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Abstract: Aiming to solve the problems of large model size, unbalanced detection speed and 
detection accuracy of traditional target-detection algorithms in autonomous driving scenarios, a 
lightweight YOLO algorithm is proposed based on YOLOv4. First, the lightweight network 
Mobilenetv1 was used to replace the original YOLOv4 feature-extraction network and a Depth-
Wise Cross-Stage Part module (DW-CSP) was proposed to improve the detection speed. Then, a 
new Lish activation function was designed and the K-means++ clustering algorithm was used to 
regenerate prior frames of different scales. Finally, the FocalLoss loss function was introduced 
instead of the cross-entropy loss function. Experiments show that compared with the YOLOv4 
algorithm, the improved YOLO algorithm improves the detection accuracy by 1.72% and the 
detection speed by 53%, and the model size is reduced by about four times. The algorithm is 
more in line with the target-detection requirements of autonomous driving scenarios. 

Keywords: automatic driving; object detection; lightweight network; YOLOv4; activation 
function. 
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1 Introduction 

Target detection is an important part of automatic driving. With 
the continuous research into target-detection algorithms, target-
detection technology for automatic driving has developed 
rapidly (Wang et al., 2021; Tian et al., 2021; Xu et al., 2021). 
This is a research hotspot in target detection in automatic 
driving to improve the detection speed while ensuring the 
present levels of accuracy (Yuan et al., 2020). At present, 
mainstream target detection algorithms are divided into  
two types, namely two-stage target-detection algorithms  
and single-stage target-detection algorithms. The two-stage 
target-detection algorithms are mainly divided into two steps: 
extracting the region of interest generated by the network and 
CNN classification regression. The mainstream two-stage 

target-detection algorithms include R-CNN (Girshick et al., 
2014), Fast-RCNN (Girshick, 2015) and Faster RCNN (Ren et 
al., 2015). Single-stage target detection algorithms usually 
obtain the classification box information by directly regressing 
and predicting the feature map. Such algorithms mainly include 
YOLO (Redmon et al., 2016), SSD (Liu et al., 2016) and 
YOLOv2 (Redmon and Farhadi, 2017). With the development 
of deep learning, target detection methods based on CNN are 
gradually being applied to target detection in automatic driving. 
Luo et al. (2021) proposed an image-adaptive algorithm to 
improve the Faster CNN algorithm and improve its detection 
capability for multi-scale vehicle targets. Yang and Tong 
(2022) proposed a YOLOv3 algorithm with a multi-scale 
attention module, which accomplished real-time detection of 
traffic signs. Ding and Zhao (2022) proposed a head-aware 
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pedestrian detection network, which effectively improved the 
detection ability of pedestrians blocking the road. 

This paper has made many improvements based on the 
YOLOv4 (Bochkovskiy et al., 2020) algorithm. Firstly, for 
the application scenario of automatic driving target detection, 
the K-means++ (Xiong and Tang, 2018) clustering algorithm 
is used to cluster the data sets to generate an a priori frame of 
different sizes; In terms of network structure, the lightweight 
network Mobilenetv1 (Howard et al., 2017) was first used to 
replace the original backbone network CSPdarknet53 as a 
new feature extraction network, which improved the model 
operation speed; Secondly, the depth and width of the original 
YOLOv4 feature fusion network are redesigned, and a depth-
wise cross-stage part module (DW-CSP) is proposed, which 
greatly reduces the number of model parameters. At the same 
time, a new Lish activation function is designed according to 
the characteristics of LeakyRelu (Maas et al., 2013) and Mish 
(2019) activation functions to effectively improve the 
saturation and generalisation of the model. Finally, the 
FocalLoss (Lin et al., 2017) loss function is introduced to 
replace CrossEntropy loss function (Boer et al., 2005) for 
calculating confidence, which alleviates the imbalance of 
positive and negative sample proportion during training and 
further improves the detection capability of the model for 
multi-scale targets. 

