obfuscators in the current experimental stage
for experiments. When the obfuscation features are relatively
straightforward, such as some codes will add unique symbols
or symbol sequences, there will be almost no false positives.
Suppose some kinds of obfuscated features are similar, and
there is no particular symbol sequence. In that case, there will
be a very high false positive rate, and since the search cost
will become expensive in the case of a large number of de-
obfuscators, it will be a wasted in this case more time; in
addition, due to the use of the wrong de-obfuscator
processing after false positives, the processed program may
still look like an obfuscated program, which will cause an
infinite loop of the program in this case. In this case, manual
intervention by a security engineer may be required to see if
the program is applying multiple layers of obfuscation or is
stuck in an infinite loop of errors.

The third problem is that we used real strings encrypted
with various methods, not real obfuscated malicious
program strings. Therefore, in the future stage, it can be
considered to add real-world obfuscated strings for training
and recognition.

6 Summary

Obfuscated malicious programs are threats to the internet.
Malicious programs using obfuscation technology achieve high
concealment and high-attack feasibility. We improved the
Bayesian-based strategy for identifying obfuscated programs
that require less training memory than the previous model. We
added a process to this model to de-obfuscate the recognised
obfuscated programs. This can improve the accuracy of
program import table recognition. Using the WiLi data set
(Thoma, 2018), we evaluate our countermeasures’ memory
footprint and accuracy when applied to confusion recognition
training. Our evaluation results show that the longer the string
is, the higher the recognition accuracy of confusion is; the
highest can reach more than 80%, which is 10% lower than the
previous model, but the memory usage is reduced by about
95%. We used obfuscation and the change of the import table
after de-obfuscation to prove that de-obfuscation can improve
the recognition accuracy of the import table by about 40%, and
the import table is an essential basis for identifying malicious
programs. This suggests that our countermeasures can be
integrated into obfuscating the identification of malicious
programs.

References

Abraham, I., Malkhi, D., Nayak, K., Ren, L. and Yin, M. (2020)
‘Sync Hotstuff: simple and practical synchronous state machine
replication’, IEEE Symposium on Security and Privacy (SP),
IEEE, USA.

Ali, Z. and Soomro, T.R. (2018) ‘An efficient mining based
approach using PSO selection technique for analysis and
detection of obfuscated malware’, Journal of Information
Assurance and Cyber Security, pp.1–13.

Anderson, H.S., Kharkar, A., Filar, B. and Roth, P. (2017) ‘Evading
machine learning malware detection’, Black Hat, pp.1–6.

Beckman, L., Haraldson, A., Oskarsson, Ö. and Sandewall, E.
(1976) ‘A partial evaluator, and its use as a programming tool’,
Artificial Intelligence, Vol. 7, No. 4, pp.319–357.

Boyer, R.S., Elspas, B. and Levitt, K.N. (1975) ‘SELECT – a formal
system for testing and debugging programs by symbolic
execution’, ACM SigPlan Notices, Vol. 10, No. 6, pp.234–245.

Cheng, B., Ming, J., Fu, J., Peng, G., Chen, T., Zhang, X. and
Marion, J-Y. (2018) ‘Towards paving the way for large-scale
windows malware analysis: generic binary unpacking with
orders-of-magnitude performance boost’, Proceedings of the
ACM SIGSAC Conference on Computer and Communications
Security, pp.385–411.

Cousot, P. and Cousot, R. (1977) ‘Abstract interpretation: a unified
lattice model for static analysis of programs by construction or
approximation of fixpoints’, Proceedings of the 4th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming
Languages.

Darem, A., Abawajy, J., Makkar, A., Alhashmi, A. and Alanazi, S.
(2021) ‘Visualization and deep-learning-based malware variant
detection using OpCode-level features’, Future Generation
Computer Systems, Vol. 125, pp.314–323.

