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Abstract: The air quality prediction process is a more significant one for air 
pollution prevention and management because air pollution becomes crueller. 
The precise identification of air quality has become a more significant concern 
for controlling air pollution. Recently, the weight of particulate matter (PM) on 
the human physical condition has become an important research area. In this 
paper, the political rider competitive swarm optimiser (PRCSO)-based deep 
recurrent neural network (DRNN) algorithm is devised for air quality and 
carbon monoxide prediction. The missing value imputation scheme is 
employed to perform pre-processing. Moreover, technical indicators and 
location information are extracted for the prediction process. The DRNN is 
employed for prediction, which is trained by the PRCSO and the training 
process is performed based on every location independently. The  
PRCSO-based DRNN outperforms existing techniques in terms of mean square 
error (MSE) of 0.0313, and mean absolute percentage error (MAPE) of 3.08%. 

Keywords: air quality prediction; carbon monoxide prediction; deep recurrent 
neural network; DRNN; political optimiser; relative strength index; mean 
square error; MSE; mean absolute percentage error; MAPE. 
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1 Introduction 

The air quality forecast is one of the major significant processes for managing air 
pollution in metropolitan areas. However, the air quality prediction model has various 
challenges, including instability of data source, variation of pollutant concentration and 
high improbability. Thus, the above limitations and challenges faced by existing air 
quality prediction techniques are considered major stimulation to develop a novel model, 
termed the political rider competitive swarm optimiser (PRCSO)-based deep recurrent 
neural network (DRNN) approach. In previous days, the fast growth of urbanisation as 
well as industrialisation increases air pollutant concentrations around the world (Ma  
et al., 2019). In urban regions, air contamination is a familiar concern for humans. The 
rapid increment of the population in cities, as well as the developing level of 
motorisation, directs to rising traffic volume. Meanwhile, the thickening of urban 
constructions decreases freshening and also enlarges the surface porosity, which 
effectively reduces the wind effect in contamination evacuation. The Poland city is 
established in the 10th century and has 641,000 residents at present. Moreover, about 
15,000 vehicles are calculated to move on city roads daily (Chalfen and Kamińska, 2018; 
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Espinosa et al., 2021). Air pollution becomes a significant health issue, which affects 
millions of humans globally. Additionally, several reports state that 4.2 million deaths 
were recognised for controlling outdoor air pollution in the year 2015 (Yin et al., 2017; 
Schürholz et al., 2020). Besides, pollutants can affect humans indirectly, for instance, 
pollutants pervade agricultural food products (Ercilla-Montserrat et al., 2018) or disturb 
livelihood and welfare in cities (Schürholz et al., 2020). The exhaust gas is generated by 
huge amounts of cars and industries by the development of industrialisation, which 
increases air pollution highly (Chen et al., 2021). Generally, the air is influenced using 
various features (Zheng et al., 2013, 2015; Carbajal-Hernández et al., 2012), namely 
illumination and temperature. In addition, these factors may manipulate each other or 
produce physical and chemical reactions; therefore air quality prediction is more 
complex, dynamic and variable. However, air pollution management is more difficult, 
and it cannot be completely resolved in the least period. 

In modern days, the impact of particulate matter (PM) on human fitness becomes a 
modern research area (Jadhav and Arunkumar, 2018). Meanwhile, PM is a composite 
assortment of small particles as well as fluid droplets, which contract into the air. The PM 
can go through the respiratory system from medical concepts. These particles may affect 
the lungs and heart and they generate serious health issues due to the breath in polluted 
air. Moreover, long-term experience with high concentrations of atmospheric PM can 
generate reduced lung operation and early death (Turner et al., 2011; Lin et al., 2020). 
PM2.5, which is a PM with a diameter minimum of 2.5 μm is a significant index to 
measure and control air pollution degree, which has considerable interest in modern days 
(Zhang et al., 2021). Furthermore, meteorological aspects have a great influence on the 
accretion of PM10. The meteorological elements can control the alternations in 
atmospheric PM10 concentration in various areas (Amodio et al., 2012; Lin et al., 2020). 
Various studies are performed in the Swiss area, which exhibits that the concentration of 
PM10 is associated with wind speed, atmospheric temperature, and surface radiation and 
it is connected to sulphur dioxide (SO2), total suspended particles (TSP) and nitrogen 
dioxide (NO2) of local pollution emissions (Monn et al., 1995; Lin et al., 2020). The 
weighted fuzzy inference model was developed in Olvera-García et al. (2016) for air 
quality prediction, although new rules based on parameter behaviours were not included 
for better computational performance. The PM10 concentration in Taiwan is affected 
based on several meteorological elements, such as temperature, relative humidity, carbon 
monoxide (CO), NO2, ozone (O3), and SO3 and wind speed (Lin et al., 2020). The impact 
of every meteorological factor is different under dissimilar seasonal situations. 
Additionally, air quality prediction can assist humans to make preventive care in 
everyday life and generate improved arrangements. However, air quality prediction is 
still a major challenge owing to the coupling between various elements in the prediction 
process (Leksmono et al., 2006; Lin et al., 2020). 