2 Related work 

2.1 YOLOv4 algorithm 

The YOLOv4 algorithm first uses the k-means clustering 
algorithm to cluster the prior boxes of various target samples 
of the data set, and generates 9 prior boxes of different sizes.  
In terms of network structure, as shown in Figure 1, for the 
input image of 416×416 size, the YOLOv4 network first uses  
the Darknet backbone network combined with cross-stage 
local module to extract feature information in the feature  
 

extraction network, and after multiple downsampling, the 
feature map is divided into three different sizes: 13×13, 
26×26, 52×52, and then the feature map of 13×13 is pooled 
for feature pyramid pooling (He et al., 2015) in order to 
expand the receptive field of the feature map and input it into 
the feature fusion network. In the feature fusion network, the 
YOLO algorithm fuses the features of the multi-scale feature 
map to enhance the feature expression ability of the feature 
map, firstly, the feature map of 13×13 is fused with the multi-
scale feature map of 26×26, 52×52 through the path 
aggregation network PANet (Liu et al., 2018), and then the 
feature enhancement from top to bottom is carried out, and 
three feature maps of different sizes are output respectively 
for detecting targets of different sizes finally. 

2.2 Mobilenetv1 algorithm 

Mobilenetv1 is a lightweight convolutional neural network. 
The core uses depth-wise separable convolution instead of 
standard convolution, which reduces the number of 
parameters of the model. Assuming that the input feature map 
size is W×H×Cin, if padding is 0 and stride is 1, the 
calculation graph of standard convolution is shown in  
Figure 2. The size of the convolution kernel is Kw×Kh×Cout, 
and the theoretical calculation amount Flops1 at this time is 
shown in Formula (1). 

1Flops Kw Kh Cin Cout W H       (1) 

The depth-wise separable convolution is shown in  
Figure 3. Assuming that the number of groups is the number 
of channels of the input feature map, first, each channel of 
the feature map is calculated separately through the grouped 
convolution, and Cin unrelated grouped feature maps are 
obtained. The calculation amount Flops2 of the grouped 
convolution is shown in Formula (2). 

2Flops Kw Kh Cin W H       (2) 

Figure 1 YOLOv4 structure diagram 
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Figure 2 Standard convolutional structure 

 

Figure 3 Depth-wise separable convolutional structure 

 
Then, 1×1 point convolution is used to concatenate the 
information of these unrelated grouped feature maps. The 
calculation amount, Flops3, of this operation is shown in 
Formula (3). 

3 1 1Flops Cin Cout W H       (3) 

As shown in Formula (4), combining the computations of 
the grouped convolution and the point convolution is the 
computation of the depth-wise separable convolution 
Flops4. 

4 2 3

1 1

( )* * *

Flops Flops Flops

Kw Kh Cin W H Cin Cout W H

Kw Kh Cout Cin W H

 
          
  

 (4) 

Formula (5) can be derived by comparing the computational 
effort of standard convolution with depth-wise separable 
convolution. 

4 1 1

1

Flops

Flops Cout Kw Kh
 


  (5) 

It can be seen that when the size of the convolution kernel is 
3×3, if Cout >> 3, the calculation amount of the depth-wise 
separable convolution is much smaller than that of the 
standard convolution. Using the Mobilenetv1 feature 
extraction network to replace the original CSPDarknet53 not 
only ensures the feature extraction capability, but also can 
effectively improve the model’s detection speed. 

3 Network optimisation methods 

3.1 Improved network structure 

Compared with the original YOLOv4 network structure, the 
network in this paper improves the detection speed by using 
the Mobiletv1 lightweight network as a new feature-
extraction network. In the feature fusion network, the 
feature fusion part of the original PANet structure and FPN 
structure is maintained, the DW-CSP module is proposed to 
replace the linear convolution module after each feature 
map stitching. At the same time, a new Lish activation 
function is designed to be applied to the feature fusion 
network. The improved YOLOv4 network structure is 
shown in Figure 4. 