Dychka, I., Tereikovskyi, I., Tereikovska, L., Pogorelov, V. and
Mussiraliyeva, S. (2018) ‘Deobfuscation of computer virus
malware code with value state dependence graph’,
International Conference on Computer Science, Engineering
and Education Applications, Springer.

 Memory-efficient detection of large-scale obfuscated malware 59

Ernst, M.D. (2003) Static and Dynamic Analysis: Synergy and
Duality, WODA.

Fass, A., Backes, M. and Stock, B. (2019) ‘Hidenoseek:
Camouflaging malicious javascript in benign ASTs’,
Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security, pp.1899–1913.

Gligor, V.D. (2019) ‘Winning against any adversary on commodity
computer systems’, Proceedings of the 1st ACM Workshop on
Workshop on Cyber-Security Arms Race, pp.1–2.

Granik, M. and Mesyura, V. (2017) ‘Fake news detection using
naive Bayes classifier’, IEEE First Ukraine Conference on
Electrical and Computer Engineering (UKRCON), IEEE,
UKraine.

Guarnieri, M., Köpf, B., Morales, J.F., Reineke, J. and Sánchez, A.
(2020) ‘Spectector: principled detection of speculative
information flows’, IEEE Symposium on Security and Privacy
(SP), IEEE, USA.

Harilal, A., Toffalini, F., Castellanos, J., Guarnizo, J., Homoliak, I.
and Ochoa, M. (2017) ‘Twos: a dataset of malicious insider
threat behavior based on a gamified competition’, Proceedings
of the International Workshop on Managing Insider Security
Threats, pp.45–56.

Hong, G., Yang, Z., Yang, S., Zhang, L., Nan, Y., Zhang, Z., Yang,
M., Zhang, Y., Qian, Z. and Duan, H. (2018) ‘How you get shot
in the back: a systematical study about cryptojacking in the real
world’, Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security, pp.170–1713.

Ju, A. and Wagner, D. (2020) ‘E-ABS: extending the analysis-by-
synthesis robust classification model to more complex image
domains’, Proceedings of the 13th ACM Workshop on Artificial
Intelligence and Security, pp.25–36.

Kasturi, R.P., Sun, Y., Duan, R., Alrawi, O., Asdar, E., Zhu, V.,
Kwon, Y. and Saltaformaggio, B. (2020) ‘TARDIS: rolling
back the clock on CMS-targeting cyber attacks’, IEEE
Symposium on Security and Privacy (SP), IEEE, USA.

Kochberger, P., Schrittwieser, S., Schweighofer, S., Kieseberg, P.
and Weippl, E. (2021) ‘SoK: automatic deobfuscation of
virtualization-protected applications’, Proceedings of the 16th
International Conference on Availability, Reliability and
Security, pp.1–15.

Kolesnikov, V., Nielsen, J.B., Rosulek, M., Trieu, N. and Trifiletti,
R. (2017) ‘DUPLO: unifying cut-and-choose for garbled
circuits’, Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security.

Konoth, R.K., Vineti, E., Moonsamy, V., Lindorfer, M., Kruegel, C.,
Bos, H. and Vigna, G. (2018) ‘MineSweeper: an in-depth look
into drive-by cryptocurrency mining and its defense’,
Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security. pp.1714–1730.

Korczynski, D. and Yin, H. (2017) ‘Capturing malware propagations
with code injections and code-reuse attacks’, Proceedings of the
ACM SIGSAC Conference on Computer and Communications
Security, pp.1691–1708.

Koruyeh, E.M., Shirazi, S.H.A., Khasawneh, K.N., Song, C. and
Abu-Ghazaleh, N. (2020) ‘Speccfi: mitigating spectre attacks
using cfi informed speculation’, IEEE Symposium on Security
and Privacy (SP), IEEE, pp.39–53.

Kuhn, C., Beck, M. and Strufe, T. (2020) ‘Breaking and (partially)
fixing provably secure onion routing’, IEEE Symposium on
Security and Privacy (SP), IEEE, pp.168–185.