Air quality data has extensive trouble worldwide. Moreover, time series data 
identification approaches, such as time series prediction models (Benhaddi and Ouarzazi, 
2021), and traditional machine learning methods (Li et al., 2019) are frequently employed 
for air quality detection. Additionally, forecast approaches using the deep learning model 
(Zhang al., 2021) extract the features from air quality data and obtain better recognition 
accuracy. The standard machine learning approaches, like principal component analysis 
(PCA), back propagation (BP) network, regression analysis and artificial neural network 
(ANN) are considered for air quality prediction (Chen et al., 2021). Besides, the major 
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intention of the air quality prediction process is to identify pollutant concentration based 
on future-based meteorological, historical air quality data, etc. (Li et al., 2016; Zhou  
et al., 2014). Moreover, the previous studies that can predict air pollutant concentrations 
mainly include two types, namely deterministic and statistical techniques. Recently, 
various advanced artificial intelligence (AI) techniques are employed for establishing 
nonlinear relationships as well as extracting difficult features in several remote sensing 
and geosciences applications, like remote image classification (Yan et al., 2019), spatial 
data mining, and unmixing for hyperspectral imagery and so on. In addition, random 
forest (RF), support vector machine (SVM), and ANN techniques are extensively utilised 
for air quality prediction and they obtained improved performance than conventional 
statistical algorithms (Zhang et al., 2021). 

The major purpose of this research is to devise and introduce an air quality prediction 
technique, named PRCSO-based DRNN. 

The major contribution of this research is explicated below: 

• Developed PRCSO-based DRNN technique for air quality and carbon monoxide 
prediction: the DRNN model is utilised for predicting the quality of air as well as 
carbon monoxide. In addition, DRNN is trained by a developed PRCSO algorithm 
based on every location separately. The developed PRCSO technique is devised by 
integrating CSO, PO algorithm and ROA. 

2 Literature survey 

Schürholz et al. (2020) devised long short term memory-based neural network  
(LSTM-NN) for air quality calculation. This model has three phases, namely context 
modelling, situation reasoning, and prediction. Here, context space theory (CST) was 
employed for modelling context. Moreover, a deep learning scheme was applied for 
identifying air quality. This model obtained enhanced precision with minimal error, 
although effectual data was not included for avoiding several issues, like potential 
disturbance and measuring breakdown station. Zhang et al. (2021) introduced empirical 
mode decomposition (EMD) and bidirectional (BiLSTM) driven NN for predicting the 
quality of air. In addition, EMD was employed along with an unsupervised transferring 
approach to extract important features. This model obtained enhanced accuracy and 
scalability, although the error rate was high. Mao et al. (2021) modelled deep learning 
technique for the prediction of air quality. The temporal sliding LSTM extended  
(TS-LSTME) algorithm enabled NN for air quality prediction. Furthermore, optimum 
time lag spatiotemporal correlation was included to realise sliding prediction, which 
enhances the performance of prediction. This technique attained an improved correlation 
coefficient in large time series data but still failed to decrease computational complicity. 
Ma et al. (2019) presented transferred bi-directional (TL-BLSTM) model for air quality 
prediction. Originally, input data was attained and it was pre-processed using time lag 
determination and time series modelling. In addition, the BLSTM model was trained to 
identify air quality. Moreover, a transfer learning model was included for improving the 
precision of air quality prediction. This approach obtained improved prediction accuracy, 
however not reduced the computational complexity. 
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Table 1 Literature survey 

Authors Methods Advantages Disadvantages 
Schürholz 
et al. 
(2021) 

Long short-term  
memory-based neural 
network (LSTM-NN) for air 
quality calculation. 

This model obtained 
enhanced precision with 
minimal error. 

Effectual data was not 
included for avoiding 
several issues, like 
potential disturbance 
and measuring 
breakdown station 

Zhang  
et al. 
(2021) 

Empirical mode 
decomposition (EMD) and 
bidirectional (BiLSTM) 
driven NN for predicting 
quality of air. 

This model obtained 
enhanced accuracy and 
scalability. 

The error rate was 
high. 

Mao et al. 
(2021) 

Deep learning technique for 
prediction of air quality. 

This technique attained 
an improved correlation 
coefficient in large time 
series data. 

Failed to decrease 
computational 
complicity. 

Ma et al. 
(2019) 

Transferred bi-directional 
(TL-BLSTM) model for air 
quality prediction. 

This approach obtained 
improved prediction 
accuracy. 

Not reduce the 
computational 
complexity. 

Lin et al. 
(2020) 

Neuro-fuzzy modelling 
scheme for air quality 
prediction. 

The processing time of 
this technique was 
minimal. 

Multi-step ahead 
prediction was not 
performed well in 
reducing accumulation 
errors. 

Chen et al. 
(2021) 

Integrated dual LSTM for air 
quality prediction. 

The computational error 
was highly decreased. 

Small probabilities 
were created in the 
results. 

Jin et al. 
(2020) 

Deep hybrid technique for air 
quality identification. 

The prediction accuracy 
was highly increased. 

Failed to reduce 
computational 
complexity. 

Espinosa 
et al. 
(2021) 

Time series forecasting-based 
multi-criteria model for air 
quality forecast. 

The computational error 
was less in this 
approach. 

Failed to compute  
step-ahead prediction 
for better performance. 

Lin et al. (2020) introduced a neuro-fuzzy modelling scheme for air quality prediction. In 
this model, training data was divided into fuzzy clusters, whose membership functions 
were classified by computed variance and mean values. Additionally, fuzzy rules were 
extracted as well a four-layer fuzzy NN was formulated from fuzzy clusters. Furthermore, 
descent backpropagation, and particle swarm optimisation (PSO) approaches were 
employed for training the NN. The processing time of this technique was minimal, even 
though multi-step ahead prediction was not performed well for reducing accumulation 
errors. Chen et al. (2021) developed integrated dual LSTM for air quality prediction. 
Here, the sequence to sequence (Seq2Seq) model was applied for establishing  
single-factor prediction. Afterwards, LSTM was utilised with an attention scheme to 
perform multi-factor prediction. At last, the eXtreme gradient boosting (XGBoosting) 
scheme was utilised for incorporating LSTM and Seq2Seq techniques. The computational 
error was highly decreased, but still, small probabilities were created in the results. Jin  
et al. (2020) designed a deep hybrid technique for air quality identification. In this model, 
convolutional neural network (CNN) and EMD were applied for categorising a fixed 
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amount of groups using frequency features. Afterwards, gated recurrent unit (GRU) was 
trained for each set as sub prediction. The prediction accuracy was highly increased, 
although failed to reduce computational complexity. Espinosa et al. (2021) presented 
time series forecasting-based multi-criteria model for air quality forecast. In this model, 
statistical tests as well as a multi-criteria optimisation approach were designed to select 
the best representation of the prediction scheme. The computational error was less in this 
approach; however, this model failed to compute step-ahead prediction for better 
performance. Table 1 displays the literature survey of the existing methods and the 
proposed method. 