Figure 4 Improved YOLO algorithm network framework 
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3.2 DW-CSP structure 

In the feature fusion network, the high-scale feature map 
generated by the PANet network is downsampled by 
YOLOv4 to generate a feature pyramid FPN (Lin et al., 2017) 
structure. And five consecutive convolution blocks are used 
to enhance the expressiveness of feature information. The 
expression calculated by the convolution module is as in 
formula (6): 

    1 1 2 1 0 0, ,...., ,k k k k ky x F x F x F x x      (6) 

where y represents the linear or non-linear output of the 
convolution module, and Fk represents a series of operations 
consisting of a set of convolutions and an activation function. 
Although the input of each convolutional module can receive 
the output from all previous layers, which can minimise the 
path of gradient propagation, it also causes the gradient data 
of the k-th layer to be passed to all previous convolutional 
layers, and updating the weights in this way leads to the 
continuous learning of redundant information. 

This paper proposes the DW-CSP structure based on the 
Cross-Stage Partial Network (Wang et al., 2020) to replace 
the continuous convolution module in YOLOv4. By 
separating the gradient flow, the feature information is 
propagated in different paths, which reduces the model 
calculation amount and allows richer gradient-fusion 
information to be obtained. Figure 5 shows the structure 
comparison between the continuous convolution module and 
the DW-CSP module. The DW-CSP module uses a separate 
gradient flow strategy. First, the input feature map is divided 
into two parts, so that the feature information is propagated in 
the convolution layer and the transition layer, respectively. 
The parameter gw is used in the input layer to divide the input 
feature map’s size, in which the transition layer uses 1×1 
point convolution for feature information mapping and then 
performs connection calculation with the feature information 
from the convolutional layer. The convolutional layer uses a 
depth-wise separable convolution, which effectively reduces 
the amount of the 3×3 convolution calculation. 

Figure 5 Comparison of the continuous convolution module and 
the DW-CSP module 

 

The DW-CSP module doubles the gradient propagation path of 
the feature information through the segmentation and merging 
strategy. Its feedforward transfer calculation expression is 
shown in Formula (7), where * represents the convolution 
operation, and wi and yi represent the network weights and 
outputs of the i-th layer. In the input layer, the feature map is 
divided into two parts, namely 0 'x  and x0''; pass through the 

convolution layer and the transition layer, respectively, of the 
DW-CSP module, and the output yc of the final convolution 
layer and the output yt of the transition layer are spliced to 
perform the mapping calculation to generate the output yu. 

0

0

* '

* ''

*[ , ]

c c

t t

U U c t

y w x

y w x

y w y y






   (7) 

For example, Formula (8) is the back-propagation operation of 
DW-CSP, where fi represents the weight update function of the 
i-th layer, and gi is the gradient of back-propagation to the i-th 
layer. It can be seen that the gradient information from the 
convolutional layer and that from the transition layer are 
integrated separately, and the two propagation paths do not 
contain redundant gradient information from the other side. At 
the same time, by truncating the gradient flow, the 
disadvantages of direct splicing with explicit feature map 
replication can be alleviated, and improve the reusability of 
feature information. 

 
 
 

' ,

' ,

' , ,

c c c c

t t t t

U U U c t

w f w g

w f w g

w f w g g







   (8) 

3.3 Lish activation function 

The activation functions used in the YOLOv4 algorithm 
include the Leaky Relu function and the Mish function. The 
graph of the Leaky Relu function is shown in Figure 6(a), and 
the calculation expression is shown in Formula (9). In Formula 
(9), α is the slope control factor, which is usually set to 0.01. 

