

International Journal of Intelligent Systems Technologies
and Applications

ISSN online: 1740-8873 - ISSN print: 1740-8865
https://www.inderscience.com/ijista

Service capability aware big data workflow scheduling approach
in cloud datacentre

Jie Cao, Jinchao Xu, Bo Wang

DOI: 10.1504/IJISTA.2024.10059902

Article History:
Received: 24 July 2022
Last revised: 13 December 2022
Accepted: 22 August 2023
Published online: 05 February 2024

Powered by TCPDF (www.tcpdf.org)

Copyright © 2024 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijista
https://dx.doi.org/10.1504/IJISTA.2024.10059902
http://www.tcpdf.org

 Int. J. Intelligent Systems Technologies and Applications, Vol. 22, No. 1, 2024 1

 Copyright © 2024 Inderscience Enterprises Ltd.

Service capability aware big data workflow
scheduling approach in cloud datacentre

Jie Cao
Software Engineering College,
Zhengzhou University of Light Industry,
Zhengzhou, 450002, China
Email: 42675492@qq.com

Jinchao Xu*
Information Centre,
Shanghai Jiaotong University,
Shanghai, 200240, China
Email: xujc@sjtu.edu.cn
*Corresponding author

Bo Wang
Software Engineering College,
Zhengzhou University of Light Industry,
Zhengzhou, 450002, China
Email: 735693062@qq.com

Abstract: With the increasing application of cloud computing, big data
workflow scheduling in cloud datacentre also become an important focus of
research. How to guarantee minimal scheduling length is the main challenge in
scheduling workflow in cloud-based environments. The main limitation of
proposed approaches stems is that they overlook the service capability support
levels of the virtual machines and service capability requirement levels of the
different tasks in a workflow, thus risking resulting in extremely poor
processing efficiency. We propose a service dynamic level scheduling
algorithm in cloud datacentre (Cloud-SDLS) that consists of three stages:
virtual machines’ service capability support computation, tasks’ service
capability requirement computation, and service dynamic level scheduling.
Experimental results show that the proposed algorithms effectively satisfy the
QoS in service capability requirement. It is significant to shorten workflow
completion time in practice.

Keywords: cloud computing; service capability requirement; service capability
support; workflow scheduling.

Reference to this paper should be made as follows: Cao, J., Xu, J. and
Wang, B. (2024) ‘Service capability aware big data workflow scheduling
approach in cloud datacentre’, Int. J. Intelligent Systems Technologies and
Applications, Vol. 22, No. 1, pp.1–15.

 2 J. Cao et al.

Biographical notes: Jie Cao received his MS in Computer Technology from
the Shanghai Maritime University in 2010, and PhD in Computer Science from
the Tongji University, Shanghai, China, in 2015. He is currently a Lecturer at
the Software Engineering College, Zhengzhou University of Light Industry.
His research interests include distributed systems, cloud computing, resource
management and big data computing platform.

Jinchao Xu received his MS in Mathematics from the Shandong Normal
University in 2008, and PhD in Computer Science from the Tongji University
in 2013. He is currently a Lecturer at the School of Medicine, Shanghai
Jiaotong University. His research interests include software security, cloud
computing and artificial intelligence.

Bo Wang received his PhD in Computer Science from the Xi’an Jiaotong
University, Xian, China in 2017. He is currently a Lecturer at the Software
Engineering College, Zhengzhou University of Light Industry. His research
interests include distributed systems, cloud computing, resource management
and big data computing platform.

1 Introduction

Big data workflows processing has become crucial due to massive analytics demands in
all the major business and scientific domains such as banking, fraud detection, healthcare,
demand forecasting, and scientific explorations (Smith, 2020). Cloud computing play a
very important role in big data workflows processing. However, scheduling big data
workflows to VM clusters so that they can be processed efficiently is a very difficult task.
In addition, due to the diversity of VM types provided by cloud service providers, the
performance of VMs varies greatly, and the effect of processing different types of tasks
varies greatly, which further increases the difficulty of scheduling big data workflows. It
became a serious problem to efficiently schedule big data tasks to cloud datacentre to
guarantee better performance (Rjoub et al., 2020).