3 Proposed PRCSO approach for air quality and carbon monoxide 
prediction 

This section elucidates about developed PRCSO-based deep learning algorithm for air 
quality and carbon monoxide prediction. Air quality prediction is an essential process in 
town regions because it causes serious health issues for humans. This developed air 
quality prediction process mainly contains three sections, including pre-processing, 
technical indicators, and prediction process. The time series air quality data is considered 
as input from a database, and this data is based on various locations, like Delhi, Chennai, 
Ahmadabad and so on. Afterwards, pre-processing is performed based on missing value 
imputation for removing the redundant value. Furthermore, technical indicators and 
location information are extracted for further prediction processes. At last, carbon 
monoxide and air quality prediction is carried out using DRNN, and it is trained by a 
developed optimisation algorithm, termed the PRCSO scheme. The block diagram of the 
developed PRCSO technique for air quality and carbon monoxide prediction is exposed 
in Figure 1. 

3.1 Input data 

The developed air quality and carbon monoxide prediction is performed using the time 
series data. Let us assume the time series data D with various attributes, and it is 
expressed as: 

{ } ( ); 1qC c q I= ≤ ≤  (1) 

where C is a dataset, I implies the total amount of time samples and cq refers to time 
series data at qth index. Here, input time series data cq is considered and it is further 
passed to the pre-processing process. 

3.2 Pre-processing using missing value imputation 

The time series data cq is taken and it is pre-processed by missing value imputation for 
decreasing the redundant data. In addition, the input raw data is transformed into 
comprehensible data format in pre-processing process and the prediction accuracy is 
highly enhanced by this method. The missing value imputation is used for transferring the 
data to a variety of similar data. Here, missing values are identified using the feature 
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average in non-missing values finally, missing values are filled. The output of  
pre-processed data is indicated as Uq. 

Figure 1 Block diagram of developed PRCSO algorithm for predicting the air quality (see online 
version for colours) 

  

3.3 Location and technical indicator extraction 

The pre-processed data Uq is considered as input for further location and technical 
indicator extraction process. Here, several significant technical indicators and location 
information is extracted for further prediction process and is explained below. 



   

 

   

   
 

   

   

 

   

   84 D.D. Patil et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

3.3.1 Normalised average true range 
Normalised average true value is the estimation of air quality at two different locations, 
which is calculated by, 

1
Α 100S

close
= ×  (2) 

where A specifies an average true range and normalised average true range feature is 
indicated as S1. 

3.3.2 Triple exponential moving average 
TEMA is a type of technical indicator, which affords a moving average with minimal lag. 
TEMA is calculated by. 

( ) ( )1 2 33*Η 3*Η +ΗTEMA = −  (3) 

where H1 indicates exponential moving average (EMA), H2 refers to EMA of B1, and H3 
implies EMA of B3, and EMA is estimated by H1 = H(1) + λ × (close – H(1)) where,  
λ = 2/(B + 1), B represents the smoothing period. The TEMA indicator is signified as S2. 

3.3.3 Adaptive moving average 
Adaptive moving average is another technical indicator, which employs scalable constant 
in place of fixed constant for smoothing air quality data. The adaptive moving average 
indicator is denoted as S3. 

3.3.4 Keltner channels 
Generally, the Kelner channel is a volatility-based technical indicator where three lines 
including the upper band, middle line and lower band are available. The middle line of 
the Keltner channel is EMA, while the other two bands are placed above and below the 
EMA. Therefore, Keltner channel equations are illustrated by, 

1X H=  (4) 

1E H + 2 AU = ∗  (5) 

1E H + 2 AL = ∗  (6) 

where A represents an average true range, X implies Keltner channel middle line, EU is 
Keltner channel upper band, EL specifies Keltner channel lower band and H1 indicates 
EMA. The Keltner channel indicator is specified as S4. 

3.3.5 Rate of change 
ROC is utilised to estimate the rate of alternation concerning the previous time interval of 
air quality, which is denoted as: 

5
Ζ( ) *100

Ζ( )
rS

r o
=

−
 (7) 



   

 

   

   
 

   

   

 

   

    Design and development of political rider competitive swarm optimiser 85    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

where Z indicates air quality, Z(r) indicates air quality at period r and Z(r – o) signifies 
the change of air quality at time r. The ROC indicator is denoted as S5. 

3.3.6 William % R 
William %R is utilised to compute the terminating air quality of the day in recent ten 
days, which is denoted as: 

6
I 100

M
S = ∗  (8) 

where M denotes the highest lowest air quality, and I denotes the highest closed air 
quality. Here, William’s %R indicator is denoted as S6. 

3.3.7 Simple moving average 
SMA is an effective technical indicator, and it is measured as the average air quality rate 
for a particular period, which is denoted by, 

1

7
0

1 Ο
p

y δ
δ

S
p

−

−
=

=   (9) 

where p refers to input window length, Oy implies close air quality for time y, and S7 
refers to SMA technical indicator. 