, 0
( )

, 0leaky relu

x x
F x

x x


  

   (9) 

The Leaky Relu function is an improvement of the Relu 
activation function. It can be seen from Figure 6(a) that it is 
not smooth for the input near the 0 interval, and the input in 
the negative interval is a linear function, resulting in limited 
overall non-linear expression ability. The graph of another 
Mish activation function is shown in Figure 6(b), and its 
calculation expression is shown in Formula (10). Compared 
with the Leaky Relu activation function, the non-
monotonicity of Mish in the negative interval can make  
the model obtain better accuracy and generalisation, but  
when its x value is at a negative value far from 0, the 
activation output is also 0, resulting in the weight and 
gradient of the corresponding neuron tending to 0 during the 
backpropagation process, so there may be a ‘Dead Neuron’ 
phenomenon that occurs. 
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  ( ) * tanh ln 1 x
mishF x x e    (10) 

This paper combines the characteristics of the two activation 
functions of the Leaky Relu function and the Mish function 
and proposes a new Lish activation function, which is applied 
to the feature fusion network. Its curve diagram is shown in 
Figure 6(c), and the calculation expression is shown in 
Formula (11), where λ is the bias value of the negative 
interval of the Lish function, which can add a non-linear 
component to the input from the negative interval of the Lish 
function, and its value is determined as 1.01 according to the 
experiment. 

 
, 0

( )
ln , 0x

x x
Lish x

x e x

   
   (11) 

It can be seen from Figure 6 that the Lish activation function 
has the characteristics of whether there is a lower bound and 
not an upper bound, which can avoid gradient saturation 
which cause a sharp drop in the training speed, and is 
conducive to the realisation of strong regularisation effect, so 
that the model can be better fitted. The Lish activation 
function has smooth and non-monotonic characteristics 
similar to the Mish function in the vicinity of the 0 interval, 
which can improve the expression ability of network context 
information. At the same time, the Lish function has the same 
slope as the Leaky Relu function for the negative value input 
in the range far from 0. By inputting a non-linear component 
to the negative interval, the negative value input that is too 
small is never 0, which effectively prevents the ‘Dead 
Neuron’ phenomenon. 

Figure 6 Activation function curve graph 

   

(a) Leaky Relu                                                                                    (b) Mish   

 

(c) Lish 

 



 Lightweight object detection algorithm 79 

4 Other improvement strategies 

4.1 K-means++ clustering algorithm 

In order to improve the accuracy of the prior frame of the 
algorithm, in this paper, the k-means++ clustering algorithm 
is used to recluster the data collected in the automatic driving 
scene, and nine a priori boxes with different sizes are 
generated. The k-means++ clustering algorithm is an 
improvement of the k-means (Chen et al., 1998) clustering 
algorithm. The main difference is that the k-means algorithm 
generates k initial clustering centre points by random 
selection, while the k-means++ algorithm first randomly 
selects a sample point in the data set as the first initial 
clustering centre point. Secondly, the distance between each 
sample point in the data set and the initialised cluster centre 
point is calculated. Then, the maximum distance point is 
selected as the new cluster centre point until all k cluster 
centres are generated. After determining all the initial cluster 
centres, the k-means algorithm is used to calculate the final 
cluster centre. By selecting the clustering a priori frame, 
finally, the initial size of the prior frame of the YOLO 
algorithm in this paper is [13 26, 26 90, 36 42, 49 155, 68 81, 
91 253, 134 134, 200 249, 316 307]. 

4.2 FocalLoss function 

In order to adjust the serious imbalance of the proportion of 
positive and negative samples of YOLO, the FocalLoss loss 
function is introduced to replace the cross-entropy loss 
function of YOLO in order to calculate the confidence. The 
FocalLoss loss function is an improvement based on the 
cross-entropy loss function. The expression of the cross-
entropy loss function is shown in Formula (12), where y' is 
the probability predicted through the sigmoid activation 
function, with a value between 0 and 1, and y is 1 or 0, 
representing positive and negative samples, respectively. 

