
 
International Journal of Intelligent Systems Technologies
and Applications
 
ISSN online: 1740-8873 - ISSN print: 1740-8865
https://www.inderscience.com/ijista

 
Service capability aware big data workflow scheduling approach
in cloud datacentre
 
Jie Cao, Jinchao Xu, Bo Wang
 
DOI: 10.1504/IJISTA.2024.10059902
 
Article History:
Received: 24 July 2022
Last revised: 13 December 2022
Accepted: 22 August 2023
Published online: 05 February 2024

Powered by TCPDF (www.tcpdf.org)

Copyright © 2024 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijista
https://dx.doi.org/10.1504/IJISTA.2024.10059902
http://www.tcpdf.org


   

  

   

   
 

   

   

 

   

   Int. J. Intelligent Systems Technologies and Applications, Vol. 22, No. 1, 2024 1    
 

   Copyright © 2024 Inderscience Enterprises Ltd. 
 
 

   

   
 

   

   

 

   

       
 

Service capability aware big data workflow 
scheduling approach in cloud datacentre 

Jie Cao 
Software Engineering College, 
Zhengzhou University of Light Industry, 
Zhengzhou, 450002, China 
Email: 42675492@qq.com 

Jinchao Xu* 
Information Centre, 
Shanghai Jiaotong University, 
Shanghai, 200240, China 
Email: xujc@sjtu.edu.cn 
*Corresponding author 

Bo Wang 
Software Engineering College, 
Zhengzhou University of Light Industry, 
Zhengzhou, 450002, China 
Email: 735693062@qq.com 

Abstract: With the increasing application of cloud computing, big data 
workflow scheduling in cloud datacentre also become an important focus of 
research. How to guarantee minimal scheduling length is the main challenge in 
scheduling workflow in cloud-based environments. The main limitation of 
proposed approaches stems is that they overlook the service capability support 
levels of the virtual machines and service capability requirement levels of the 
different tasks in a workflow, thus risking resulting in extremely poor 
processing efficiency. We propose a service dynamic level scheduling 
algorithm in cloud datacentre (Cloud-SDLS) that consists of three stages: 
virtual machines’ service capability support computation, tasks’ service 
capability requirement computation, and service dynamic level scheduling. 
Experimental results show that the proposed algorithms effectively satisfy the 
QoS in service capability requirement. It is significant to shorten workflow 
completion time in practice. 

Keywords: cloud computing; service capability requirement; service capability 
support; workflow scheduling. 
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1 Introduction 

Big data workflows processing has become crucial due to massive analytics demands in 
all the major business and scientific domains such as banking, fraud detection, healthcare, 
demand forecasting, and scientific explorations (Smith, 2020). Cloud computing play a 
very important role in big data workflows processing. However, scheduling big data 
workflows to VM clusters so that they can be processed efficiently is a very difficult task. 
In addition, due to the diversity of VM types provided by cloud service providers, the 
performance of VMs varies greatly, and the effect of processing different types of tasks 
varies greatly, which further increases the difficulty of scheduling big data workflows. It 
became a serious problem to efficiently schedule big data tasks to cloud datacentre to 
guarantee better performance (Rjoub et al., 2020). 

Researchers have proposed many classical algorithms for workflow scheduling in 
distributed computing systems. Such as HEFT (Topcuouglu et al., 2002), Min-Min 
(Blythe et al., 2005), and Max-Min (Braun et al., 2001). In recent years, more algorithms 
on considering availability and cost are proposed. Xu et al. propose an algorithm of task 
non-replication for minimising resource consumption with a reliability goal (Xu et al., 
2018). Chen and Xiao (2019) present the search and earliest finish time (SEFT) algorithm 
for a bounded number of heterogeneous computing nodes intending to minimise the 
computing cost for scheduling DAGs on the heterogeneous cloud platform. Wei et al. 
(2018) propose a variety schedule algorithms for big data processing workflow 
applications on clouds to minimise the cost and satisfy the deadline constraints. Wang  
et al. (2012) propose a trust-based dynamic level scheduling algorithm called Cloud-DLS 
to minimise time costs and ensure a secure execution of tasks. It is a Bayesian approach 
for a cognitive trust model which relies on direct and indirect trust sources to derive trust 
values for cloud resources. Sun et al. (2015) proposed re-stream, an energy-efficient 
scheduling algorithm to optimise the energy consumption and response time for 
executing workflow applications. Ghafarian and Javadi (2015) propose a workflow 
scheduling system that partitions a workflow into sub-workflows to minimise data 
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dependencies among the sub-workflows. Chen et al. (2020) propose a novel real-time 
scheduling algorithm using task-duplication to minimising both the completion time and 
monetary cost of processing big data workflows in clouds. Dai et al. (2018) propose a 
resource allocation algorithm to make trade-offs among the performance, availability and 
cost for processing big data applications on clouds. In Wang et al. (2017), the authors 
propose a data-dependency-driven task scheduling scheme, named D3S2, for big data 
processing. D3S2 is mainly composed of two parts: dependency-aware placement 
mechanism, and transfer-aware task scheduling mechanism. 