Researchers have proposed many classical algorithms for workflow scheduling in
distributed computing systems. Such as HEFT (Topcuouglu et al., 2002), Min-Min
(Blythe et al., 2005), and Max-Min (Braun et al., 2001). In recent years, more algorithms
on considering availability and cost are proposed. Xu et al. propose an algorithm of task
non-replication for minimising resource consumption with a reliability goal (Xu et al.,
2018). Chen and Xiao (2019) present the search and earliest finish time (SEFT) algorithm
for a bounded number of heterogeneous computing nodes intending to minimise the
computing cost for scheduling DAGs on the heterogeneous cloud platform. Wei et al.
(2018) propose a variety schedule algorithms for big data processing workflow
applications on clouds to minimise the cost and satisfy the deadline constraints. Wang
et al. (2012) propose a trust-based dynamic level scheduling algorithm called Cloud-DLS
to minimise time costs and ensure a secure execution of tasks. It is a Bayesian approach
for a cognitive trust model which relies on direct and indirect trust sources to derive trust
values for cloud resources. Sun et al. (2015) proposed re-stream, an energy-efficient
scheduling algorithm to optimise the energy consumption and response time for
executing workflow applications. Ghafarian and Javadi (2015) propose a workflow
scheduling system that partitions a workflow into sub-workflows to minimise data

 Service capability aware big data workflow scheduling approach 3

dependencies among the sub-workflows. Chen et al. (2020) propose a novel real-time
scheduling algorithm using task-duplication to minimising both the completion time and
monetary cost of processing big data workflows in clouds. Dai et al. (2018) propose a
resource allocation algorithm to make trade-offs among the performance, availability and
cost for processing big data applications on clouds. In Wang et al. (2017), the authors
propose a data-dependency-driven task scheduling scheme, named D3S2, for big data
processing. D3S2 is mainly composed of two parts: dependency-aware placement
mechanism, and transfer-aware task scheduling mechanism.

Focus on the workflow scheduling problem and consider the service capability
support levels of the virtual machines and service capability requirement levels of the
different tasks in a workflow, in this paper, we propose an efficient workflow scheduling
algorithm called the service dynamic level scheduling algorithm in cloud datacentre
(Cloud-SDLS), considering VMs’ service capability support and tasks’ service capability
requirement.

2 Problem description

2.1 Modelling big data workflow

Definition 1 (Big data workflow): A certain big data workflow in cloud environments is a
directed acyclic graph (DAG), which is described as Gi = (Vi, Ei, Qi, Di, Oi, Ci).

• { }1 2, , , :
i

i i i
i VV v v v=  the task set in the workflow Gi, i

jv is the jth task in the

workflow Gi.

• Ei ⊆ Vi × Vi: the set of directed edges between tasks, edge ,
i
p q ie E∈ represents the

precedence constraint that task i
pv should be finished before the task i

qv starts, here
i
pv is a direct precursor of andi i

q qv v is a direct successor of .i
pv

()i
jpred v denotes the set of all the direct precursors of and ()i i

j jv succ v describes

the set of all the direct successors of .i
jv

• { }1 2, , ,
i

i i i
VQ q q q=  is the set of the computational workload in some machine

instructions for Vi, and a i
jq denotes the computational workload for task .i

jv

• { }1 2, , ,
i

i i i
VD d d d=  is the set of the data process workload for Vi, and a i

jd denotes

the data process workload for task .i
jv

• { }1 2, , ,
i

i i i
VO o o o=  is the set of the I/O workload for Vi, and a i

jo denotes the I/O

workload for task .i
jv The data to be communicated between tasks can be transmitted

only after I /O processing, such as coding and encryption before data transmission.

• { }, ,i i i
i i ijk j kC c v v V V V= ∈ ⊆ × is the data transfer workload between tasks.