   

 

log 1 log 1

log , 1

log 1 , 0

L y y y y

y y

y y

     

 
    

 (12) 

The FocalLoss loss function adds a modulation coefficient 

 1 y
  on the basis of the cross-entropy function, which 

reduces the weight of the simple negative samples in the 
training to improve the model optimisation ability. Its 
expression is shown in Formula (13). When 0  , compared 

with the ordinary cross-entropy function, for easy-to-classify 
samples, the predicted probability y  tends to be 1 and the 

modulation coefficient is close to 0, which reduces the loss of 
easy-to-classify samples. For difficult-to-classify samples, the 
predicted probability is small, the modulation coefficient is 
close to 1, and the loss value is basically unchanged, which 
increases the weight of the hard-to-classify samples in the 
overall loss and improves the model’s attention to the 
detection of hard-to-classify samples. At the same time, by 
introducing a balance factor α into the FocalLoss loss 
function, the problem of an unbalanced proportion of positive 

and negative samples in the training process is alleviated. 
Since the modulation coefficient may lead to an excessive 
loss of hard-to-classify samples, the balance factor α is 
usually set to 0.25 to balance the loss value between positive 
and negative samples. 

 
   

1 log , 1

1 ( ) log 1 , 0
focal

y y y
L

y y y








     
    

  (13) 

5 Related experiments and analysis 

5.1 Data set and experimental environment 

In view of the research background faced in this paper, the 
Urban Object Detection automatic driving data set released 
by The Robotics and Tridimensional Vision Group (RoViT) 
is used for experiments. Some of the data from the Urban 
Object Detection data set were collected by in-vehicle high-
definition cameras in various scenarios. The detection targets 
include seven categories, bicycles, buses, motorcycles, cars, 
pedestrians, traffic signs and traffic lights, which basically 
summarise the main detection targets in an automatic driving 
scenario. The actual scene of various detection targets is 
shown in Figure 7. By cleaning and screening the data set, 
21,385 images in the training set, 4277 images in the 
validation set and 5343 images in the test set were finally 
obtained. 

Figure 7 Target actual scenario diagram 

 

5.2 Experimental setting 

When the model in this paper was trained, the input image 
size of the data set was 416×416. It was found in the 
experiment that the Mosaic data-enhancement method in the 
original YOLOv4 algorithm could significantly reduce the 
convergence speed of the model and could not bring effective 
performance improvement to the model, so the original 
Mosaic data enhancement was turned off. Standard data-
enhancement methods such as image flip, translation and 
colour gamut distortion were used. The Adam gradient 
descent method is used for training backpropagation for 
optimisation, the initial learning rate is 0.001, the cosine 
annealing learning rate adjustment strategy is used; the 
training period is 300, and the batch size is set to 64. 
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In this experiment, precision, recall, F1 score and mean 
precision (map) (Everingham et al., 2015) were used as 
quantitative evaluation criteria for model detection 
performance. Additionally, the expression of the map is 
shown in Formula (14), where C is the number of classes in 
the data set, P(R) represents a two-dimensional curve with 
precision and recall as the abscissa and vertical coordinates, 
and the area under the P-R curve is the average accuracy (AP) 
of a single class target. The expressions for precision and 
recall are shown in Formula (15) and Formula (16). And the 
expression of the F1 score is shown in Formula (17), and the 
F1 score is a weighted fusion of accuracy and recall, which 
can more effectively evaluate model performance. In 
addition, the size of the model and the inference speed (FPS) 
are also used as a lightweight evaluation standard for the 
model, the FPS value is an important factor in whether the 
algorithm can achieve real-time detection of automatic 
driving scenarios, and the size of the model determines 
whether the algorithm can run on edge devices with limited 
storage resources. 

1

0
1

1
( ) ( )

C

i

map P R d R
C 

    (14) 

TP
Precision

TP+ FP
   (15) 

TP
Recall

TP+ FN
    (16) 

2
Precision× Recall

F1
Precision+ Recall

   (17) 

5.3 Experimental result and analysis 

In order to test the optimisation effect of each improved 
module of the YOLO algorithm in this paper, this paper 
conducts ablation experiments, adding various improved 
modules on the Urban Object Detection automatic driving 
data set. The results of the ablation experiments with various 
improved modules are shown in Table 1. In this experiment, 
the average precision map, FPS, and model size of the 
algorithm after the combination of each module are tested. 
Among them, A to F are the model names used after 
continuously superimposing the improved modules on the 
original YOLOv4. 