Focus on the workflow scheduling problem and consider the service capability 
support levels of the virtual machines and service capability requirement levels of the 
different tasks in a workflow, in this paper, we propose an efficient workflow scheduling 
algorithm called the service dynamic level scheduling algorithm in cloud datacentre 
(Cloud-SDLS), considering VMs’ service capability support and tasks’ service capability 
requirement. 

2 Problem description 

2.1 Modelling big data workflow 

Definition 1 (Big data workflow): A certain big data workflow in cloud environments is a 
directed acyclic graph (DAG), which is described as Gi = (Vi, Ei, Qi, Di, Oi, Ci). 

• { }1 2, , , :
i

i i i
i VV v v v=   the task set in the workflow Gi, i

jv  is the jth task in the 

workflow Gi. 

• Ei ⊆ Vi × Vi: the set of directed edges between tasks, edge ,
i
p q ie E∈  represents the 

precedence constraint that task i
pv  should be finished before the task i

qv  starts, here 
i
pv  is a direct precursor of andi i

q qv v  is a direct successor of .i
pv  

( )i
jpred v  denotes the set of all the direct precursors of and ( )i i

j jv succ v  describes 

the set of all the direct successors of .i
jv  

• { }1 2, , ,
i

i i i
VQ q q q=   is the set of the computational workload in some machine 

instructions for Vi, and a i
jq  denotes the computational workload for task .i

jv  

• { }1 2, , ,
i

i i i
VD d d d=   is the set of the data process workload for Vi, and a i

jd  denotes 

the data process workload for task .i
jv  

• { }1 2, , ,
i

i i i
VO o o o=   is the set of the I/O workload for Vi, and a i

jo  denotes the I/O 

workload for task .i
jv  The data to be communicated between tasks can be transmitted 

only after I /O processing, such as coding and encryption before data transmission. 

• { }, ,i i i
i i ijk j kC c v v V V V= ∈ ⊆ ×  is the data transfer workload between tasks. 
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Besides, in a given workflow graph, if ( ) ,i
jpred v = φ  we call i

jv  entry task, if 

( ) ,i
jsucc v = φ  we call i

jv  exit task. We assume that a workflow has exactly one entry 
task and one exit task. 

A sample workflow denoted as w is shown in Figure 1. The eight tasks of a workflow 
described as {v1, v2, ···, v8}. The associated weights on the edges denote the data transfer 
workload between the tasks. 

Figure 1 A sample workflow 
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2.2 Modelling cloud datacentre 

We assume that the cloud datacentre consists of different types of virtual machines 
offered by IaaS cloud service providers. Assume that the average bandwidth between 
virtual machines is roughly equal, different types of virtual machines have different 
resource configurations, such as different networks, CPU and memory resources, etc. 

Definition 2 (Cloud datacentre): A specific cloud data centre can be represented as an 
undirected graph, which is described as Cloud = (VM, CS, DS, OS, L, B), 

• VM = {vm1, vm2, …, vmm} is the VM set in Cloud, and vmi denotes the ith VM in 
cloud. 

• CS = {cs1, cs2, …, csm} is the set of the calculating speed of VMs, and csi denotes the 
calculating speed of vmi. 

• DS = {ds1, ds2, …, dsm} is the set of the data process speed of VMs, and dsi denotes 
the data process speed of vmi. 

• OS = {os1, os2, …, osm} is the set of the I/O process speed of VMs, and osi denotes 
the I/O process speed of vmi. 

