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Abstract: In order to optimise the coordinated control of micro-grid complex energy storage 
including photovoltaic and wind power, improve the absorption ability of distributed energy 
generation and reduce the cost, this paper proposes a Double Deep Q-Network reinforcement 
learning algorithm to train agents to interact with the microgrid environment and learn the optimal 
scheduling control mechanism. The agent trains the input state and outputs an optimal action to 
drive the agent’s behaviour, including environment perception, action perception and task 
coordination. It then successfully completes the given task in the complex decision environment. 
This method can realise multi-objective control for different times, weather conditions and seasons 
and flexibly process energy storage, hydrogen storage and load energy to achieve coordinated 
distribution. First of all, a composite energy storage microgrid system model connected to the main 
power grid is constructed, and deep reinforcement learning activities, state space, reward 
mechanism and other links are designed. Secondly, in the aspect of learning distributed generation 
data, a combination of training set and test set of data is proposed for model learning and training. 
Finally, the optimisation scheduling results of reinforcement learning are analysed for different 
scenarios of composite energy storage microgrid. 
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1 Introduction 

As an emerging form of energy management, microgrid has 
developed rapidly in recent years, and it is the key to provide 
a reasonable energy dispatching strategy for the safe, stable 
and economical operation of the microgrid system. At the 
same time, microgrid is a small power generation and 
distribution system composed of distributed energy, energy 
storage device, energy conversion device, load and protection 
device, etc., which is rapidly developed to solve the problem 
of distributed energy integration such as photovoltaic power 
generation and wind power generation (Yang et al., 2014; 
Kou et al., 2023). With the large-scale application of wind 
power and photovoltaic power generation, microgrids have 
become a hot spot for research in various countries. Relying 
on key technologies such as operation control and energy 
management, microgrids can operate both on-grid and off-
grid islands (Sang et al., 2022). In micro-energy grids, the 
instability of renewable energy, the multi-directional nature 
of energy flow, and the dispatch demand of multiple energy 
sources at different time and space levels make multi-energy 
flow coupling not only a characteristic of integrated energy 
systems, but also one of the major challenges faced by its 
energy management (Zhang et al., 2016). Seeking effective 
optimisation strategies to achieve high-quality and efficient 
energy management of the system is very important to 
improve the performance of the system. The research on 
microgrid includes many aspects, such as the research on 
microgrid architecture, power electronics technology, 
investment and operating costs, security and operation and 
maintenance, energy dispatching control strategy, etc. Among 
them, energy storage control strategy has been widely 
concerned as the research focus of microgrid energy dispatch 
(Liang et al., 2020). The traditional microgrid form is single, 
which cannot meet the flexible energy scheduling between 
the complex demand side and the microgrid, so it is necessary 
to configure an energy storage system. It is difficult for a 
single energy storage to meet the roles of power and energy at 
the same time, and the reasonable way is to use composite 
energy storage; Composite energy storage is a complex 
problem, difficult to use accurate data models and numerical 
calculation methods, requiring data-driven artificial 
intelligence methods (Foruzan et al., 2018; Kou et al., 2022; 
He et al., 2017; Wang et al., 2022). 
 
 

Existing research proposes traditional techniques such as 
mixed integer linear programming and heuristic algorithms to  
optimise energy management in microgrids. However, there 
are many shortcomings in the related methods, and linear 
programming cannot deal with the problem of many decision 
variables in a limited calculation time. Although the heuristic 
algorithm can deal with the problem of many decision-
making variables, the optimal solution obtained by it is the 
approximate optimal solution, and it is easier to fall into the 
local optimal solution and the gap between the approximate 
optimal solution and the actual optimal solution cannot be 
measured and estimated. With the rise of artificial 
intelligence, technologies based on intelligent learning have 
made significant progress in decision-making. Reinforcement 
Learning (RL) ‘is a machine learning algorithm that makes 
optimal temporal decisions in an uncertain environment. 
Reinforcement learning involves the decision maker (agent) 
learning how to take actions in a specific state through 
continuous interaction with the environment in order to 
maximise cumulative returns (Sutton et al., 2018; Mason and 
Grijalva, 2019; Foruzan et al., 2018). 