Kurth, M., Gras, B., Andriesse, D., Giuffrida, C., Bos, H. and
Razavi, K. (2020) ‘NetCAT: practical cache attacks from the
network’, IEEE Symposium on Security and Privacy (SP),
IEEE, USA.

Labaca-Castro, R., Biggio, B. and Dreo Rodosek, G. (2019) ‘Poster:
attacking malware classifiers by crafting gradient-attacks that
preserve functionality’, Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security,
pp.2565–2567.

Landau, S. (2020) ‘Categorizing uses of communications metadata:
systematizing knowledge and presenting a path for privacy’,
New Security Paradigms Workshop, ACM, USA.

Lee, J., Nikitin, K. and Setty, S. (2020) ‘Replicated state machines
without replicated execution’, IEEE Symposium on Security
and Privacy (SP), IEEE, pp.1–16.

Liu, Z., Chen, C., Zhou, J., Li, X., Xu, F., Chen, T. and Song, L.
(2017) ‘Poster: neural network-based graph embedding for
malicious accounts detection’, Proceedings of the ACM
SIGSAC Conference on Computer and Communications
Security, pp.2543–2545.

Mohammadinodooshan, A., Kargén, U. and Shahmehri, N. (2019)
‘Robust detection of obfuscated strings in android apps’,
Proceedings of the 12th ACM Workshop on Artificial
Intelligence and Security, pp.25–35.

Murty, M.N. and Devi, V.S. (2011) Pattern Recognition: An
Algorithmic Approach, Springer Science & Business Media.

Naderi-Afooshteh, A., Kwon, Y., Nguyen-Tuong, A., Razmjoo-
Qalaei, A., Zamiri-Gourabi, M-R. and Davidson, J.W. (2019)
‘Malmax: multi-aspect execution for automated dynamic web
server malware analysis’, Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security,
pp.1849–1866.

Naor, M., Pinkas, B. and Ronen, E. (2019) ‘How to (not) share a
password: privacy preserving protocols for finding heavy hitters
with adversarial behavior’, Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security,
pp.1369–1386.

Niakanlahiji, A., Pritom, M.M., Chu, B-T. and Al-Shaer, E. (2017)
‘Predicting zero-day malicious IP addresses’, Proceedings of
the Workshop on Automated Decision Making for Active Cyber
Defense, Dallas, USA.

Niaki, A.A., Cho, S., Weinberg, Z., Hoang, N.P., Razaghpanah, A.,
Christin, N. and Gill, P. (2020) ‘ICLab: a global, longitudinal
internet censorship measurement platform’, IEEE Symposium
on Security and Privacy (SP), IEEE, USA.

Novo, C. and Morla, R. (2020) ‘Flow-based detection and proxy-
based evasion of encrypted malware c2 traffic’, Proceedings of
the 13th ACM Workshop on Artificial Intelligence and Security,
pp.83–91.

Oak, R., Du, M., Yan, D., Takawale, H. and Amit, I. (2019)
‘Malware detection on highly imbalanced data through
sequence modeling’, Proceedings of the 12th ACM Workshop
on Artificial Intelligence and Security, pp.37–48.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R. and Dubourg,
V. (2011) ‘Scikit-learn: Machine learning in Python’, Journal of
Machine Learning Research, Vol. 12, pp.2825–2830.

Pendlebury, F., Pierazzi, F., Jordaney, R., Kinder, J. and Cavallaro,
L. (2018) ‘Enabling fair ML evaluations for security’,
Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security, pp.2264–2266.

Pierazzi, F., Pendlebury, F., Cortellazzi, J. and Cavallaro, L. (2020)
‘Intriguing properties of adversarial ml attacks in the problem
space’, IEEE Symposium on Security and Privacy (SP), IEEE,
pp.1332–1349,

Raff, E. and Nicholas, C. (2017) ‘Malware classification and class
imbalance via stochastic hashed LZJD’, Proceedings of the
10th ACM Workshop on Artificial Intelligence and Security,
pp.111–120.