It can be seen from Table 1 that when the original 
YOLOv4's CSPdarknet53 backbone network is replaced with 
the lightweight network Mobilenetv1, although the model 
map has been reduced to a certain extent, the model size has 
been reduced by nearly 100MB, and the detection speed has 
been greatly improved, verifying the effectiveness of the 
depth of separable volumes. Then, according to the 
application background of automatic driving, the k-Means++ 
clustering algorithm is used to generate more accurate a priori 
boxes, so the model detection results are more accurate. On 
this basis, the DW-CSP module is introduced into the feature 
fusion network; by dividing the gradient flow, the reusability 
of the feature information is improved and the amount of 

model parameters is simplified. The results show that 
although the recall of the improved YOLO algorithm is 
slightly reduced after the introduction of the DW-CSP 
module, the size of the model is reduced by more than 100Mb 
and the model map is maintained, and the model’s inference 
time for a single image is improved by about 18%, indicating 
that the DW-CSP module can significantly improve the 
model’s detection performance. Using this model, the cross-
entropy loss function for calculating confidence in the 
original algorithm is replaced by the FocalLoss loss function, 
and the model map and F1 score are again increased by 1 
percentage point. By reducing the loss of untargeted negative 
samples, the detection ability of positive samples is improved. 
Finally, the Lish activation function is proposed in the feature 
fusion network, and the model map is again increased by 
nearly 1 percentage point, at the same time, the precision of 
the model reaches 87.5%, significantly improving the model 
detection performance. By taking into account the advantages 
of the Leaky Relu function and the Mish function, the 
detection accuracy of the algorithm is improved. 

Table 1 Improved YOLOv4 ablation experiment results 

Model
YOLOv4 and 
improvements 

Precision 
(%) 

Recall 
(%) 

F1 
(%) 

Map 
(%) 

Fps
Size 
(MB)

A YOLOv4 85.38 69.61 76.69 77.79 34 256.4

B A+Mobilenetv1 72.78 70.26 71.49 76.89 63 166.7

C B+K-means++ 74.17 71.53 72.82 77.48 63 166.7

D C+DW-CSP 78.03 68.24 72.80 77.44 76 58.0 

E D+FocalLoss 80.45 68.97 74.26 78.60 76 58.0 

F E+Lish 87.50 69.19 77.27 79.51 74 58.0 

In order to further illustrate the effectiveness of the improved 
algorithm, this paper conducted performance comparison 
experiments with other mainstream target detection 
algorithms on the Urban Object Detection automatic driving 
data set. In the experiment, the experimental environment was 
kept unchanged, and the model’s training period was  
300 epochs. The pre-trained model initialisation weight 
parameters were used, and the model detection targets included 
seven types of traffic targets in the Urban Object Detection  
data set. The main comparison models include Retinanet50, 
Retinanet101, Faster-RCNN, YOLOv3, YOLOv4 and 
YOLOv5m, in addition, a number of mainstream lightweight 
YOLOv4 algorithms are used to compare with the algorithms 
in this paper, such as Mobilenetv2-YOLOv4 and Ghostnet-
YOLOv4 using lightweight backbone networks, and the 
experimental results are shown in Table 2. 

