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Abstract: Precise detection of dementia biomarkers in the brain enables early 
understanding of pathology variations. Owing to which there is a need for 
studying different dementia biomarker in magnetic resonance (MR) image for 
its specific changes between normal and severity stages to categorise the 
prognostic difference. The present study is an attempt to utilise an optimised 
framework with fused radiomic and deep features based on least absolute 
shrinkage and selection operator (LASSO) using a hybrid meta-heuristic 
optimiser for classification. The investigation is attempted on Alzheimer’s 
disease neuroimaging initiative (ADNI) database. The radiomic and deep 
features were extracted from the considered biomarkers and then fused. 
Further, the significant features were obtained using LASSO model. Then, 
those features were input to hybrid meta-heuristic optimiser with machine 
learning model for classification. From the result, it was identified that 
hippocampus, along with the brainstem, gave higher classification accuracy of 
97.87% to identify prognostic differences for considered classes. Therefore, the 
quantifiable interpretation was claimed to improve clinical assessment. 
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1 Introduction 

Neuro-degenerative disorder, such as dementia, cause irreversible brain deterioration. 
The chronic disorder is estimated to affect more than 150 million worldwide by 2050 
according to the world Alzheimer disease (AD) report of 2018 (Gao, 2021). This kind of 
disorder is said to cause cognitive and inhibitor function disabilities. This change has a 
considerable impact on various brain structures and causes atrophy (Mofrad et al., 2021; 
Veluppal et al., 2022; Rui et al., 2022). Currently, clinical score such as mini mental state 
examination (MMSE) having a score range of 0–30, prominently evaluate the preliminary 
changes. The different range of scores in various stages such as normal, early mild 
cognitive impairment (EMCI), mild cognitive impairment (MCI), late mild cognitive 
impairment (LMCI) and AD help to categorise the disorder (Jiang et al., 2021). However, 
this score is ambiguous due to its inconsistent pathological changes during progression. 
Consequently, there is a need for identifying the appropriate brain biomarkers that 
indicate the reliable severity changes in progression which might improve the diagnosis. 
Further, significant biomarkers for severity changes in dementia are less explored (Zhang 
et al., 2019; Alinsaif et al., 2021). 

Studies show that neuro-pathological dysfunctions are highly detected in demented 
subjects (Xiaoli et al., 2018; Rallabandi et al., 2020; Mustafa and Brittany, 2022). Precise 
investigation on regions closely related to limbic system, such as ventricle, hippocampus, 
brainstem and midbrain, could improve the dementia diagnosis (Patel et al., 2020).  
Sub-cortical structures have synaptic loss in medial temporal lobe which might cause 
morphometric changes in hippocampus region (Liu et al., 2020; Rallabandi et al., 2020). 
Enlargement of ventricle and structural changes were observed in ventricle due to tissue 
loss in the cortex region (Luca et al., 2006). And degeneration of raphe nucleus cause 
brain stem atrophies (Braun and Van Eldik, 2018). While, midbrain deformation was 
detected due to significant decline of neuron in posterior region (Lee et al., 2015). Thus, 
quantitative diagnosis on those biomarker regions helped to understand the transition in 
severity stages effectively. The intricate biomarker regions were sparsely examined for 
dementia severity progression. And, the micro and macroscopic structural variations of 
biomarkers could be revealed using magnetic resonance imaging (MRI) technique. By 
this, it was proved that the method efficiently examined the biomarkers atrophy in a  
non-invasive way. Also, it possessed the ability to reveal the intracranial tissue variations 
with varying contrast and employed in various literatures for dementia differential 
diagnosis (Feng et al., 2018; Chitradevi et al., 2021; Alinsaif et al., 2021; Veluppal et al., 
2022). However, those techniques could not reveal the quantitative information about the 
progress of this disease. Hence, it lacked to support to improve the sensitivity and 
specificity of severity stages. Currently, automated machine learning methods are widely 
employed to capture the pathophysiological changes in considered regions. 