 4 J. Cao et al.

Besides, in a given workflow graph, if () ,i
jpred v = φ we call i

jv entry task, if

() ,i
jsucc v = φ we call i

jv exit task. We assume that a workflow has exactly one entry
task and one exit task.

A sample workflow denoted as w is shown in Figure 1. The eight tasks of a workflow
described as {v1, v2, ···, v8}. The associated weights on the edges denote the data transfer
workload between the tasks.

Figure 1 A sample workflow

5 6 5

1 1

1

10
1

1 4

1

v1

q1|d1|o1

 v4
q4|d4|o4

 v2
q2|d2|o2

 v3
q3|d3|o3

 v5

q5|d5|o5
 v6
q6|d6|o6

1 v7
q7|d7|o7

 v8
q8|d8|o8

2.2 Modelling cloud datacentre

We assume that the cloud datacentre consists of different types of virtual machines
offered by IaaS cloud service providers. Assume that the average bandwidth between
virtual machines is roughly equal, different types of virtual machines have different
resource configurations, such as different networks, CPU and memory resources, etc.

Definition 2 (Cloud datacentre): A specific cloud data centre can be represented as an
undirected graph, which is described as Cloud = (VM, CS, DS, OS, L, B),

• VM = {vm1, vm2, …, vmm} is the VM set in Cloud, and vmi denotes the ith VM in
cloud.

• CS = {cs1, cs2, …, csm} is the set of the calculating speed of VMs, and csi denotes the
calculating speed of vmi.

• DS = {ds1, ds2, …, dsm} is the set of the data process speed of VMs, and dsi denotes
the data process speed of vmi.

• OS = {os1, os2, …, osm} is the set of the I/O process speed of VMs, and osi denotes
the I/O process speed of vmi.

• L = {lij} is the set of communication links between VMs.

 Service capability aware big data workflow scheduling approach 5

• B = {bij} is the set of communication bandwidth of the links in L. bij is the data
volume go through lij at certain intervals.

A sample cloud datacentre denoted as cloud is shown in Figure 2. The six VMs in cloud
are described as VM ={vm1, vm2, …, vm6}. The associated weights on the edges denote
the communication bandwidth between the VMs.

Figure 2 A sample cloud datacentre

1

3 2

2 1

1

vm1

cs1|ds1|os1

 vm4
cs4|ds4|os4

 vm2
cs2|ds2|os2

 vm3
cs3|ds3|os3

 vm5
cs5|ds5|os5

 vm6
cs6|ds6|os6

1

2

2.3 Problem formulations

Let (,)i
mjEST v vm be the earliest execution start time of i

jv on vmm, and (,)i
mjEFT v vm

be the earliest finish time i
jv on vmm.

(,) and (,)i i
m mj jEST v vm EFT v vm can be computed by (1) and (2), respectively.

() ()
()

(){ }{ },, max , , max , +
i i

jk

i i i i
m m nj j k k j

v pred v
EST v vm Available v vm EFT v vm ct

∈
= (1)

() (), , + + +
i i i
j j ji i

m mj j
m m m

q d o
EFT v vm EST v vm

cs ds os
= (2)

where ,
, ,

i
k ji

k j
mn

ct
ct

b
= is the communication time of edge ,

i
k je transferring data from task

i
kv (scheduled on vmn) to task i

jv (scheduled on vmm).

For the entry task , (,) 0.i i
mentry entryv EST v vm =

For the exit task , ()i i
exit exitv EFT v is the whole schedule length. One of the goals of

our paper is to minimise ().i
exitEFT v

 6 J. Cao et al.

2.4 Service capability

A cloud datacentre consisting of different VMs is often referred to as a heterogeneous
cloud computing system. There may be multiple scheduling schemes for a big data
workflow to be executed on VMs of heterogeneous cloud computing systems, and
different scheduling schemes will produce different execution effects. The execution
effect of a big data workflow on heterogeneous cloud computing systems depends on the
computational speed of VMs, data processing speed, communication data processing
speed, transmission speed of communication links, and the degree of matching between
tasks and virtual machines. A task that runs well on one type of virtual machine does not
necessarily work well on another type of virtual machine. On the contrary, it may work
poorly. Therefore, it is important to consider matching service capabilities between tasks
and virtual machines.