It can be seen from Table 2 that compared with the 
benchmark algorithm YOLOv4, the algorithm used in this 
paper has a 1.72% improvement in accuracy, the model size 
is reduced by about 4 times and the detection speed is 
increased by about 53% compared with the faster detection 
speed of Retinanet50, YOLOv3, etc. Compared with the 
YOLOv5m algorithm, which is more balanced in all aspects 
of the conventional algorithm, it is still lower than the 
improved algorithm in each detection result. The improved 
YOLO algorithm not only has a faster inference speed but 
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also outperforms other algorithms on the map. Compared 
with other target-detection algorithms, the algorithm in this 
paper improves the detection accuracy by up to 23.55% and 
the detection speed by up to about 61%, and the model size 
is reduced by up to about 4.4 times. Compared with other 
lightweight YOLOv4 algorithms, although the size of the 
proposed model is slightly increased, it maintains a faster 
inference speed, and the F1 score and map of the model are 
higher. At the same time, its detection speed reaches  
74 frames per second, which can meet the real-time 
requirements well compared with other object-detection 
algorithms. Based on the detection results of various 
aspects, the improved YOLO algorithm is shown to have 
good detection performance. 

Table 2 Comparison results of object detection algorithm 

Algorithm 
Precision 

(%) 
Recall 

(%) 
F1 
(%) 

Map 
(%) 

Fps 
Size  
(MB) 

Retinanet50 42.73 73.38 54.00 63.70 44 146 

Retinanet101 49.32 73.04 58.88 68.96 30 222.4 

Faster-
RCNN 

40.06 73.96 51.97 62.14 29 113.7 

YOLOv3 63.22 71.74 67.21 73.83 52 246.6 

YOLOv4 85.38 69.61 76.69 77.79 34 256.4 

YOLOv5m 67.38 69.42 68.4 74.32 51 84.1 

Mobilenetv2-
YOLOv4 

70.90 71.10 70.99 75.88 49 49.2 

Mobilenetv3-
YOLOv4 

72.02 70.79 71.39 76.57 44 56.8 

Ghostnet-
YOLOv4 

66.19 71.25 68.62 74.73 37 45.0 

Improved 
YOLO 

87.50 69.19 77.27 79.51 74 58.0 

Figure 8 shows the comparison of the detection results 
between the improved YOLO algorithm and the benchmark 
algorithm YOLOv4 in four scenarios. The top-down 
observation of the four scenarios in Figure 8 shows that the 
improved YOLO algorithm has better detection capabilities 
compared to the YOLOv4 algorithm. For example, in the 
detection of the bus target in the first scenario, the 
prediction frame of the YOLOv4 algorithm did not 
accurately detect the target position, but the prediction 
frame of the improved YOLO algorithm could completely 
frame the bus target, indicating that the improved YOLO 
algorithm is more accurate for the prediction of targets’ 
position. In the detection for other scenarios, the YOLOv4 
algorithm has different degrees of missed selection. For 
example, in the second and fourth scenarios, the YOLOv4 
algorithm missed the detection of bicycles and pedestrians 
at the edge of the image, but the improved YOLO algorithm 
could effectively detect them. In the third scenario, the 
improved YOLO algorithm also detected farther traffic 
signs than the YOLOv4 algorithm. 
 

Figure 8 Comparison of target detection results 

 

(a) YOLOv4 algorithm         (b) Improved algorithm 

6 Conclusions 

This paper redesigns the YOLOv4 network, which reduced 
the number of parameters of the model. At the same time, the 
Lish activation function was designed in the feature fusion 
network to reduce the loss of contextual information during 
model inference. Subsequently the k-means++ clustering 
algorithm was used to regenerate a priori boxes of different 
scales to improve the accuracy of the algorithm's prediction 
boxes. Finally, the FocalLoss loss function was used to 
replace the cross-entropy loss function for calculating the 
confidence, which improves the model optimisation ability. 
Through the analysis of ablation experiments and 
comparative experiments, the effectiveness of the improved 
module in this paper was verified. However, due to the 
inclusion of many occlusion small targets in the autonomous 
driving scene, the experiment in this paper lacks the 
verification of occlusion small target detection, and there are 
still risks in the detection of small targets in complex scenes, 
and future work should study the detection research of small 
targets in autonomous driving scenarios. 
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