Most of the aforementioned methods could extract highly consistent spatial variation 
and latent information which is found in pixel intensity of sensitive medical image to 
improve the prediction (Devulapalli et al., 2021). Conventional approaches such as  
multi-scale transformation, local histogram detection, and statistical features, are widely 
used to understand the atrophy in dementia (Arco et al., 2021; Hazarika et al., 2021b). 
However, those features were found to be shallow for prediction and undesirable to 
characterise the relevant distinction in complex structures. Currently, radiomic features 
have become prevalent in prognostic prediction of medical images. This image 
characterisation based feature could provide reliable high level information about the 
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spatial changes that might improve the stability of detection performance (Hedayati et al., 
2021). Further, development in deep learning utilises its capability to extract the 
discriminative local and global feature from the multilayer network (Cheng et al., 2017). 
Such features are extensively used in complex medical dataset to identify the pattern 
changes (Zhang et al., 2021a). Therefore, combining the extracted radiomic and deep 
features might support to capture the complex elusive difference in medical images. 
Thus, the fusion of those features support to highlight different intensity and spatial 
information about the image which might help to improve the borderline in disease 
categorisation. 

Advancement in the feature extraction provides high dimensional data due to various 
observations in an image. Identification of relevant features, reduction in redundancy and 
over-fitting require a selection of salient features which might improve the prediction 
ability of neuro-disorder (Zhang et al., 2021b; Ghaffari et al., 2022). Methods, such as 
principal component analysis, fisher discriminant analysis, locality preserving projection, 
mutual information, linear discriminant analysis were attempted to reveal the optimal 
features for classification (Khaire and Dhanalakshmi, 2019). However, those methods 
have perturbation in reduction due to increased pairwise selection error and excessive 
computation while handling the multivariate features. Reliable feature selection provides 
stable performance with better trade-off between classification error and bias variance 
(Zhang et al., 2017). Recently, supervised learning sparse logistic regression method, 
such as least absolute shrinkage and selection operator (LASSO), is considered to handle 
medical image based on meta-data (Huang et al., 2020). This is based on flexible 
parameter regularisation and factor adjustment for shrinkage of coefficients. Then  
non-zero variables from adjustments are assigned to be significant features with less 
prediction error (Lee and Cai, 2020). This technique has less feature sparsity with 
enhanced variable association which can avoid over-fitting. This method is widely used 
in various biomedical applications such as blood vessels, rectal cancer and heart valve 
analysis. Hence, it could be suitable to improve the classification of dementia differential 
diagnosis. 

Pattern classification and prediction of MR images are extensively applied in support 
machine (SVM) for classification. This model can learn the distribution of multivariate 
features using hyper plane and it can identify different classes (Díaz-Vico et al., 2020; 
Hazarika et al., 2021b). This helps to handle over-fitting of samples and improve 
approximation ability in multiclass problems based on its error correcting code schemes 
(Golrokh and Hojjat, 2022). The fore mentioned method has the ability to predict the 
differences in several medical disorders with improved performance. The states of 
dynamic features classification accuracy for multiclass could be improved by identifying 
the appropriate choice of kernels and corresponding feature set. Neural networks model 
was said to consume more execution and tuning to handle the high-dimensional large 
medical dataset in classification (Aljuaid and Anwa, 2022; Cai et al., 2020). 

Effectiveness of the social algorithms aids to improve the desired function that 
contributes to overcome the overfitting challenge in precise identification of different 
disease stages (Zeng et al., 2018). Those methods have the ability to provide a solution in 
large search space, and also, they support to attain the near optimal solution with 
effective computation. The algorithms are usually based on the adaptation of an animal or 
birds social behaviour. The effectiveness of the solution was assessed based on the 
iteration of fitness function, where, the weaker solutions are eliminated in the search 
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space. Commonly, particle swarm optimisation (PSO) based SVM is widely used to 
provide an improved performance in MR based brain tumour detection and various brain 
abnormalities. This might be due to its exploration ability and speed convergence. 
Further, this method sometimes has less significance due to its exploration ability leads to 
local minima. Subsequently, Grey wolf optimisation (GWO) method has adaptability to 
parameter changes and use hierarchical approach in its search (Şenel et al., 2018). This 
cause scalable performance and support to find desirable solution due to its exploitation 
mechanism to handle boarder search space. These algorithms are used in the diagnosis of 
breast cancer, diabetes and seizure disorders. Recently, hybrid social algorithms play a 
major role in improvement of classifier performance (Abdulhameed et al., 2021). This 
work aims to utilise the potential capability of GWO with PSO in local and global search 
without local fall. Thus, considered hybrid classifiers attain superior performance in 
classification which improves the discrimination ability of considered classes. 