This paper aims at the problem of complex energy storage 
scheduling based on clean energy microgrid model. Energy 
storage system can effectively solve the intermittent problem 
of distributed energy output. Therefore, this paper adopts the 
intelligent microgrid group with wind/light/storage/network 
co-output power generation mode. This paper mainly studies 
the influence of different seasons and weather on distributed 
power generation, but considering the complexity of 
composite power generation model, this paper mainly 
considers the establishment of photovoltaic power generation 
model. At the same time, real-time optimisation control of 
charging and discharging state of battery and hydrogen 
storage device can improve the utilisation rate of distributed 
renewable energy. In addition, the microgrid model has both 
short-term and long-term characteristics: long-term storage 
involves electrolysis of water to produce hydrogen for energy 
storage, while short-term storage deals with insufficient or 
excess energy through discharge or charging of battery banks 
respectively. Efficient operation of storage devices in 
microgrids characterised by photovoltaic panels with storage 
capacity. At the same time, for a large number of original  
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photovoltaic power generation data, the original data is 
divided into two data sets for model training, which  
are respectively effective data and test data. The effective data 
is used for the training of the microgrid model, while the test  
data is used to verify the training parameters of the model. 
Meanwhile, the execution of the strategy on the invisible  
time series is evaluated periodically to ensure that the  
agent does not over adapt to the limited training data.  
Firstly, the paper introduces the microgrid composite energy 
storage model. Secondly, it focuses on the framework  
and algorithm flow of deep reinforcement learning.  
Finally, an example analysis proves the effectiveness of the 
algorithm. 

2 Energy storage microgrid model  
and scenario 

2.1 Energy storage microgrid structure 

This paper considers the energy dispatch problem of 
composite energy storage microgrid. Microgrids can 
exchange energy with the main grid at electricity market 
prices. At the same time, the time-of-use electricity price is 
adopted. The microgrid can purchase external power through 
the energy management system at low power, and when the 
energy is sufficient, the energy of the battery and hydrogen 
storage system can be stored, without considering the loss in 
the process. The structure is shown in Figure 1. The DC bus 
side includes photovoltaic, wind power, energy storage 
system, electrolytic cell and fuel cell, while the AC bus side 
includes AC composite and generator. 

2.2 Energy storage microgrid component model 

In the microgrid, the AC master side and the DC master side 
are connected through AC/DC converter. The main 
components include: This part does not consider the influence 
of wind power: 

1) Photovoltaic power generation: The power supply of 
the microgrid system comes from photovoltaic power 
generation and energy storage system, and the 
photovoltaic output model (Kuznetsova et al., 2013) is 

( ) ( )PV PVP t R t S   (1) 

where: ( )R t  indicates the light intensity at t time, in W/m2; S 

is the area of the target photovoltaic panel. The ride of the 
above two indicates the radiation power received by the solar 
panel; PV  is the electric energy conversion efficiency of 

photovoltaic panels. 

2) Energy storage system: The energy storage system acts as 
a short-term reserve, and its charge and discharge response 
signal is sent by the battery. In a microgrid, the energy 
storage system can maintain the balance of supply and 
demand in the microgrid. ( )batS t  represents the real-time 

energy of the battery, and ( 1)–batS t  is the energy before 

charging and discharging. cha
batP  and dis

batP  are charge and 

discharge power, atb  is charge and discharge efficiency, 

then: 
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Figure 1 Physical structure of microgrid (see online version for colours) 
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3) Hydrogen storage system: As a long-term energy 
storage device, the hydrogen storage system has low 
charging and discharging efficiency and small peak 
power, but it can store energy for a long time through 
electrolysis, which is mainly used to balance the energy 
imbalance between seasons. Can be expressed  
(Leo et al., 2014 and Leo et al., 2014) as 

dis

( 1)
( )

( 1)

hydro

hydro

hydro hydro hydro

hydro
hydro

cha

P
S t dt

S t

S t P dt






  

  




  (3) 

In the formula: 
hydro

chaP  and 
hydro

disP  are the power of electrolysis 

and release of the hydrogen storage system, ( )hydroS t  

represents the real-time energy of the hydrogen storage 
equipment, ( 1)hydroS t   represents the capacity of the 

equipment before electrolysis or release, and 
hydro

  represents 

the electrolysis or release efficiency. 