• L = {lij} is the set of communication links between VMs. 
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• B = {bij} is the set of communication bandwidth of the links in L. bij is the data 
volume go through lij at certain intervals. 

A sample cloud datacentre denoted as cloud is shown in Figure 2. The six VMs in cloud 
are described as VM ={vm1, vm2, …, vm6}. The associated weights on the edges denote 
the communication bandwidth between the VMs. 

Figure 2 A sample cloud datacentre 
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2.3 Problem formulations 

Let ( , )i
mjEST v vm  be the earliest execution start time of i

jv  on vmm, and ( , )i
mjEFT v vm  

be the earliest finish time i
jv  on vmm. 

( , ) and ( , )i i
m mj jEST v vm EFT v vm  can be computed by (1) and (2), respectively. 

( ) ( )
( )

( ){ }{ },, max , , max , +
i i

jk

i i i i
m m nj j k k j

v pred v
EST v vm Available v vm EFT v vm ct

∈
=  (1) 

( ) ( ), , + + +
i i i
j j ji i

m mj j
m m m

q d o
EFT v vm EST v vm

cs ds os
=  (2) 

where ,
, ,

i
k ji

k j
mn

ct
ct

b
=  is the communication time of edge ,

i
k je  transferring data from task 

i
kv (scheduled on vmn) to task i

jv (scheduled on vmm). 

For the entry task , ( , ) 0.i i
mentry entryv EST v vm =  

For the exit task , ( )i i
exit exitv EFT v  is the whole schedule length. One of the goals of 

our paper is to minimise ( ).i
exitEFT v  
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2.4 Service capability 

A cloud datacentre consisting of different VMs is often referred to as a heterogeneous 
cloud computing system. There may be multiple scheduling schemes for a big data 
workflow to be executed on VMs of heterogeneous cloud computing systems, and 
different scheduling schemes will produce different execution effects. The execution 
effect of a big data workflow on heterogeneous cloud computing systems depends on the 
computational speed of VMs, data processing speed, communication data processing 
speed, transmission speed of communication links, and the degree of matching between 
tasks and virtual machines. A task that runs well on one type of virtual machine does not 
necessarily work well on another type of virtual machine. On the contrary, it may work 
poorly. Therefore, it is important to consider matching service capabilities between tasks 
and virtual machines. 

Definition 3 (Service capability): Service capability is the degree to which a service 
system is capable of providing a service and is often defined as the maximum output rate 
of the service system. 

From the definition of service capability, the service capability value of VM is between 0 
and 1. To discuss the concept of service capability matching, this paper divides service 
capability into service capability requirements and service capability support. Service 
capability requirement is specific to a task, i.e., how strongly a task requires service 
capability. Service capability support is specific to a virtual machine, i.e., the extent to 
which a virtual machine can provide service capability. 

To ensure that tasks are executed in the desired processing manner when assigning 
virtual machines to tasks with different service capability requirements, the service 
capability supports of the assigned virtual machines should match the service capability 
requirements of the tasks as much as possible. The value of user satisfaction with the 
completion of a task by a VM is the most appropriate metric to judge the service 
capability matching degree between the task and the VM. Whether a user is satisfied with 
services provided by a VM is obtained by combining the service evaluation indexes. In a 
cloud datacentre, the performance of virtual machines varies greatly, such as different 
computation speed, data processing speed, I/O speed, reliability, availability and so on. 

In this paper, we consider only three evaluation metrics for service capability support 
of virtual machines, computation speed, data processing speed, and I/O speed of VMs. 
An objective determination method based on entropy weights was used to determine the 
weights of the three evaluation indexes. 

The service capability value which is also called service capability support of vmk is 
calculated as follows. 

( )   
1 2 3+ +k k k kSS vm w cs w ds w os= × × ×  (3) 

where   , andk k kcs ds os  are the normalised values of csk, dsk, and osk, respectively. w1, w2, 
and w3 are the weights of the obtained cs, ds, and os evaluation indexes, respectively. 

w1, w2, and w3 is estimated using the entropy method, which is essentially calculated 
using the utility value of the information of the index, and the higher its utility value, the 
greater its importance to the evaluation, so the weight of jth evaluation indexes is 
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3

1
j j k

h

w h h
=

=   

where j ∈ {1, 2, 3}, 0 ≤ wj ≤ 1. 
hj can be calculated as below. 