1.1 Effectiveness of the proposed study 

The objective of the study is to recognise the prominent biomarkers in MR images by 
identifying appropriate textural variations to improve the differential diagnosis of normal, 
EMCI, LMCI, MCI and AD subjects. The novelty of this study is to use the significant 
fused feature from radiomic and deep learning models along with dual optimiser for 
classification. The primary anatomic region such as ventricle, hippocampus, midbrain 
and brainstem are attempted to observe the quantitative variations in various stages of 
dementia. The combined ability of radiomic and deep features and dual optimiser for 
classification in MR images are extensively analysed for discriminative differentiation. 
Prognostic evaluation is also attempted to identify the discriminative power of biomarker 
using the novel features and classification model. Experimental and clinical analysis in 
this study assesses the effect of fused features, ranking, hybrid classification performance 
for normal, EMCI, MCI, LMCI and AD. This paper is carefully designed based on the 
goal to identify the appropriate biomarker which captures the transition stage using fused 
high level features with supervised selection and hybrid optimisers for classification. 
Section 2 discusses the proposed methodology and the results are explored in Section 3. 
Section 4 gives the discussions of the present study. Finally, Section 5 concludes overall 
study. 

2 Methodology 

The proposed work process is represented in Figure 1. The flow comprises of database, 
extraction of biomarkers, feature extraction, feature selection, and classification of 
different prognostic severity stages of dementia. Initially, the analysis used ADNI public 
database which comprised of normal, EMCI, MCI, LMCI, and AD images. The useful 
biomarkers, such as ventricle, hippocampus, midbrain, and brainstem were obtained 
using curve constraint and optimised threshold models. Theses segmented biomarkers 
were subjected to feature extraction. Fusion of radiomic and deep features were carried 
out to track the pattern change in prognosis. Further, substantial fused features were 
selected based on LASSO. The SVM classifier was employed to perform classification. 
Performance of the classifier was improved by parameter tuning using hybrid GWOPSO 
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optimiser. Finally, various dementia stages discrimination and progostic analysis were 
done to identify the precise transition of different class. 

Figure 1 Pipeline of the proposed work (see online version for colours) 

 

2.1 Image database 

The original T1-weighted structural image acquired with 1.5 Tesla was used in the 
present analysis from publically available ADNI database (Liu et al., 2020). The primary 
goal of the database was to develop automated algorithms to compute the clinical indices 
and computer aided system for dementia disease diagnosis. Totally, 1169 subjects 
comprising of normal (229), EMCI (200), MCI (398), LMCI (150), and AD (192) were 
used in the study. The considered subjects were evaluated based on comprehensive 
dementia screening, such as medical history and MMSE, to determine the 
neuropsychological capability (Rallabandi et al., 2020). The selected subjects were below 
65 years of age and their genders matched in all the classes to avoid the progression 
related bias. From each class, 500 images were chosen based on visibility, contrast, and 
appropriate phenotypic information of the considered biomarkers. The structure of the 
ventricle, white matter, grey matter, and CSF was more visible in axial slices. The 
anatomical changes of hippocampus, brain stem, and midbrain could be captured 
prominently in sagittal slices. Those slices could help to reveal the sharp variations of 
biomarker in MR brain images for dementia severity prognosis. 