60 Y. Meng and M. Zhang

Raff, E., Sylvester, J. and Nicholas, C. (2017) ‘Learning the pe
header, malware detection with minimal domain knowledge’,
Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security, pp.121–132.

Raff, E., Zak, R., Lopez Munoz, G., Fleming, W., Anderson, H.S.,
Filar, B., Nicholas, C. and Holt, J. (2020) ‘Automatic YARA
rule generation using biclustering’, Proceedings of the
13th ACM Workshop on Artificial Intelligence and Security,
pp.71–82.

Rivera, E., Tengana, L., Solano, J., Castelblanco, A., López, C. and
Ochoa, M. (2020) ‘Risk-based authentication based on network
latency profiling’, Proceedings of the 13th ACM Workshop on
Artificial Intelligence and Security, pp.105–115.

Roundy, K.A., Mendelberg, P.B., Dell, N., McCoy, D., Nissani, D.,
Ristenpart, T. and Tamersoy, A. (2020) ‘The many kinds of
creepware used for interpersonal attacks’, IEEE Symposium on
Security and Privacy (SP), IEEE, pp.1–18.

Rusak, G., Al-Dujaili, A. and O’Reilly, U-M. (2018) ‘AST-based
deep learning for detecting malicious powershell’, Proceedings
of the ACM SIGSAC Conference on Computer and
Communications Security.

Schindler, P., Judmayer, A., Stifter, N. and Weippl, E. (2020)
‘Hydrand: Efficient continuous distributed randomness’, IEEE
Symposium on Security and Privacy (SP), IEEE, USA.

Schlögl, A. and Böhme, R. (2020) ‘eNNclave: offline inference with
model confidentiality’, Proceedings of the 13th ACM Workshop
on Artificial Intelligence and Security, pp.93–104.

Schwartz, E.J., Cohen, C.F., Duggan, M., Gennari, J., Havrilla, J.S.
and Hines, C. (2018) ‘Using logic programming to recover c++
classes and methods from compiled executables’, Proceedings
of the ACM SIGSAC Conference on Computer and
Communications Security, pp.1–16.

Shang, F., Li, Y., Deng, X. and He, D. (2018) ‘Android malware
detection method based on naive Bayes and permission
correlation algorithm’, Cluster Computing, Vol. 21, No. 1,
pp.955–966.

Shaw, T., Arrowood, J., Kvasnicka, M., Taylor, S., Cook, K. and
Hale, J. (2017) ‘Poster: evaluating reflective deception as a
malware mitigation strategy’, Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security,
pp.2575–2577.

Shumailov, I., Zhao, Y., Mullins, R. and Anderson, R. (2020)
‘Towards certifiable adversarial sample detection’, Proceedings
of the 13th ACM Workshop on Artificial Intelligence and
Security, pp.13–24.

Smaragdakis, Y. and Csallner, C. (2007) ‘Combining static and
dynamic reasoning for bug detection’, International Conference
on Tests and Proofs, Springer, pp.11–6.

Solano, J., Lopez, C., Rivera, E., Castelblanco, A., Tengana, L. and
Ochoa, M. (2020) ‘SCRAP: synthetically composed replay
attacks vs. adversarial machine learning attacks against mouse-
based biometric authentication’, Proceedings of the 13th ACM
Workshop on Artificial Intelligence and Security, pp.37–47.

Thoma, M. (2018) ‘The WiLI benchmark dataset for written
language identification’, arXiv preprint arXiv:1801.07779.

Torroledo, I., Camacho, L.D. and Bahnsen, A.C. (2018) ‘Hunting
malicious TLS certificates with deep neural networks’,
Proceedings of the 11th ACM workshop on Artificial
Intelligence and Security, pp.64–73.