1j jh e= −  

ej is the information entropy of the jth evaluation index, for the sample data matrix  
X = {xij}m×3 of the above three evaluation indexes for m service transactions have been 
obtained, and the initial data need to be dimensionless due to the great differences in the 
magnitude. For specific values in positive increments, such as calculation speed, data 
processing speed, and I/O processing speed, the user expects them to be as large as 
possible, and the data is normalised using min-max normalisation, calculated as follows. 

{ }
{ } { }

min
max min

ij ik
ij

ik ik

x x
y

x x
−

=
−

 

Let the normalised matrix after dimensionless processing be Y = {yij}m×3. Then the 
information entropy of each index is as follows. 

1

ln
m

j ij ij
i

e K y y
=

= −   

where j ∈ {1, 2, 3}, and K is constant. When m samples are in a completely unordered 
distribution, yij = 1/m and ej = 1. 

1 1

1 1 1ln ln ln 1
m m

j
i i

e K K m K m
m m m= =

= − = = =   

Thus K = (lnm)–1. 

2.5 Service capability requirement 

A big data workflow may be composed of multiple tasks, each of which has different 
functions, roles, and importance in the overall parallel task, and must be treated 
differently in terms of the degree of their demand for service capabilities. According to 
the structure of DAG, the service capability requirements of tasks in the workflow is 
related to the out-degree of task nodes, the critical path of workflow, task priority, and 
task workload. 

1 Out-degree weight 

The out-degree of the task node has great impact on the subsequent task nodes, and 
the successful execution of the task can increase concurrent execution of the 
subsequent tasks. Therefore, the weight WOd(vi) of the task node vi on the out-degree 
is defined as follows. 
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( )

( )
( ) ( ) ( ){ } ( )

( ) ( ) ( ){ }
( ) ( ) ( ){ } ( )

1 2

1 2

1 2

, 0
max , , ...,

min , , ...,
0

max , , ...,

i
i

n
Od i

n
i

n

od v od v
od v od v od v

W v
od v od v od v

od v
od v od v od v

 ≠
= 
 =


 

where od(vi) is the out-degree of the task vi. 

2 Critical path weight 

A critical path of workflow is a path from the entry node to the exit node, with the 
maximum sum of computation costs and communication costs. 

The weight coefficient in the critical path is defined as follows. 

( ) 1,
0.5,

i
Cp i

i

v Cp
W v

v Cp
∈

=  ∉
 

We consider the nodes in critical path are more import that the nodes not on, thus, 
the weight coefficients of task nodes located on critical paths are set to 1. The weight 
coefficients of task nodes on non-critical paths can be a decimal between 0 and 1, 
considering uniform distribution to be prior distribution, it is set to 0.5. 

3 Execution order priority weight 

There is an execution order dependency in the DAG, and task i
jv  can only be 

executed after ( )i
jpred v  have been executed. For this reason, the task execution 

order priority rank(vi) of task vi is introduced to distinguish the priority execution 
order of different tasks in the task graph. 

The execution order priority rank(vi) of task vi is defined as follows. 

( )
( )

( )
( )

1 Ø
max { ( ) +1} Ø

i

i
i

i
v Succ v

Succ v
rank v rank v Succ v

∈

 ==  ≠
 

The execution order priority weight WRank(vi) of the task node vi is defined as 
follows. 

( )
( ) ( )( )

( )( )
1

1

max
exp

max

n
i jj

Rank i n
jj

rank v rank v
W v

rank v
=

=

 −
 =
 
 

 

4 Task workload weight 

The task workload is divided into task computation workload, data processing 
workload, and I/O processing workload. Three types of workloads have different 
scales and units, and data normalisation is required for each dimension to eliminate 
the differences in different scales and units. Suppose a big data workflow contains n 
tasks, and the task computation workload, data processing workload, and I/O data  
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processing workload of the three dimensions of the n tasks are represented by a 
matrix An×3 = (aij)n×3 with n rows and three columns. The z-score standardisation 
process is performed for each dimension, and the resulting data will conform to a 
standard normal distribution. 

( )

*

1

2

1

, {1, 2, ..., }, {1, 2, 3},

1 ,

1 .

ij j
ij

j

n
j iji

n
j ij ji

a μ
a i n j

σ

μ a
n

σ a μ
n

=

=

−
= ∈ ∈

=

= −





 

The workload weight WWorkload(vi) of the task node vi is defined as follows. 