2.2 Feature extraction 

The distinct patterns in an image are extracted through feature extraction process (Lu  
et al., 2021; Loddo et al., 2022). Recently, convolutional neural networks are widely 
preferred to extract deep features. In this way, the robust deep features were extracted 
from pre-trained CNN model AlexNet. It consists of five convolutional layers followed 
by three pooling layers and two fully connected layers. The convolution layer is the 
primary layer to extract deep feature maps through convolution kernels. Down sampling 
is performed in pooling layer (Aditi et al., 2021). The ReLu activation functions are 
utilised in all the layers to improve the prediction. Each layer captures different features 
based on their edges, bends and lines. The last layer holds combined deep features from 
all the considered layers of an image (Qiu et al., 2022). Thus, this model has the ability to 
learn intricate structures with high level of abstraction due to effective network 
arrangements. It also helps to localise the appropriate variation in considered images 
without comprising any pixel information. Hence, subtle changes were captured in the 
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deep features (Lee et al., 2019; Jain et al., 2019). In this way, the proposed work 
extracted 1,000 deep features from the fully connected layer. 

Along with the deep features, 56 radiomic features were considered for the further 
process. Radiomic enumerated the textural information to enhance the clinical decisions 
(Lu et al., 2021). It exhibited the information about inter pixel relationships, grey scale 
patterns, texture features, and shape features along with spectral properties (Feng et al., 
2018; Jiang et al., 2022). This will be useful for personalised diagnosis and clinical 
decisions for treatment guidance. An intensity-based feature gives grey levels intensity 
information of input images. Shape based features afford geometrical information in a 
complex image. The textural features give higher order description about subtle 
variations. The extracted radiomic and deep features were combined to observe the 
prognosis difference sharply in the proposed work. 

2.3 LASSO based Feature Selection 

Selection of robust features is a significant task to attain high prediction accuracy. 
LASSO is an embedded feature selection method. It conserves the oracle properties of 
feature subset and removes irrelevant and trivial features (Jin et al., 2021). The feature 
selection can be done by shrinking regularisation coefficient values to zero. LASSO 
introduces the regularisation parameter λ, similar to learning rate which makes the cost 
function as zero (Fonti and Eduard, 2017). The tuning parameter λ controls the strength 
of penalty. If the value of λ = 0, then LASSO becomes an ordinary least square regression 
method. When, the value of λ is more, then a greater number of coefficients are shrinked 
to zero and avoids overfitting. The cost function of LASSO regularisation is given as 
follows: 

( )( )
1 1

1( ) cos , +
m n

i i j
i j

λJ θ th θ x y θ
m m= =

=    (1) 

where xi represents input feature vectors, yi refers target feature vectors with upper bound 
value of ‘i’ as m and θ0, θ1, θ2, θ3, … θj are the trainable parameters where j varies to the 
maximum limit of n. The different features are denoted as x1, x2, … xn. Both shrinkage 
and selection of features are performed simultaneously in LASSO. This target to reduce 
the mean square error by setting upper bound of its parameters. The larger the value of Ɵ, 
the larger the impact on feature selection. Depending upon Ɵ the features were selected, 
and the remaining values were discarded. This helps to improve the prediction accuracy. 
The interpretability of the LASSO model was increased by removing irrelevant features. 

2.4 Hybrid GWO-PSO based SVM classifier 

Optimisation based classification has recently become an effective prediction system for 
various diagnostic. The performances of the SVM mainly depend on kernel parameter 
and consider feature set (Sun et al., 2018; Amol et al., 2021). Usually, those parameters 
are selected randomly. Instead of random selection, meta-heuristic algorithms such as 
PSO and GWO are adopted to optimise these parameters to improve the performance of 
classification. 