3.3.8 Relative strength index 
RSI exhibits weakness of detected air quality by considering the final closing range of air 
quality, which is expressed in the following equation. 

( )
( ) ( )8 *100

+
up

up down

avg T
S

avg T avg T
=  (10) 

1*( ( ) ( 1)); if ( ) ( 1) 0upT T r T r T r T r= − − − − >  (11) 

1*( ( 1) ( )); if ( ) ( 1) 0downT T r T r T r T r= − − − − <  (12) 

where Tup the term implies increased air quality, Tdown denotes decreases air quality, and 
the RSI indicator is represented as S8. 

3.3.9 Commodity channel index 
CCI is employed for representing variations in air quality and predicting the finishing and 
beginning values. It ranges from –100 to 100 as well as values outside the range signify 
the highly polluted and less polluted circumstances, which is indicated in the below 
equation. 

9 0.015 Ρ
tp atpH H

S
−

=
×

 (13) 
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where P refers to mean deviation, Hatp denotes average typical pollution range, Htp 
specifies typical pollution range, which is given by, 

( ) ( )+ +
3

close lw d hg d
tp

H H H
H =  (14) 

The CCI technical indicator is represented as S9. 

3.3.10 Stochastic %K 
This technical indicator is used for estimating the maximum and minimum value of the 
air quality range for previous days. 

10
(Ν Υ)100*
( Υ)

S
L

−=
−

 (15) 

where Y indicates lowest air quality range, L signifies highest air quality range and the 
Stochastic % K indicator is denoted as S10. 

3.3.11 Aroon Indicator 
Aroon indicator is utilised for finding the air quality range variations with regards to 
time, which is estimated by the following expression, 

11 up downS W W= −  (16) 

2525100
25up
νW −= ×  (17) 

2525100
25downW −= × ϖ  (18) 

where v25 refers to high data since 25 days period, and ϖ25 signifies low data since 25 
days period, and the Aroon indicator is indicated as S11. 

3.3.12 Average directional movement index 
ADMI defines air quality strength, and it identified the previous ten days as equivalent to 
the input window length. This indicator specifies less air quality and high air quality 
situations in specific locations at particular time. 

+

12 +
100*

+
G GS
G G

−

−

−=  (19) 

The ADMI technical indicator is denoted as S12. 
Therefore, the total technical indicators extracted from pre-processed time series data 

Uq is specified as: 

{ }; {1, 2, ..., 12}qS S q= ∈  (20) 

where S specifies total extracted indicators, which are further subjected to the prediction 
process. 
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The location information is obtained by the difference between the location of the 
testing place and its trained nearby place, which is given by, 

P P
q loc locV N M= −  (21) 

where Vq implies extracted location information, P
locN  indicates the nearest location that 

is, the neighbouring place of the test location and P
locM  refers location of the place 

selected for air quality prediction. For example, if the model is trained for Assam, 
Ahmadabad, and Delhi and the prediction is to be made for Gujarat, then the location of 
nearby places to Gujarat will be taken for the difference. 

3.4 Air quality and carbon monoxide prediction using developed PRCSO-based 
DRNN 

Once the imperative technical indicators and location information is extracted, then air 
quality prediction and carbon monoxide prediction are done. The extracted technical 
indicators S as well as location information Vq is taken for predicting air quality and 
carbon monoxide prediction using DRNN. In addition, the DRNN (Inoue et al., 2018) is 
trained by an introduced optimisation technique, named the PRCSO approach. The 
devised PRCSO model is newly devised by integrating ROA, CSO, and PO. 

3.4.1 Structure of DRNN 
The DRNN classifier is applied for predicting air quality and carbon monoxide prediction 
using the extracted technical indicators and location information. The DRNN classifier 
effectively increases the recognition rate with less processing duration, thus it is used for 
air quality and carbon monoxide prediction processes. The DRNN model is an ANN that 
records dynamic time series by directed connecting of nodes at the hidden layer and has a 
large number of hidden layer results. This structure differs from a feed-forward network 
in that it uses feed-forward and feedback connections between internal processing 
modules to record input sequences at various time states. As a result of the DRNN 
classifier’s more reliable transformation of the technical data, its capacity for prediction 
is increased. Regarding time, this network largely consisted of several nonlinear layers. 
Additionally, the entirety of the sequence’s data is effectively analysed, and the present 
output is used to forecast the value of the subsequent output. This model made use of 
historical data over a small number of phases and information in random order. 
Additionally, it converts the input series into a hidden state sequence before using the 
hidden state to convert the input series into output series using a feature learning model. 
Let us assume input is subjected to the input layer at a time g as Rg and hidden layer state 
at time g as Qg. The hidden layer process is expressed as, 

( )( )( , )
1, +qQ S V QQ

g q gQ h S V Y Q Y−=  (22) 

where h signifies the nonlinear function, such as tanh and ReLu functions, Qg–1 denotes 
the previous hidden layer state, Y indicates weight factor, (( , ))qQ S VY  expresses weight 
among input and hidden layer, YQQ denotes weight amongst hidden layers, and (S, Vq) 
symbolises input. The output estimated at the output layer is specified as, 
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( )vQ
g gv h Q Y=  (23) 

where vg represents output, h symbolises function, YvQ refers to weight among hidden and 
output layers. Meanwhile, the optimal weight value is estimated by devised PRCSO 
approach using a training process. Figure 2 shows the structural diagram of the DRNN 
classifier. 