( ) * * *
1 1 2 2 3 3+ +Workload i i i iW v w a w a w a= × × ×  

where w1, w2, and w3 are the weights of the obtained cs, ds, and os evaluation indexes, 
respectively. 

The service capability requirement SR(vi) of the task vi is calculated as follows. 

( ) ( ) ( ) ( ) ( ).i Od i Cp i rank i Workload iSR v W v W v W v W v= × × ×  

3 Cloud-SDLS algorithm 

According to the service capability model presented in last section, this paper propose the 
service dynamic level scheduling algorithm in cloud datacentre (Cloud-SDLS) to extends 
the traditional DLS algorithm by considering the service capability requirement of tasks 
and service capability support of virtual machines. 

The service dynamic level is defined as follows: 

( ) ( )
( )

( ){ } ( ) { }( )max , ,, , max , +
i

k

SR v
A M E ESR vi j i j i i j j i i jSDL v vm SS v vm SL v t t t t=   − −   

where SS(vi, vmj) is the service capability support of vmj when vi is scheduled on vmj. 
SR(vi) is service capability requirement of the task vi for a VM. max{SR(vk)} is the 
maximum of service capability requirements of tasks of a big data workflow. SL(vi) is the 
static level of the task, ,max{ , }A M

i j jt t  is the time when the task vi can begin execution on 

the virtual machine vmj, ,
A
i jt  denotes the time when the data will be available if the task vi 

is scheduled on the virtual machine vmj, and M
jt  denotes the time when the virtual 

machine vmj will be available for the execution of the task vi. E
it  denotes the average 

execution time of the task vi on all the free virtual machines, and ,
E
i jt  denotes the 

execution time of the task vi on the virtual machine vmj. 
The proposed Cloud-SDLS algorithm is very scalable and can meet different kinds of 

service capability support requirements. 
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Algorithm service dynamic level scheduling algorithm in cloud datacentre (Cloud-SDLS) 
Inputs: 
DAG = (V, E, Q, D, O, C): a big data workflow 
Cloud = (VM, CS, DS, OS, L, B): a cloud datacentre 
Outputs: 
Assign = {(vi, vmj)}: the set of task’s placements 
Ttotal: completion time of big data workflow 
procedure Cloud-SDLS 
 SDLS ← {SDL(vi, vmj), vmj ∈ VM, vi ∈ DAG, 1 ≤ i ≤ n, 1 ≤ j ≤ m} 
 L ← {vi| indegree(vi) = 0, 1 ≤ i ≤ n} 
 Assign ← Ф 
 ε ← L 
 ts(vi) = 0, te(vi) = 0, 1 ≤ i ≤ n 
 τidle(vmj) = 0, 1 ≤ j ≤ m 
 Ttotal = 0 
 do until ε = Ф 
  for each vi ∈ ε 
   (vi, vmj) ← argmaxvi,vmj SDLS 
   Assign ← Assign+{(vi, vmj)} 
   ε ← ε – {vi} 
   VM ← VM – {vmj}; 
   ts(vi) = max{ts(vi), τidle(vmj)}; 
   TComm(vi) = max{ctk,i| vk ∈ pred(vi)}; 
   ( ) ( ) ( ), , + + + + ;

j j j

i i i
e i j s e i j Comm i

vm vm vm

q d ot v vm t t v vm T v
cs ds os

=  

   τidle (vmj) = te(vi, vmj); 
   for each immediate successor vx of task vi 
    ts(vx) = max(ts(vi), τidle (vmj)) 
    indegree(vx) = indegree(vx) – 1 
    if indegree(vx) = 0 
     ε ← ε +{ vx } 
    end if 
   end for 
   VM ← VM + {vmj} 
  end for 
 loop 
 Ttotal = max{te(vi), 1 ≤ i ≤ n} 
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4 Experiment results and analysis 

4.1 Experiments environment and configuration 

To validate the performance of our algorithm, we build a simulation environment of a 
cloud computing system with CloudSim 3.0 (Calheiros et al., 2009). CloudSim 3.0 is 
developed by Java, which supports cloud computing resource management and 
scheduling simulation. This simulation program runs on a ThinkPad with Intel(R) 
Core(TM) i7-5500, 2.4GHz, 8 GB, Windows 7 64-bit operating system. In the below 
experiment, the average communication time between a task and its successor tasks is set 
to the average execution time of the task multiply CCR (the communication to 
computation ratio). 