GWO is a population-based optimisation algorithm based on social hierarchies and 
hunting behaviour of wolves. This population algorithm has a leader that manages the 
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swarm according to the role distributed for its searching to find the optimal solution. 
Here, alpha, beta, delta, and omega wolves were considered to have the different ranks in 
wolf packs. Usually, the team leads with alpha which holds the best position for selection 
in the population. Other ranked wolves follow the instruction of alpha. The position of 
the prey is considered to be the global position. Chasing, tracking, encircling, and 
attacking the prey are the major processes involved in hunting mechanism. Based on the 
position of alpha the population modelled their next position in the team during hunting. 
Encircling determine the strategy to surround the prey to attack. The mathematical model 
of encircling the prey is given as follows: 

. ( ) ( )pD C X t X t= −  (2) 

+1 ( ) .t pX x t A D= −  (3) 

where xp(t) and x(t) are the positions of prey and wolf, and D represents the distance 
between the prey and wolf. Here, t denotes the number of iterations, and A and C are the 
vector coefficients. Finally, attacking is the decision process of the pack to attack the 
current prey or find the new prey in the search space. Thus, the GWO algorithm was 
highly focused such that, no wolf gets struck in local minimum. Hence the obtained 
optimum solution could enhance the parameters of SVM. Further, PSO algorithm 
exhibits the detection of potential features with optimised solution by exploring search 
space (Zeng et al., 2018). The generalisation error of the classification model was also 
reduced. PSO is a meta-heuristic algorithm resembles the behaviour of bird flock (Bao  
et al., 2013). The best position of each particle was stored and further updated by the 
following equation. 

+1 +1+n n nx x v=  (4) 

( ) ( )+1 1 1 2 2+ + g
n n n n n nv ωv c r p x c r p x= − −  (5) 

where n denotes the number of iterations, xn+1 represents updated position of the 
particular swarm particle, r1 and r2 are the random numbers in the range [0, 1]. ω 
represents inertia weight. The values c1 and c2 are acceleration coefficients which can be 
used as optimisation parameters. The velocity of the particle is represented by ‘v’. The 
position of particle is given as p, whereas, the best position is denoted by png. The search 
for optimum solution is carried out with pre-defined maximum number of iterations 
reached. 

The hybrid GWO-PSO algorithm was implemented in the proposed work by adopting 
the highlighted features in the considered algorithms. The various types of demented MR 
images were obtained from the database. The biomarkers, such as ventricle HC, MB and 
BS are given for feature extraction. The CNN model based deep features and radiomic 
features are fused together. LASSO based feature selection was adopted to select the 
prominent features. The selected features were given to SVM classifier whose parameters 
were optimised by hybrid GWO-PSO algorithm as shown in Figure 2. The required 
parameters of GWO and PSO were initialised. Then, the fitness function using SVM 
model was calculated. The positions were also updated for the wolves. Then, those 
positions are considered for PSO to determine the optimum features set and accuracy. 
This process helped to update the modified best position as optimal solutions. Finally, the 
process id repeated until it reached maximum iterations. Thus, the considered LASSO 
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feature selection and meta-heuristic algorithms were trained in order to get the maximum 
accuracy for diagnosis. 

Figure 2 Flow diagram of hybrid PSGWO optimisation (see online version for colours) 
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3 Observations attained from considered framework 

The cohort utilised 2,500 images which consisted of normal, EMCI, MCI, LMCI, and AD 
from ADNI database. The T1 weighted axial and saggital view MR images were used to 
detect the prognosis variation of dementia disorder. The biomarker, such as ventricle, 
hippocampus, midbrain, and brainstem structures were more clearly noticeable in the 
middle slices of the considered views as shown in Figure 3. From the figure, ventricle is 
filled with CSF which in turn reflects as black contrast, hippocampus is found to be a 
grey matter intricate structure, and the brainstem and midbrain exist as white matter 
structure. These anatomical regions were precisely extracted using optimised threshold 
and curve based evolution methods to avoid complexity in the analysis. Further, the 
considered biomarkers were observed to have morphological change in considered 
severity levels. Though, the area variability is visible in prognosis for considered 
biomarkers of normal, EMCI, MCI, LMCI and AD subjects as portrayed in  
Figures 3(a)–3(e). However, the change is not considered to be prominent and consistent 
in severity progression. Furthermore, it did not reveal the subtle anatomical changes and 
homogenous characteristic of the considered biomarkers for differential diagnosis. Thus, 
the quantitative analysis of the atrophy was attempted using fusion of radiomic and deep 
features. 