Figure 2 Structural diagram of DRNN classifier (see online version for colours) 

( )qVS , Input 17011 ××  
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QQY
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3.4.2 Proposed PRCSO for the training process of DRNN 
Additionally, the DRNN classifier is trained by a developed PRCSO algorithm for 
obtaining better prediction performance. Besides, the training process is carried out based 
on every location individually. The developed PRCSO approach is newly designed by 
incorporating ROA (Binu and Kariyappa, 2018), CSO (Cheng and Jin, 2014), along with 
PO (Askari et al., 2020). By promoting rider groups, an optimisation process known as 
the ROA is produced. Assailants bypass riders, follows, and overtaker riders are among 
the four categories of motorcyclists included in ROA. Another more effective method is 
ROA, which uses a fictitious computational process to handle various optimisation 
problems. Additionally, the PSO method is stimulated in the design of the CSO 
procedure. This plan was created using a straightforward technique that mimics social 
animal behaviours, such flocking of birds. On the other hand, PO was created by drawing 
inspiration from the multi-phased political process. The strategy is broken down into five 
stages: party formation and constituency distribution, party switching, election 
administration, parliamentary activities, and inter-party selection. While other stages 
function in a loop, the party generation and constituency allocation stage operates 
initially. Additionally, the PO framework supported both the exploration and exploitation 



   

 

   

   
 

   

   

 

   

    Design and development of political rider competitive swarm optimiser 89    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

phases. The CSO technique is incorporated into PO to shorten the processing time 
because PO has a higher temporal complexity. The scalability of high-dimensional issues 
was significantly improved by the CSO method. The algorithmic process of developed 
PRCSO technique is explicated below, 

1 Initialisation: at first, rider parameters are initiated randomly, which is expressed as: 

{ }( , ) ; 1 , 1k kG G a b a X b Z= ≤ ≤ ≤ ≤  (24) 

where X – +refers quantity of riders, Z indicates the dimension of coordinates,  
Gk(a, b) denotes the position of ath rider at the moment b. Once the group 
initialisation is finished, then rider parameters are initialised. The rider parameters 
including brake Sw, steering Kw, gear Tw, and accelerator Bw are initialised. Here, G ∈ 
Y, Q. 

2 Computation of fitness function: the fitness measure is estimated using the difference 
between final target output and classified output. The solution with the least error is 
taken as the best optimal solution, and the fitness function is calculated by the 
following expression. 

( )*

1

1 j

g g
ο

v v
j =

= −ϑ  (25) 

where ϑ implies fitness function, j signifies total amount of training samples, *
gv  

indicates target output and vg refers to DRNN classifier. 

3 Identification of leading rider: the top rider is projected using the fitness measure 
value that was calculated. The cyclist chosen as the leader is the one with the highest 
fitness value, and the position of the leading rider is regularly adjusted based on 
fitness value. 

4 Update the location of the rider: by updating the riders’ positions at the moment in 
time, the leading rider is determined. Here is an explanation of where each rider in a 
group is located: 
• Update bypass rider position 

In most cases, bypass riders avoid the well-travelled way without taking their 
leading path into account. As a result, the phrase below updates the location of 
the bypass rider. 

( ) [ ]+1 , ( , ) ( ) + ( , ) (1 ( ))b
k kkG a b η G φ b b G ε b b= ∗ ∗ −ϖ ϖ  (26) 

where η indicates random integer from 0 and 1, φ specifies random integer, 
which ranges from 0 to X, ϖ represents a random number from 0 to 1 with 
dimension of 1 × Z, ε implies an integer value with 1 and X. Therefore, all riders 
present in the bypass set update their location to become a winner. 

• Update the position of the follower 
The follower speedily attains the target by updating the location through the 
position of the leading rider. The follower location is updated based on the 
chosen values of Z, since the follower’s location is based on the coordinate 
selector. The location of the follower is updated by the below equation. 
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( )+1 ,( , ) ( , ) + cos ( , )f F i F i
ak a fG a f G F f A G F f c = ∗ ∗   (27) 

where f represents coordinate selector, GF specifies the location of leading rider, 
F denotes leading rider, ,

i
a fA  implies steering angle of ath rider in fth coordinate, 

and i
ac  is the distance travelled by ath rider. 

• Update the position of the overtaker 
The direction indication, relative success rate, and coordinate selector are the 
three features that are typically used to update the overtaker. The overtaker’s 
position-updated expression is written as, 

( )1 2 32 3
+1

2 3 2 3

ΕΜ ( , )+Ε Μ , + Ε ΜΕ + Ε 1( , ) Α ( ) ( , )
Ε + Ε 1 Ε Ε

i i yo n F
ik

a f s f δδG a f a G F f
δ δ

 − = ∗ −   − −  
 (28) 

where E1, E2, E3 ∈ [0, 1], Μ y  indicates mean position value, δ signifies random 
integer, Mi(a, f) is the position of ath rider at fth coordinate, Mi(s, f) is the position 
of sth rider at fth coordinate. 

( )Τ

2Α ( ) 1
1 log Ν ( )

n
i

i
a

a
 = − − 

 (29) 

Τ
Ε

1

( )Ν ( )
max ( )

i
i

ia

s aa
s a=

=  (30) 

Here, ΤΝ (i a  specifies the relative success rate of ath rider at a time i and si(a) 
represents the success rate of ath rider at a time i. 