Definition 3 (Service capability): Service capability is the degree to which a service
system is capable of providing a service and is often defined as the maximum output rate
of the service system.

From the definition of service capability, the service capability value of VM is between 0
and 1. To discuss the concept of service capability matching, this paper divides service
capability into service capability requirements and service capability support. Service
capability requirement is specific to a task, i.e., how strongly a task requires service
capability. Service capability support is specific to a virtual machine, i.e., the extent to
which a virtual machine can provide service capability.

To ensure that tasks are executed in the desired processing manner when assigning
virtual machines to tasks with different service capability requirements, the service
capability supports of the assigned virtual machines should match the service capability
requirements of the tasks as much as possible. The value of user satisfaction with the
completion of a task by a VM is the most appropriate metric to judge the service
capability matching degree between the task and the VM. Whether a user is satisfied with
services provided by a VM is obtained by combining the service evaluation indexes. In a
cloud datacentre, the performance of virtual machines varies greatly, such as different
computation speed, data processing speed, I/O speed, reliability, availability and so on.

In this paper, we consider only three evaluation metrics for service capability support
of virtual machines, computation speed, data processing speed, and I/O speed of VMs.
An objective determination method based on entropy weights was used to determine the
weights of the three evaluation indexes.

The service capability value which is also called service capability support of vmk is
calculated as follows.

()   
1 2 3+ +k k k kSS vm w cs w ds w os= × × × (3)

where   , andk k kcs ds os are the normalised values of csk, dsk, and osk, respectively. w1, w2,
and w3 are the weights of the obtained cs, ds, and os evaluation indexes, respectively.

w1, w2, and w3 is estimated using the entropy method, which is essentially calculated
using the utility value of the information of the index, and the higher its utility value, the
greater its importance to the evaluation, so the weight of jth evaluation indexes is

 Service capability aware big data workflow scheduling approach 7

3

1
j j k

h

w h h
=

= 

where j ∈ {1, 2, 3}, 0 ≤ wj ≤ 1.
hj can be calculated as below.

1j jh e= −

ej is the information entropy of the jth evaluation index, for the sample data matrix
X = {xij}m×3 of the above three evaluation indexes for m service transactions have been
obtained, and the initial data need to be dimensionless due to the great differences in the
magnitude. For specific values in positive increments, such as calculation speed, data
processing speed, and I/O processing speed, the user expects them to be as large as
possible, and the data is normalised using min-max normalisation, calculated as follows.

{ }
{ } { }

min
max min

ij ik
ij

ik ik

x x
y

x x
−

=
−

Let the normalised matrix after dimensionless processing be Y = {yij}m×3. Then the
information entropy of each index is as follows.

1

ln
m

j ij ij
i

e K y y
=

= − 

where j ∈ {1, 2, 3}, and K is constant. When m samples are in a completely unordered
distribution, yij = 1/m and ej = 1.

1 1

1 1 1ln ln ln 1
m m

j
i i

e K K m K m
m m m= =

= − = = = 

Thus K = (lnm)–1.

2.5 Service capability requirement

A big data workflow may be composed of multiple tasks, each of which has different
functions, roles, and importance in the overall parallel task, and must be treated
differently in terms of the degree of their demand for service capabilities. According to
the structure of DAG, the service capability requirements of tasks in the workflow is
related to the out-degree of task nodes, the critical path of workflow, task priority, and
task workload.

1 Out-degree weight

The out-degree of the task node has great impact on the subsequent task nodes, and
the successful execution of the task can increase concurrent execution of the
subsequent tasks. Therefore, the weight WOd(vi) of the task node vi on the out-degree
is defined as follows.

 8 J. Cao et al.

()

()
() () (){ } ()

() () (){ }
() () (){ } ()

1 2

1 2

1 2

, 0
max , , ...,

min , , ...,
0

max , , ...,

i
i

n
Od i

n
i

n

od v od v
od v od v od v

W v
od v od v od v

od v
od v od v od v

 ≠
= 
 =


where od(vi) is the out-degree of the task vi.