4) Load: The load as a whole is a general term as an 
energy consumption part, and for the microgrid system 
with a small total load in this article, the range of 
fluctuations by random factors is large and un-
adjustable. In this paper, the load curve is fed into the 
microgrid system as a fixed energy consumption. 

2.3 Energy storage microgrid constraints 

Microgrid energy optimisation operation constraints include 
power balance constraints and related equipment operation 
constraints. 

1 Power balance constraints: At any time in the microgrid, 
the real-time balance of power supply and demand must 
be roughly ensured to avoid the problem of system 
power abandonment or power loss, which is expressed 
(Mbuwir et al., 2017) as: 

t t 0bat hydro
t td p p         (4) 

t t
t load pvd P P    (5) 

In the formula: The positive and negative of t  indicates that 

insufficient power supply and overpower supply are the 
phenomenon of power loss and abandonment, and ,t t

load pvP P  

represent the load and the real-time power of photovoltaics. 
,bat hydro

t tp p   represent the net charging power of the energy 

storage system and hydrogen storage system at t time, 
respectively, which can be expressed (Zhang and Hredzak, 
2019) as: 

bat cha dis
t bat batp P P     (6) 

hydro hydro

hydro cha dis
tp P P     (7) 

2 Capacity constraints: The energy storage and hydrogen 
storage systems meet the capacity constraints and state-

of-charge constraints, where ( )socB t  represents the 

charged charge, namely: 

,min ,max( )bat bat batS S t S    (8) 

,min ,max( )hydro hydro hydroS S t S    (9) 

0 ( ) 1socB t    (10) 

3 Power constraints: For the properties of the energy 
storage system or the hydrogen storage system itself, the 
charging and discharging of the two must have certain 
restrictions (Duan et al., 2019): 

/ , / ,max0 bat bat
dis cha t dis chaP P    (11) 

, , / ,max0 hydro hydro
dis cha t dis chaP P    (12) 

Formula: / ,
bat

dis cha tP  represents the energy storage system t 

time discharge and charging power, , ,
hydro

dis cha tP  represents the 

hydrogen storage system t time release, electrolysis power. 

3 Microgrid learning for deep neural networks 

3.1 Deep reinforcement learning algorithm 

Reinforcement learning is to maximise the expected return as 
the goal, through the continuous interaction of the agent 
(Agent) and the environment (Environment), to obtain the 
mapping relationship between the state variable of the 
environment and the action variable of the agent, and provide 
the agent with an optimised action strategy (Policy). This is 
shown in Figure 2. Essentially, the agents interaction with the 
environment is a Markov Decision Process (MDP). MDP is 
generally defined by a quadruple (S, A, R, P), where: 

Figure 2 Markov decision process (see online version for 
colours) 

 

1) According to the time series information, the agent can 
observe that the dynamic information of the microgrid is 
that the load consumption in different seasons is different 
from the daily load consumption. The time sequence is 
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defined according to the microgrid as follows (Mocanu 
et al., 2019; Wang et al., 2020): 

, d h
m m m mS S S S S     (13) 

Formula:    180,360 , 0,1,...,23d h
m mS S  ; d

mS  Spring/ 

Summer 180d time series; h
mS  is a time series of 24h in a day. 

2) The Action space represents the set of discrete actions a 
that the agent can perform, including the real-time action 

bata  and the hydrogen storage action hydroa  of the energy 

storage system, and each specific action includes three 
states of charge, discharge, electrolysis and release, and 
no operation, as follows (Wang et al., 2023): 

 : ,bat hydroA a a   (14) 

3) Reward is a timely reward function that immediately 
evaluates the merits of actions and environments. The 
function is subtracted for curtailment and loss of power. 
At the same time, negative rewards will be received 
whenever short-term or long-term hydrogen storage is 
empty and cannot meet the energy demand. 

4 Example verification and analysis 

4.1 Basic data  

While verifying the effectiveness of the reinforcement 
learning algorithm DDQN for the optimal dispatch of 
composite energy storage microgrid, it is necessary to list the 
parameters of each component of the microgrid. It is 
stipulated that 100 hours is used as the analysis period of 
coordinated dispatch of microgrid energy storage. The 
environment sets the main microgrid parameters and the 
hyper-parameters of the algorithm. 