2 3
+1

2 3

1 2 32 3

2 3 2 3

Ε + Ε 1( , ) Α ( ) ( , )
Ε + Ε

Ε Μ ( , ) +Ε Μ ( , ) + Ε ΜΕ + Ε 1
Ε + Ε 1 Ε Ε

o n F
ik

i i y

δG a f a G F f
δ

a f s f δδ
δ δ

− = ∗ 
 

− −  − − 

 (31) 

From PO, 
* *

+1( , ) + (2 1) ( , )o
kkG a f x c x G a f= + −  (32) 

Let us assume x* > Gk(a, f), 

( )*
+1( , ) + (2 +1) ( , )o

kkG a f x c x G a f∗= −  (33) 

*
+1( , ) (1+ 2 1) (2 1) ( , )o

kkG a f x c c G a f= − − −  (34) 

*
+1( , ) 2 (2 1) ( , )o

kkG a f cx c G a f= − −  (35) 

*
+12 ( , ) + (2 1) ( , )o

kkcx G a f c G a f= −  (36) 

+1* ( , ) + (2 1) ( , )
2

o
kkG a f c G a f

x
c

−
=  (37) 
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In order to obtain better performance, the updated PO is included in the leading 
rider’s location of ROA. Substitute equation (37) in the leading rider’s position 
of equation (31), 

2 3 +1
+1

2 3

1 2 32 3

2 3 2 3

( , ) + (2 1) ( , )Ε + Ε 1( , ) Α ( )
Ε + Ε 2

Ε Μ ( , ) +Ε Μ ( , ) + Ε ΜΕ + Ε 1
Ε + Ε 1 Ε Ε

o
kko n

ik

i i y

G a f c G a fδG a f a
δ c

a f s f δδ
δ δ

−− = ∗ 
 

− −  − − 

 (38) 
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1 2 3
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Ε + Ε 2 Ε + Ε

(2 1) Ε + Ε 1*Α ( ) ( , )
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1 Ε Ε
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ko n

ik

n
ki
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G a fδ δG a f a
δ c δ
c δa G a f
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a f s f δ
δ
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− −

 (39) 
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 (42) 

where c signifies random integer, which lies from [0, 1]. 
• Update the position of an attacker 

The leader’s position is connected to the attacker’s because the attacker wants to 
steal the leader’s location. Additionally, the following equation is used to update 
the attacker’s location: 
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( )+1 ,( , ) ( , ) + cos ( , ) +s F i F i
ak a fG a b G F b A G F b c = ∗   (43) 

where GF specifies the location of the leading rider, F denotes leading rider, 
,

i
a fA  signifies the steering angle of ath rider in fth coordinate and i

ac  is distance 
travelled by ath rider. 

5 Check feasibility of solution: following the conclusion of rider position 
identification, the rider with the best fitness score is selected as the best option. 

6 Updation of rider parameter: the rider parameters are approximated in order to 
determine the optimal solution, while the activity counter is computed to update 
many parameters, including steering angle and gear. 

7 Termination: the iteration is continual until the identification of the leading rider is 
obtained. Here, the leading rider position of the RCSO algorithm is integrated with 
PO, thus the quality of the air prediction approach is highly improved. Moreover, the 
DRNN classifier significantly enhanced the performance of air quality prediction 
with less duration. In addition, the training process of DRNN is done by the 
developed PRCSO technique, which obtained better prediction performance in  
real-time. 

4 Results and discussion 

This section deliberates the evaluation of the developed PRCSO-based DRNN for air 
pollutant quality and carbon monoxide prediction. 

4.1 Experimental setup 

The execution of devised PRCSO-based DRNN is done using the PYTHON tool. Table 2 
shows the experimental parameters of the developed system. 
Table 2 Experimental parameters 

Parameters Values 
Iteration 100 
Epochs 100 
Loss ‘mean_squared_error’ 
Batch size 32 
Population 10 
Learning rate 0.1 
Lower bound 0 
Upper bound 1 
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4.2 Dataset description 

The introduced air pollutant quality and carbon monoxide prediction is executed using 
Air quality data in the India dataset (India Air Quality Dataset, https://www.kaggle. 
com/shrutibhargava94/india-air-quality-data#__sid=js0). This data generally comprises 
air quality data as well as air quality index (AQI) at hourly and everyday levels from 
different locations across dissimilar cities in India. The air quality data mainly includes 
five files including city_hour, station_hour, station_day, city_day, and stations. Here, 
three cities, such as Chennai (City-1), Delhi (City-2) and Kolkata (City-3) are considered 
for the developed prediction process. 

4.3 Performance metrics 

The performance of the designed PRCSO-based DRNN is evaluated based on several 
metrics including mean square error (MSE), and mean absolute percentage error (MAPE) 
and it is explained as follows. 

1 Mean square error 

MSE is defined as the total squared error between the actual and anticipated value, 
and equation (25) gives its expression. 

2 Mean absolute percentage error 

Generally, MAPE is calculated by average absolute percentage error in all periods 
minus the predicted value divided by its actual value. 

1

1 u
oE Eψ

u E=

−= 
β

 (44) 

where ψ implies MAPE, u specifies total data, E denotes actual value and Eo represents 
predicted output. 

4.4 Comparative methods 

The existing air quality prediction techniques, deep learning (Ma et al., 2019), 
bidirectional LSTM (Zhang et al., 2021), weighted fuzzy method (Olvera-García et al., 
2016), and RCSO-based rider deep LSTM are utilised for comparison of developed air 
pollutant quality and carbon monoxide approach. 

4.5 Comparative analysis 

This section specifies a comparative evaluation of the PRCSO-based DRNN for carbon 
monoxide and air quality prediction for city-1, 2 and 3. 

4.5.1 Comparative analysis for carbon monoxide prediction 
The comparative evaluation of the PRCSO-based DRNN with carbon monoxide 
prediction for city-1, 2 and 3 using MSE and MAPE is explicated in this section. 
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4.5.1.1 Analysis for city-1 
By changing the training data percentage, Figure 3 illustrates a comparative evaluation of 
the city-1 PRCSO-based DRNN. A comparison of MSE by adjusting the percentage of 
training data is shown in Figure 3(a). When compared to existing methods, such as deep 
learning, bidirectional LSTM, weighted fuzzy method, and RCSO-based rider deep 
LSTM, which account for 80% of training data, have MSEs of 0.2109, 0.2053, 0.1563, 
and 0.1316. The MSE of the proposed PRCSO-based DRNN is 0.0356. Figure 3(b) 
shows the MAPE comparison analysis. When the training data percentage is 80, the 
PRCSO-based DRNN is 3.33%, the weighted fuzzy scheme is 18.62%, the bidirectional 
LSTM is 21.36%, the MAPE of deep learning is 21.88%, the RCSO-based rider deep 
LSTM is 6.72%. 