2 Critical path weight

A critical path of workflow is a path from the entry node to the exit node, with the
maximum sum of computation costs and communication costs.

The weight coefficient in the critical path is defined as follows.

() 1,
0.5,

i
Cp i

i

v Cp
W v

v Cp
∈

=  ∉

We consider the nodes in critical path are more import that the nodes not on, thus,
the weight coefficients of task nodes located on critical paths are set to 1. The weight
coefficients of task nodes on non-critical paths can be a decimal between 0 and 1,
considering uniform distribution to be prior distribution, it is set to 0.5.

3 Execution order priority weight

There is an execution order dependency in the DAG, and task i
jv can only be

executed after ()i
jpred v have been executed. For this reason, the task execution

order priority rank(vi) of task vi is introduced to distinguish the priority execution
order of different tasks in the task graph.

The execution order priority rank(vi) of task vi is defined as follows.

()
()

()
()

1 Ø
max { () +1} Ø

i

i
i

i
v Succ v

Succ v
rank v rank v Succ v

∈

 ==  ≠

The execution order priority weight WRank(vi) of the task node vi is defined as
follows.

()
() ()()

()()
1

1

max
exp

max

n
i jj

Rank i n
jj

rank v rank v
W v

rank v
=

=

 −
 =
 
 

4 Task workload weight

The task workload is divided into task computation workload, data processing
workload, and I/O processing workload. Three types of workloads have different
scales and units, and data normalisation is required for each dimension to eliminate
the differences in different scales and units. Suppose a big data workflow contains n
tasks, and the task computation workload, data processing workload, and I/O data

 Service capability aware big data workflow scheduling approach 9

processing workload of the three dimensions of the n tasks are represented by a
matrix An×3 = (aij)n×3 with n rows and three columns. The z-score standardisation
process is performed for each dimension, and the resulting data will conform to a
standard normal distribution.

()

*

1

2

1

, {1, 2, ..., }, {1, 2, 3},

1 ,

1 .

ij j
ij

j

n
j iji

n
j ij ji

a μ
a i n j

σ

μ a
n

σ a μ
n

=

=

−
= ∈ ∈

=

= −





The workload weight WWorkload(vi) of the task node vi is defined as follows.

() * * *
1 1 2 2 3 3+ +Workload i i i iW v w a w a w a= × × ×

where w1, w2, and w3 are the weights of the obtained cs, ds, and os evaluation indexes,
respectively.

The service capability requirement SR(vi) of the task vi is calculated as follows.

() () () () ().i Od i Cp i rank i Workload iSR v W v W v W v W v= × × ×

3 Cloud-SDLS algorithm

According to the service capability model presented in last section, this paper propose the
service dynamic level scheduling algorithm in cloud datacentre (Cloud-SDLS) to extends
the traditional DLS algorithm by considering the service capability requirement of tasks
and service capability support of virtual machines.

The service dynamic level is defined as follows:

() ()
()

(){ } () { }()max , ,, , max , +
i

k

SR v
A M E ESR vi j i j i i j j i i jSDL v vm SS v vm SL v t t t t=   − − 

where SS(vi, vmj) is the service capability support of vmj when vi is scheduled on vmj.
SR(vi) is service capability requirement of the task vi for a VM. max{SR(vk)} is the
maximum of service capability requirements of tasks of a big data workflow. SL(vi) is the
static level of the task, ,max{ , }A M

i j jt t is the time when the task vi can begin execution on

the virtual machine vmj, ,
A
i jt denotes the time when the data will be available if the task vi

is scheduled on the virtual machine vmj, and M
jt denotes the time when the virtual

machine vmj will be available for the execution of the task vi. E
it denotes the average

execution time of the task vi on all the free virtual machines, and ,
E
i jt denotes the

execution time of the task vi on the virtual machine vmj.
The proposed Cloud-SDLS algorithm is very scalable and can meet different kinds of

service capability support requirements.