4.2 Analysis of results 

In this paper, a microgrid system with 300kW photovoltaic 
system as the main wind power as the auxiliary system is 
adopted in a certain area, and the influence of wind power is 
ignored in this paper. At the same time, the power generation 
is greatly affected by solar radiation, season and time. On the 
other hand, due to the lack of energy supply from external 
power grid, the load fluctuation is more obvious, and the 
simulation of daily load curve is more significant. In Figure 3, 
the picture show the one-year load and photovoltaic power 
generation of the micro-grid system in this region. The data 
resolution is set to 1 h. The algorithm is implemented by 
Python 3.8 programming. 

4.2.1 Energy dispatch analysis 

In Figure 4, it is not difficult to see that due to the influence 
of time and season in the region, the photovoltaic power 
generation curve fluctuates significantly. The output power of 
photovoltaic power generation system is affected by solar 
radiation intensity, sky shielding, cloud cover and other 

weather conditions. Cloudy days, cloudy skies or changes in 
the position of the sun can lead to fluctuations in output 
power, and this uncertainty makes the output of photovoltaic 
power generation systems unstable. 

Figure 3 Photovoltaic power generation (see online version  
for colours) 

 

Figure 4 Reward value curve (see online version for colours) 

 

Figure 4 shows the convergence results of microgrid model 
training with different data sets. VS stands for effective data 
convergence and TS stands for test data convergence. After 
the 20th training set, the models showed convergence trend 
and the overall convergence state was stable between 40 and 
140 episodes. Among them, during the training process of the 
test set and the effective set, the final reward value of the 
agent feedback does not coincide, which indicates that the 
training of the model has achieved the purpose of avoiding 
over-fitting, and the fluctuation trend of the reward value 
curve of the two is generally consistent, which basically 
achieves the accurate training results of the model. 

In Figure 5, when the power generation of the 
photovoltaic system cannot fully meet the load consumption, 
the hydrogen storage system begins to release the maximum 
rate of energy and the entire energy storage system begins to 
discharge, thereby reducing the loss of load. Further analysis 
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shows that when the intelligent body measurement increases 
the effective information, the agent selects more effective 
charging and discharging actions, so as to achieve the goal of 
obtaining the maximum operating income of the microgrid 
and improve the performance of the dispatching strategy. 
Therefore, the decision of deep reinforcement learning relies 
on the current state and score, real-time decision-making can 
be realised, and when the algorithm is fully trained, it can get 
the action that should be carried out according to any current 
state, and this multi-objective, multi-dimensional strategy 
learning is unattainable by most traditional algorithms. 

Figure 5 Typical winter strategies (see online version  
for colours) 

 

In comparison Figure 6, the photovoltaic power around 
00:00–07:00 is close to zero for the entire stage, so the energy 
storage charge in Figure 10 is at a low level and decreases, 
and the SOC drops to 0.02. Because energy storage is used as 
a power supply unit to provide energy for the microgrid at 
this time, the entire power grid is in a state of underpower and 
needs to be purchased from the external grid, and the grid 
energy drops to less than 25kW. Moreover, the electricity 
market price during this period is in the normal and trough 
hours. Meet low-price power purchase requirements. 

Figure 6 Microgrid power optimisation dispatch and day-ahead 
dispatch (see online version for colours) 

 

5 Conclusions 

This paper introduces a deep reinforcement learning 
architecture to solve the problem of coordinated control of 
energy storage microgrids in a random environment. The 
conclusions are as follows: 

1) In the evaluation of the coordinated control operation 
state of the energy storage microgrid, on the one hand, 
the weight value of the index is evaluated by the deep 
convolutional neuron network to adapt to the coordinated 
control operation state evaluation of the energy storage 
microgrid at different times and seasons. On the other 
hand, during the training process of the proposed model, 
it is not necessary to be familiar with the relationship 
between the control target and the state information 
observed by the agent, but to borrow the deep 
convolutional neural network to approximate the Q 
function value to determine the connection between the 
target variable and the state information, so it is more 
effective for the training control plane between the agent 
and the model. 

2) In terms of raw data mining, this paper divides the data 
set into two types: training data and validation data. The 
validation data is validated for model validation, and the 
implementation of the policy on the invisible time series 
is regularly evaluated to ensure that the agent does not 
over-adapt to the limited training data. 
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