Figure 3 Comparison of scheduling length of Cloud-SDLS, DLS, HEFT under different CCR 
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Figure 4 Comparison ratio of successful execution of Cloud-SDLS, DLS, HEFT under different 
CCR 
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4.2 Experiment 1: Cloud-SDLS vs. DLS and HEFT 

This experiment evaluates the performance of our proposed Cloud-SDLS algorithm. The 
amount of task nodes and edges in generated workflow graph are both set to 200. We 
compare traditional DLS and HEFT with Cloud-SDLS in the scheduling length and the 
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ratio of successful execution, with CCR as 0.1, 0.3, 0.6, 2, 4, or 8. Figures 3 and 4 show 
the results. 

Figure 3 shows that Cloud-SDLS is more scalable for different CCR and performs 
better than DLS and HEFT methods in different CCR. 

In Figure 4, the ratio of successful execution of Cloud-SDLS is much higher than 
DLS and HEFT. This indicates that the service capability requirement and service 
capability support mechanism based Cloud-SDLS algorithm makes successful schedule 
of tasks and the requirement of tasks’ service capability requirement to be better satisfied. 

4.3 Experiment 2: varying number of tasks 

In experiment 2, CCR is set to 1.5, we generate workflow graph with 50 to 120 tasks. We 
use 200 VMs with 300 links. The comparison result of Cloud-SDLS with DLS and HEFT 
in the scheduling length and the ratio of successful execution is shown in Figure 5 and 
Figure 6. 

Figure 5 Comparison of scheduling length of Cloud-SDLS with DLS and HEFT under a varying 
number of tasks 
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Figure 6 Comparison ratio of successful execution of Cloud-SDLS with DLS and HEFT under a 
varying number of tasks 
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As shown in Figure 5, when the number of tasks increases, the average scheduling length 
of all three algorithms increases, but the scheduling length of Cloud-SDLS is smaller than 
that of both HEFT and DLS. This is because Cloud-SDLS takes into account both the 
service capability requirement of the tasks and the service capability support of the VMs. 
When the dynamic levels of a task on two VMs are equal, the VM with larger service 
support capacity has a larger service dynamic level. Cloud-SDLS algorithm selects the 
VM with the largest service dynamic level for a task, which can improve the speed and 
success rate of the task execution. As a result, the scheduling length of Cloud-SDLS is 
always smaller than that of HEFT and DLS in scheduling length. 

Figure 6 shows that the average ratio of successful execution of Cloud-SDLS is much 
higher than that of HEFT and DLS, which also verifies that selecting the VM with larger 
service capacity support to execute a task can improve the execution success rate. 

4.4 Experiment 3: varying number of VMs 

In experiment 3, CCR is set to 1, the number of VMs from 200 to 500 is created 
randomly, and the task graph has 300 tasks. The experiment results are shown in  
Figure 7 and Figure 8. As the number of VMs increases, smaller scheduling length and a 
higher ratio of successful execution. 

Figure 7 Comparison of scheduling length of Cloud-SDLS with DLS and HEFT under a varying 
number of VMs 

500

600

700

800

900

200 250 300 350 400 450 500

Av
er

ag
e 

sc
he

du
le

 le
ng

th
 

Number of VMs 

DLS
HEFT
Cloud-SDLS

 

Figure 8 Comparison ratio of successful execution of Cloud-SDLS with DLS and HEFT under a 
varying number of VMs 
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5 Conclusions and future work 

This paper proposes a metric formula for the service capability requirement of every task 
in big data workflows and a metric formula for the service capability support of every 
VM in a cloud datacentre based on the weights of service capability evaluation indexes. 
The service capability requirement of the task and the service capability support of the 
virtual machine are merged into the DLS algorithm to obtain the service dynamic level 
scheduling algorithm in the cloud datacentre (Cloud-SDLS). However, the cloud 
computing environment is dynamically changing, and how to adaptively adjust the 
weights of the service capability evaluation indexes according to the changes of the cloud 
environment is the content to be studied in the future. 
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