 10 J. Cao et al.

Algorithm service dynamic level scheduling algorithm in cloud datacentre (Cloud-SDLS)
Inputs:
DAG = (V, E, Q, D, O, C): a big data workflow
Cloud = (VM, CS, DS, OS, L, B): a cloud datacentre
Outputs:
Assign = {(vi, vmj)}: the set of task’s placements
Ttotal: completion time of big data workflow
procedure Cloud-SDLS
 SDLS ← {SDL(vi, vmj), vmj ∈ VM, vi ∈ DAG, 1 ≤ i ≤ n, 1 ≤ j ≤ m}
 L ← {vi| indegree(vi) = 0, 1 ≤ i ≤ n}
 Assign ← Ф
 ε ← L
 ts(vi) = 0, te(vi) = 0, 1 ≤ i ≤ n
 τidle(vmj) = 0, 1 ≤ j ≤ m
 Ttotal = 0
 do until ε = Ф
 for each vi ∈ ε
 (vi, vmj) ← argmaxvi,vmj SDLS
 Assign ← Assign+{(vi, vmj)}
 ε ← ε – {vi}
 VM ← VM – {vmj};
 ts(vi) = max{ts(vi), τidle(vmj)};
 TComm(vi) = max{ctk,i| vk ∈ pred(vi)};
 () () (), , + + + + ;

j j j

i i i
e i j s e i j Comm i

vm vm vm

q d ot v vm t t v vm T v
cs ds os

=

 τidle (vmj) = te(vi, vmj);
 for each immediate successor vx of task vi
 ts(vx) = max(ts(vi), τidle (vmj))
 indegree(vx) = indegree(vx) – 1
 if indegree(vx) = 0
 ε ← ε +{ vx }
 end if
 end for
 VM ← VM + {vmj}
 end for
 loop
 Ttotal = max{te(vi), 1 ≤ i ≤ n}

 Service capability aware big data workflow scheduling approach 11

4 Experiment results and analysis

4.1 Experiments environment and configuration

To validate the performance of our algorithm, we build a simulation environment of a
cloud computing system with CloudSim 3.0 (Calheiros et al., 2009). CloudSim 3.0 is
developed by Java, which supports cloud computing resource management and
scheduling simulation. This simulation program runs on a ThinkPad with Intel(R)
Core(TM) i7-5500, 2.4GHz, 8 GB, Windows 7 64-bit operating system. In the below
experiment, the average communication time between a task and its successor tasks is set
to the average execution time of the task multiply CCR (the communication to
computation ratio).

Figure 3 Comparison of scheduling length of Cloud-SDLS, DLS, HEFT under different CCR

200

300

400

500

600

0.1 0.3 0.6 1 2 3

 A
ve

ra
ge

 sc
he

du
lin

g
le

ng
th

CCR

DLS
HEFT
Cloud-SDLS

Figure 4 Comparison ratio of successful execution of Cloud-SDLS, DLS, HEFT under different
CCR

0.5

0.8

1.1

0.1 0.3 0.6 1 2 3

Av
er

ag
e

Ra
tio

 o
f s

uc
ce

sf
ul

ex

ec
ut

io
n

CCR

DLS
HEFT
Cloud-SDLS

4.2 Experiment 1: Cloud-SDLS vs. DLS and HEFT

This experiment evaluates the performance of our proposed Cloud-SDLS algorithm. The
amount of task nodes and edges in generated workflow graph are both set to 200. We
compare traditional DLS and HEFT with Cloud-SDLS in the scheduling length and the

 12 J. Cao et al.

ratio of successful execution, with CCR as 0.1, 0.3, 0.6, 2, 4, or 8. Figures 3 and 4 show
the results.

Figure 3 shows that Cloud-SDLS is more scalable for different CCR and performs
better than DLS and HEFT methods in different CCR.

In Figure 4, the ratio of successful execution of Cloud-SDLS is much higher than
DLS and HEFT. This indicates that the service capability requirement and service
capability support mechanism based Cloud-SDLS algorithm makes successful schedule
of tasks and the requirement of tasks’ service capability requirement to be better satisfied.