Figure 3 Comparative analysis of introduced PRCSO-based DRNN for city-1, (a) MSE,  
(b) MAPE (see online version for colours) 

 
(a) 

 
(b) 
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4.5.1.2 Analysis for city-2 
The comparative evaluation of the PRCSO-based DRNN for city-2 is represented in 
Figure 4. Figure 4(a) specifies a comparative analysis of MSE by changing training data 
%. The MSE of deep learning is 0.2139, bidirectional LSTM is 0.2088, the weighted 
fuzzy method is 0.1599, RCSO-based rider deep LSTM is 0.1325 and PRCSO-based 
DRNN is 0.0433, while training data is 80%. Figure 4(b) shows the comparative 
evaluation of MAPE by changing training data %. The MAPE of developed  
PRCSO-based DRNN is 3.11%, while existing methods, such as deep learning, 
bidirectional LSTM, weighted fuzzy method, and RCSO-based rider deep LSTM is 
21.35%, 20.20%, 18.83%, and 5.81%for 80% of training data. 

Figure 4 Comparative analysis of devised PRCSO-based DRNN for city-2, (a) MSE, (b) MAPE 
(see online version for colours) 

 
(a) 

 
(b) 
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4.5.1.3 Analysis for city-3 
By changing the training data percentage, Figure 5 shows the comparative analysis of the 
PRCSO-based DRNN that was introduced for city-3. The comparison study of MSE by 
changing training data % is shown in Figure 5(a). While existing techniques like deep 
learning, bidirectional LSTM, weighted fuzzy method, and RCSO-based rider deep 
LSTM have MSEs of 0.2086, 0.1966, 0.1527, and 0.121 for 80% of training data, the 
MSE of the created PRCSO-based DRNN is 0.0486. Figure 5(b) shows the comparative 
study of MAPE using various training data percentages. When the training data 
percentage is 80, MAPE of deep learning is 21.33%, bidirectional LSTM is 20.45%, 
weighted fuzzy scheme is 19.27%, RCSO-based rider deep LSTM is 5.44% and 
developed PRCSO-based DRNN is 3.48%. 

Figure 5 Comparative analysis of devised PRCSO-based DRNN for city-3, (a) MSE, (b) MAPE 
(see online version for colours) 

 
(a) 

 
(b) 
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4.5.1.4 Analysis based on carbon monoxide prediction 
Figure 6 explicates the analysis of carbon monoxide with various techniques by varying 
dates. In date 10, the original value of carbon monoxide is 0.75, whereas the developed 
PRCSO-based DRNN is 0.7482, RCSO-based DRNN is 0.7376, the weighted fuzzy 
scheme is 0.7638, bidirectional LSTM is 0.7531, and deep learning technique is 0.7053, 
such that the error between original carbon monoxide value concerning prediction 
outputs based on proposed PRCSO-based DRNN, RCSO-based DRNN, weighted fuzzy 
method, bidirectional LSTM, and deep learning is 0.0017, 0.0123, 0.0138, 0.0138, 
0.0031, and 0.0446, respectively. 

Figure 6 Analysis for carbon monoxide prediction (see online version for colours) 

 

4.5.2 Comparative analysis for air quality prediction 
The comparative analysis of devised PRCSO-based DRNN with air quality prediction for 
city-1, 2 and 3 is explicated in this section. 

4.5.2.1 Analysis for city-1 
By varying the training data percentage, Figure 7 illustrates the comparative analysis of 
the generated PRCSO-based DRNN for city-1. The comparison study of MSE using 
shifting training data percentage is shown in Figure 7(a). The MSE of developed  
PRCSO-based DRNN is 0.1373, while existing methods, such as deep learning, 
bidirectional LSTM, weighted fuzzy method, and RCSO-based rider deep LSTM is 
0.4396, 0.3835, 0.2910, and 0.1851 for 80% of training data. Figure 7(b) shows the 
comparative study of MAPE using different training data percentages. When training data 
percentage is 80, MAPE of deep learning is 45.77%, bidirectional LSTM is 40.18%, 
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weighted fuzzy scheme is 39.06%, RCSO-based rider deep LSTM is 8.74% and 
developed PRCSO-based DRNN is 4.55%. 

Figure 7 Comparative analysis of introduced PRCSO-based DRNN for city-1, (a) MSE,  
(b) MAPE (see online version for colours) 

 
(a) 

 
(b) 

4.5.2.2 Analysis for city-2 
The comparative analysis of developed PRCSO-based DRNN for city-2 by altering 
training data percentage is represented in Figure 8. Figure 8(a) specifies a comparative 
analysis of MSE through shifting training data percentage. The MSE of deep learning is 
0.4546, bidirectional LSTM is 0.3773, the weighted fuzzy method is 0.3268,  
RCSO-based rider deep LSTM is 0.2525, and developed PRCSO-based DRNN is 0.1336, 
while training data is 80%. Figure 8(b) shows the comparative analysis of MAPE through 
altering training data percentage. The MAPE of developed PRCSO-based DRNN is 
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3.84%, while existing methods, such as deep learning, bidirectional LSTM, weighted 
fuzzy method, and RCSO-based rider deep LSTM is 43.33%, 36.69%, 32.64%, and 
8.89% for 80% of training data. 