Figure 3 Biomarkers of considered work for (a) normal, (b) EMCI, (c) MCI, (d) LMCI, (e) AD 

 

Note: HC – hippocampus; BS – brain stem; MB – mid brain. 

Here, the anatomical and structural changes of ventricle, hippocampus, midbrain and 
brainstem were analysed using shape and texture features. In total 56 quantitative 
radiomic features were used to characterise the reason behind the progression. 
Consequently, deep features were derived from last fully connected layer of AlexNet 
model. The learned 1,000 features from the considered model had the ability to perform 
an exhaustive quantitative and qualitative analysis of the pattern changes in the 
considered region with clear semantic that can tolerate the intra-class variation. After the 
extraction, fusion of radiomic and deep features were performed. The fused feature has 
the ability to identify intricate structures with high level of abstraction, and was able to 
localise the appropriate variation in considered normal and pathological images. 
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Figure 4 LASSO based feature selection for (a) ventricle, (b) hippocampus, (c) midbrain,  
(d) brainstem (see online version for colours) 

Trace plot of LASSO for coefficient profiles Turning penalisation parameter lambda 

  
                                                                               (a) 

  
(b) 

  
(c) 

  
(d)  
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After that LASSO logistic regression technique was employed to identify the distinctive 
fused feature set for the considered biomarker regions. The LASSO parameters were 
tuned in various combination of λ = [0.01, 0.1, 0.2, 0.3, 0.5, 0.6, and 0.9] and Ɵ = [0.1, 
0.001, 0.05, 0.006, and 0.007] for significant performance of considered 1056 feature 
vectors. Here, the 10-fold cross-validation was applied. The regularisation parameter  
λ = 0.5 and Ɵ = 0.007 were optimal to find the minimum deviance coefficients. The 
robust features were identified based on its intra correlation coefficient performance. The 
correlation was performed for each pair of fused feature to observe nature of correlation. 
Highly correlated and non-zero features were selected for further evaluation. Finally, 
fused feature score was obtained using linear combination of significant features that 
were weighted by their respective coefficients. Figures 4(a)–4(d) represent the least 
absolute shrinkage and selection operation parameter regularisation and coefficient plot. 
The vertical grey line in the plot indicates the selection of cross validation with optimal λ 
to obtain the significant fused features. 

Figure 5 Representation of heat-map for (a) without feature selection, (b) with feature selection 
method (see online version for colours) 

 
(a) 

 
(b) 
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Figures 5(a)–5(b) illustrate the heat map for fused features without and with LASSO for 
considered biomarker regions. It depicts the amount of correlation between the 
considered features. The deep colour indicates the prominent biomarker features. The 
result revealed that the LASSO had the ability to identify the significant coefficients from 
fused feature set. It indicated that those prominent fused features have higher potential to 
differentiate the considered groups which could improve the performance of 
classification decision for normal and severity prognosis. 

Further, the selected deep feature (D.F), radiomic feature (R.F), fused features set 
(F.F) based on LASSO selection were tested using ANOVA. Initially, Shapiro-Wilk 
based normality test was conducted to determine the distribution fit of the selected 
features. Based on the observation the considered test showed α = 0.05 for selected 
features from the biomarkers. It indicated that the considered features were normally 
distributed and suitable for ANOVA test to check its significance. The ANOVA test 
determined the efficiency of features in differentiating the considered classes based on  
p-value. The p-value less than 0.05 are considered to have significant features. This is 
done by comparing the variance across the mean of considered groups. This statistical 
test result indicates that selected features from LASSO gives a p-value of (p < 0.001) 
which is considered to be highly significant. This shows that identified features is capable 
to offer the precise variation in considered biomarker which will be suitable for further 
evaluation. 