4.3 Experiment 2: varying number of tasks

In experiment 2, CCR is set to 1.5, we generate workflow graph with 50 to 120 tasks. We
use 200 VMs with 300 links. The comparison result of Cloud-SDLS with DLS and HEFT
in the scheduling length and the ratio of successful execution is shown in Figure 5 and
Figure 6.

Figure 5 Comparison of scheduling length of Cloud-SDLS with DLS and HEFT under a varying
number of tasks

0

100

200

300

50 60 70 80 90 100 110 120

Av
er

ag
e

sc
he

du
le

 le
ng

th

Number of tasks

Cloud-SDLS
HEFT
DLS

Figure 6 Comparison ratio of successful execution of Cloud-SDLS with DLS and HEFT under a
varying number of tasks

0.5

0.6

0.7

0.8

0.9

1

50 60 70 80 90 100 110 120Av
er

ag
e

ra
tio

 o
f s

uc
ce

sf
ul

 e
xe

cu
tio

n

Number of tasks

Cloud-SDLS
HEFT
DLS

 Service capability aware big data workflow scheduling approach 13

As shown in Figure 5, when the number of tasks increases, the average scheduling length
of all three algorithms increases, but the scheduling length of Cloud-SDLS is smaller than
that of both HEFT and DLS. This is because Cloud-SDLS takes into account both the
service capability requirement of the tasks and the service capability support of the VMs.
When the dynamic levels of a task on two VMs are equal, the VM with larger service
support capacity has a larger service dynamic level. Cloud-SDLS algorithm selects the
VM with the largest service dynamic level for a task, which can improve the speed and
success rate of the task execution. As a result, the scheduling length of Cloud-SDLS is
always smaller than that of HEFT and DLS in scheduling length.

Figure 6 shows that the average ratio of successful execution of Cloud-SDLS is much
higher than that of HEFT and DLS, which also verifies that selecting the VM with larger
service capacity support to execute a task can improve the execution success rate.

4.4 Experiment 3: varying number of VMs

In experiment 3, CCR is set to 1, the number of VMs from 200 to 500 is created
randomly, and the task graph has 300 tasks. The experiment results are shown in
Figure 7 and Figure 8. As the number of VMs increases, smaller scheduling length and a
higher ratio of successful execution.

Figure 7 Comparison of scheduling length of Cloud-SDLS with DLS and HEFT under a varying
number of VMs

500

600

700

800

900

200 250 300 350 400 450 500

Av
er

ag
e

sc
he

du
le

 le
ng

th

Number of VMs

DLS
HEFT
Cloud-SDLS

Figure 8 Comparison ratio of successful execution of Cloud-SDLS with DLS and HEFT under a
varying number of VMs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

200 250 300 350 400 450 500

Av
er

ag
e

Ra
tio

 o
f s

uc
ce

sf
ul

 e
xe

cu
tio

n

Number of VMs

Cloud-SDLS
HEFT
DLS

 14 J. Cao et al.

5 Conclusions and future work

This paper proposes a metric formula for the service capability requirement of every task
in big data workflows and a metric formula for the service capability support of every
VM in a cloud datacentre based on the weights of service capability evaluation indexes.
The service capability requirement of the task and the service capability support of the
virtual machine are merged into the DLS algorithm to obtain the service dynamic level
scheduling algorithm in the cloud datacentre (Cloud-SDLS). However, the cloud
computing environment is dynamically changing, and how to adaptively adjust the
weights of the service capability evaluation indexes according to the changes of the cloud
environment is the content to be studied in the future.

Acknowledgements

Sponsored by the National Natural Science Foundation of China (Grant No.
RJX20190057), the project of science and technology of the Henan province, China
(Grant No. 172102210540, 202102210149), the breakthrough project of social
development science and technology of Shanghai, China (Grant No. 21DZ1205000), and
the Research Fund for the Doctoral Program of Zhengzhou University of Light Industry,
China (Grant No. 2016BSJJ042).