Figure 8 Comparative analysis of designed PRCSO-based DRNN for city-2, (a) MSE, (b) MAPE 
(see online version for colours) 

 
(a) 

 
(b) 

4.5.2.3 Analysis for city-3 
By changing the training data percentage, Figure 9 illustrates the comparative analysis of 
the generated PRCSO-based DRNN for city-3. Figure 9(a) shows a comparison of MSE 
by altering the percentage of training data. While current methods like deep learning, 
Bidirectional LSTM, weighted fuzzy method, and RCSO-based rider deep LSTM have 
MSEs of 0.4419, 0.3848, 0.3193, and 0.2883 for 80% of training data, the MSE of the 



   

 

   

   
 

   

   

 

   

   100 D.D. Patil et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

developed PRCSO-based DRNN is 0.1446. Figure 9(b) shows the comparative study of 
MAPE using different training data percentages. When the training data percentage is 80, 
MAPE of deep learning is 43.58%, bidirectional LSTM is 39.60%, the weighted fuzzy 
scheme is 31.68%, RCSO-based rider deep LSTM is 7.52% and developed PRCSO-based 
DRNN is 4.68%. 

Figure 9 Comparative analysis of devised PRCSO-based DRNN for city-3, (a) MSE, (b) MAPE 
(see online version for colours) 

 
(a) 

 
(b) 

4.5.2.4 Analysis based on air quality prediction 
Figure 10 explicates the analysis of air quality prediction with various techniques by 
varying dates. In date 10, the original value of carbon monoxide is 128, whereas the 
developed PRCSO-based DRNN is 127.99, RCSO-based DRNN is 127.70, the weighted 
fuzzy scheme is 130.16, bidirectional LSTM is 129.70, and deep learning technique is 
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133.47, such that the error among original air quality prediction value concerning 
prediction outputs based on developed PRCSO-based DRNN, RCSO-based DRNN, 
weighted fuzzy method, bidirectional LSTM, and deep learning is 0.00363, 0.295, 2.163, 
2.163, 1.704, and 5.478, respectively. 

Figure 10 Analysis for carbon monoxide prediction (see online version for colours) 

 

Table 3 Comparative discussion 

Based on For Metrics Deep 
learning 

Bidirectional 
LSTM 

Weighted 
fuzzy 
model 

RCSO-based 
rider deep 

LSTM 

Proposed 
PRCSO-based 

DRNN 
Carbon 
monoxide 

City-1 MSE 0.1972 0.1854 0.1364 0.1104 0.0313 
MAPE 

(%) 
21.14 20.45 18.07 6.12 3.09 

City-2 MSE 0.1992 0.1872 0.1385 0.1122 0.0411 
MAPE 

(%) 
21.08 20.02 18.37 5.40 3.08 

City-3 MSE 0.1889 0.1861 0.1235 0.1156 0.0400 
 MAPE 

(%) 
21.09 20.07 18.76 5.01 3.12 

Air 
quality 

City-1 MSE 0.3735 0.3543 0.2743 0.1734 0.1276 
 MAPE 

(%) 
44.75 39.97 36.74 8.27 3.99 
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Table 3 Comparative discussion (continued) 

Based on For Metrics Deep 
learning 

Bidirectional 
LSTM 

Weighted 
fuzzy 
model 

RCSO-based 
rider deep 

LSTM 

Proposed 
PRCSO-based 

DRNN 
Air 
quality 

City-2 MSE 0.4385 0.3692 0.3077 0.2176 0.1174 
MAPE 

(%) 
42.32 35.40 32.42 8.27 3.44 

City-3 MSE 0.4398 0.3751 0.3040 0.2688 0.1227 
MAPE 

(%) 
42.70 38.47 31.38 7.11 4.11 

4.6 Comparative discussion 

In this section, developed PRCSO-based DRNN and existing methods are compared and 
discussed. Table 3 represents the comparative evaluation in terms of MSE and MAPE 
with three cities based on carbon monoxide and air quality prediction for 90% of training 
data. The MSE of developed method is 0.0313, whereas deep learning is 0.1972, 
bidirectional LSTM is 0.1854, weighted fuzzy scheme is 0.1364, and RCSO-based rider 
deep LSTM is 0.1104. Similarly, MAPE of deep learning, bidirectional LSTM, weighted 
fuzzy method, RCSO-based rider deep LSTM, developed PRCSO-based DRNN is 
21.14%, 20.45%, 18.07%, 6.12%, and 3.09%. 

5 Conclusions 

This paper presents the developed air quality prediction approach based on the  
PRCSO-based DRNN model. Here, time series air quality data is taken from a dataset 
and it is passed to pre-processing process for eliminating removing redundant data. The 
missing value imputation model is applied for pre-processing process and pre-processed 
data is given to the technical extraction process. The location information and the 
technical indicators are extracted from pre-processed data for the prediction process. The 
deep learning model, named DRNN is utilised for predicting air quality and carbon 
monoxide. Moreover, the deep learning technique is trained by a developed optimisation 
approach, named the PRCSO approach. In addition, the PRCSO algorithm is newly 
designed by incorporating ROA, CSO as well as PO method. Besides, the training 
process of DRNN is carried out by the PRCSO model based on every individual location. 
The performance of the introduced air quality prediction method is evaluated with two 
metrics, namely MSE and MAPE. The developed PRCSO-based DRNN model obtained 
better performance with regards to MSE of 0.0313 and MAPE of 3.08%. Here, utilising 
science and technology, air pollution forecasting aims to identify the types of pollutants 
that will be present in the atmosphere. In addition, the devised PRCSO-based DRNN 
technique can be further improved by including another effectual optimisation algorithm 
with a deep learning technique. 
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