Tran, C., Champion, K., Forte, A., Hill, B.M. and Greenstadt, R.
(2020) ‘Are anonymity-seekers just like everybody else? An
analysis of contributions to Wikipedia from Tor’, IEEE
Symposium on Security and Privacy (SP), IEEE, USA.

Valizadeh, S. and Van Dijk, M. (2019) ‘Malpro: a learning-based
malware propagation and containment modeling’, Proceedings
of the ACM SIGSAC Conference on Cloud Computing Security
Workshop, pp.45–56.

Van Bulck, J., Moghimi, D., Schwarz, M., Lippi, M., Minkin, M.,
Genkin, D., Yarom, Y., Sunar, B., Gruss, D. and Piessens, F.
(2020) ‘LVI: hijacking transient execution through
microarchitectural load value injection’, IEEE Symposium on
Security and Privacy (SP), IEEE, USA.

Varshney, G., Misra, M. and Atrey, P.K. (2017) ‘Detecting spying
and fraud browser extensions: short paper’, Proceedings of the
Multimedia Privacy and Security, pp.45–52.

Verwer, S., Nadeem, A., Hammerschmidt, C., Bliek, L., Al-Dujaili,
A. and O’Reilly, U-M. (2020) ‘The robust malware detection
challenge and greedy random accelerated multi-bit search’,
Proceedings of the 13th ACM Workshop on Artificial
Intelligence and Security, pp.61–70.

Wang, L., Xu, D., Ming, J., Fu, Y. and Wu, D. (2019) ‘MetaHunt:
towards taming malware mutation via studying the evolution of
metamorphic virus’, Proceedings of the 3rd ACM Workshop on
Software Protection, pp.15–26.

Wang, T. (2020) ‘High precision open-world website fingerprinting’,
Symposium on Security and Privacy (SP), IEEE.

Yakura, H., Shinozaki, S., Nishimura, R., Oyama, Y. and Sakuma, J.
(2018) ‘Malware analysis of imaged binary samples by
convolutional neural network with attention mechanism’,
Proceedings of the 8th ACM Conference on Data and
Application Security and Privacy, pp,127–134.

Yang, C., Wen, Y., Guo, J., Song, H., Li, L., Che, H. and Meng, D.
(2018) ‘A convolutional neural network based classifier for
uncompressed malware samples’, Proceedings of the 1st
Workshop on Security-Oriented Designs of Computer
Architectures and Processors, pp.15–17.

Yoshida, K. and Fujino, T. (2020) ‘Disabling backdoor and
identifying poison data by using knowledge distillation in
backdoor attacks on deep neural networks’, Proceedings of the
13th ACM Workshop on Artificial Intelligence and Security,
pp.117–127.

You, W., Zhang, Z., Kwon, Y., Aafer, Y., Peng, F., Shi, Y., Harmon,
C. and Zhang, X. (2020) ‘Pmp: cost-effective forced execution
with probabilistic memory pre-planning’, IEEE Symposium on
Security and Privacy (SP), IEEE, USA.

Yu, H., Nikolić, I., Hou, R. and Saxena, P. (2020) ‘Ohie: blockchain
scaling made simple’, IEEE Symposium on Security and
Privacy (SP), IEEE, pp.90–105.

Zhang, H. (2004) ‘The optimality of Naive Bayes’, American
Association for Artificial Intelligence, Vol. 1, No. 2, pp.1–6.

Zhang, Y. and Rasmussen, K. (2020) ‘Detection of electromagnetic
interference attacks on sensor systems’, IEEE Symposium on
Security and Privacy (SP), IEEE, pp.1–14.

Zhu, J., Jang-Jaccard, J., Singh, A., Watters, P.A. and Camtepe, S.
(2021) ‘Task-aware meta learning-based Siamese neural
network for classifying obfuscated malware’, arXiv preprint
arXiv:2110.13409.