Further, the features with and without LASSO were given to the multiclass SVM 
(MSVM), PSOSVM, GWOSVM and GWO-PSO SVM classifier. These methods are 
trained with fivefold cross validation. The present study considered 20 wolves with 
search range of 2 in GWO. Similarly, the inertia maximum and minimum weights of PSO 
varied as: [0.2, 0.9], [0.4, 0.9], [0.1, 1.2], and [0.9, 1.2]. It was noted that the minimum 
weight of 0.1 and maximum weight of 1.2 helped to balance the global and local the 
search effectively. The acceleration coefficients varied from 0.5 to 2.5 and found 0.5 
seemed to show desired influence in particles. Finally, 100th iteration was considered as 
stopping criterion, as any change could not be observed after varying the range of the 
iterations. The values of this parameter were carefully chosen based on various trials to 
attain maximum efficiency of the considered optimiser in search space. 

Figure 6 shows that ventricle, hippocampus, midbrain and brainstem show better 
variation in classification accuracy. This evaluation metric determine the robustness of 
the considered biomarker features in a classifier. It indicated that those regions showed 
pathology changes which are highly permissive to the severity progression of dementia. It 
is evident that LASSO based D.F, R.F, and F.F perform better for the considered 
biomarkers. Further, it was observed that classification accuracy of significant F.F was 
found to be superior when compared to D.F and R.F in the considered classification 
techniques of the considered biomarkers. Compared to MSVM, PSOSVM and 
GWOSVM classifier, GWO-PSO SVM achieves peak accuracy of 90.53%, 95.6%, 
93.87%, and 94.8% in all the considered biomarkers. It showed that GWO-PSO SVM 
could provide more reliable and robust prediction about severity prognosis of biomarker. 
This might be due to the capability of GWO-PSO SVM synchronous search and rapid 
convergence without falling in local optima which improve the prediction performance. 
Furthermore, GWO-PSO SVM evaluation suggests hippocampus based significant F.F 
achieved higher accuracy than the other biomarkers. This is due to the influence of 
neurogenesis alteration in hippocampus tissue for normal and severity classes which was 
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well captured by significant F.F and GWO-PSO SVM which contributed to better 
differentiation. 

Figure 6 Classification accuracy of (a) ventricle, (b) hippocampus, (c) midbrain, (d) brainstem 
using different techniques with and without feature selection method (see online version 
for colours) 

 
(a) 

 
(b) 
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Figure 6 Classification accuracy of (a) ventricle, (b) hippocampus, (c) midbrain, (d) brainstem 
using different techniques with and without feature selection method (continued)  
(see online version for colours) 

 
(c) 

 
(d) 

Figure 7 vividly expresses the convergence process of hippocampus region for the 
considered classification techniques. This method runs for 100 iterations to obtain 
optimal performance. The obtained graph depicts that MSVM, PSOSVM, and 
GWOSVM have slow convergence capability due to search acceleration in finding 
optimum feature set to attain maximum accuracy. However, GWO-PSO SVM provides a 
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superior exploration in the search and provides reliable convergence with higher 
accuracy. 

Figure 7 Convergence curve of MSVM and optimiser based MSVM for hippocampus region  
(see online version for colours) 

 

Confusion matrix for hippocampus region based on GWO-PSO SVM classifier for the 
considered class is represented in Figure 8(a). It showed that normal, EMCI, MCI, LMCI, 
and AD are prominently classified. The result specified that hippocampus based 
significant fused features with GWO-PSO SVM showed better prediction in progression. 
Figure 8(b) indicates ROC curve of normal and severity class. The area under the curve 
(AUC) for the hippocampus region show desirable performance of 0.999, 0.999, 0.992, 
0.996, and 0.991 for normal, EMCI, MCI, LMCI, and AD respectively. 