References
Blythe, J., Jain, S., Deelman, E., Gil, Y., Vahi, K., Mandal, A. and Kennedy, K. (2005) ‘Task

scheduling strategies for workflow-based applications in grids’, in Proceedings of IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, pp.759–767.

Braun, T.D., Siegel, H.J., Beck, N. et al. (2001) ‘A comparison of eleven static heuristics for
mapping a class of independent tasks onto heterogeneous distributed computing systems’,
Journal of Parallel and Distributed Computing, Vol. 61, No. 6, pp.810–837.

Calheiros, R.N., Ranjan, R., Rose, C.A.F.D. et al. (2009) Cloudsim: A Novel Framework for
Modeling and Simulation of Cloud Computing Infrastructures and Services, ArXiv Preprint,
arXiv: 0903.2525.

Chen, H.K., Wen, J.M., Witold, P. and Wu, G.H. (2020) ‘Big data processing workflows oriented
real-Time scheduling algorithm using task-duplication in geo-distributed clouds’, IEEE
Transactions on Big Data, Vol. 6, No. 1, pp.131–144.

Chen, W. and Xiao, W. (2019) ‘Cost-efficient task Scheduling for parallel applications on
heterogeneous cloud environment’, in Proceeding of IEEE 21st International Conference on
High Performance Computing and Communications, pp.1651–1657.

Dai, W., Qiu, L., Wu, A. and Qiu, M. (2018) ‘Cloud infrastructure resource allocation for big data
applications’, IEEE Transactions on Big Data, Vol. 4, No. 3, pp.313–324.

Gao, Z.W. and Zhang, K. (2012) ‘The research on cloud computing resource scheduling method
based on time-cost-trust model’, in Proceeding of the 2nd International Conference on
Computer Science and Network Technology, pp.939–942.

Ghafarian, T. and Javadi, B. (2015) ‘Cloud-aware data intensive workflow scheduling on volunteer
computing systems’, Future Generation Computer Systems, Vol. 51, No. 1, pp.87–97.

Rjoub, G., Bentahar, J. and Wahab, O.A. (2020) ‘Big trust scheduling: trust-aware big data task
scheduling approach in cloud computing environments’, Future Generation Computer
Systems, Vol. 110, pp.1079–1097.

 Service capability aware big data workflow scheduling approach 15

Smith, S.P. (2020) ‘Cost-efficient dynamic scheduling of big data applications in apache spark on
the cloud’, The Journal of Systems and Software, Vol. 162, No. 1, pp.1–14.

Sun, D.W., Zhang, G.Y., Yang, S.L., Zheng, W.M., Khan, S.U. and Li, K.Q. (2015) ‘Re-stream:
real-time and energy-efficient resource scheduling in big data stream computing
environments’, Information Sciences, Vol. 319, No. 1, pp.92–112.

Topcuouglu, H., Hariri, S. and Wu, M.Y. (2002) ‘Performance-effective and low-complexity task
scheduling for heterogeneous computing’, IEEE Transactions on Parallel and Distributed
Systems, Vol. 13, No. 3, pp.260–274.

Wang, B., Wu, Y.J., Yang, X.L. and Sun, Q.F. (2017) ‘Dependency-driven task scheduling scheme
of big data processing’, Journal of Software, Vol. 28, No. 12, pp.3385−3398.

Wang, W., Zeng, G.S., Tang, D. and Yao, J. (2012) ‘Cloud-DLS: dynamic trusted scheduling for
cloud computing’, Expert Systems with Applications, Vol. 39, No. 3, pp.2321–2329.

Wei, Z., Qin, Y.S., Bugingo, E. et al. (2018) ‘Cost optimization for deadline-aware scheduling of
big-data processing jobs on clouds’, Future Generation Computer Systems, Vol. 82, No, 1,
pp.244–255.

Xu, H.Z., Li, R.F. and Zeng, L.N. (2018) ‘Parallel task scheduling for resource consumption
minimization with reliability, constraint’, Journal of Computer Research and Development,
Vol. 55, No. 11, pp.2569–2583.