The classifier performance such as accuracy, F1score, precision, sensitivity and 
specificity for normal, EMCI, MCI, LMCI and AD in hippocampus region using  
GWO-PSO SVM is shown in Figure 9(a). The measure helped to evaluate the stability of 
the hybrid classifier when handling different features from considered classes. From the 
figure it is observed normal and AD is distinctly varied in all employed measures. Higher 
sensitivity and specificity are evident in considered groups. Precision is found to be 
99.3%, 96.1%, 97.3%, 92.2%, and 92.9% for normal, EMCI, MCI, LMCI, and AD 
respectively. Finally, F1 score is 99.3% for normal, 98% for EMCI, 96.9% for MCI, 
93.4% for LMCI and 90% for AD. The results revealed more significant atrophy changes 
of hippocampus region for normal and severity classes. Consequently, inter class 
variation was observed for hippocampus region as given in Figure 9(b). This violin plot 
depicts the statistical inter class relation for considered class with p-value. The finding 
suggested the considered groups were statistically significant with p < 0.001. Most of the 
inter class variations with respect to EMCI, MCI, LMCI were tedious to observe the 
prognosis. This might be due to early unstable change in pyramidal cells of hippocampus 
region which is not evident in the image pixels. 
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Figure 8 Representation of (a) confusion matrix, (b) ROC curve for hippocampus region using 
GWO-PSO SVM classifier (see online version for colours) 

 
(a) 

 
(b) 

Additionally, to improve the prediction capability prognostic analysis is considered. This 
analysis used multiple significant features sets which aimed to get distinct differences 
among groups. This method strengthened the significant feature correlation, reduced the 
classifier variance error, and result in accurate classification. Table 1 describes the 
prognostic analysis of considered biomarker using GWO-PSO SVM classifier. 
Hippocampus region was fused with the other biomarker regions based on the existing 
results. Two, three, and four regions prognostic combinations were attempted to observe 
appropriate variations among the considered groups. 

The constructed prognostic analysis consist of the following combinations:  
HC+ ventricle, HC+MB, HC+BS, HC+MB+BS, HC+MB+ ventricle, HC+BS+ ventricle 
and HC+MB+BS+ ventricle with promising accuracy. However, HC+BS were found to 
be 97.87% which was due to the reason that the combined significant features of 
hippocampus and brainstem region captured the trivial tissue changes in normal, EMCI, 
MCI, LMCI, and AD more accurately in progression. Figure 10 represents the confusion 
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matrix and ROC curve of prognostic analysis. It indicated normal, EMCI, MCI, LMCI, 
and AD showed desirable difference in dementia progression. The AUC value of ROC 
curve for normal and severity groups are 0.981, 0.993, 0.996, 0.998 and 0.995. This 
determines that hippocampus and brainstem region predicted the difference by reducing 
the homogenous disparity of significant features in classification. 

Figure 9 Representation of (a) performance measures, (b) interclass performance of 
hippocampus region for normal and severity classes (see online version for colours) 

 
(a) 

 
(b) 
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Table 1 Prognostic analysis of biomarker regions using GWO-PSO SVM classifier 

Region Accuracy of GWO-PSO SVM (%) 
HC+ Ventricle 89.66 
HC+MB 93.83 
HC+BS 97.87 
HC+MB+BS 91.68 
HC+BS+ Ventricle 96 
HC+MB+ Ventricle 92.74 
HC+MB+BS+ Ventricle 91.59 

Figure 10 Representation of (a) confusion matrix, (b) ROC curve for hippocampus and brainstem 
regions (see online version for colours) 

 
(a) 

 
(b) 
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Subsequently, the classifier performance measures are depicted in Figure 11(a). 
Accuracy, sensitivity, specificity, precision and F1 score for individual class are 
illustrated in the figure. For normal, EMCI, MCI, LMCI, and AD shows 99.4%, 98.5%, 
99.6%, 99.2% and 98.9% of accuracy were obtained. The sensitivity was achieved for 
normal, EMCI, MCI, LMCI, and AD; they are 97.3%, 96%, 98.6%, 98%, and 97.8% 
respectively. An improvement was also noticed in specificity obtained for normal 
(100%), EMCI (99.1%), MCI (99.8%), LMCI (99.3%), and AD (99%) classes. Similarly, 
precision was observed for normal, EMCI, MCI, LMCI, and AD as 100%, 96.6%, 99.3%, 
97.3%, 92.2%, and 92.9%. Finally, F1 score resulted 99.3% for normal, 98% for EMCI, 
96.9% for MCI, 93.4% for LMCI, and 90% for AD. They indicated that there was a 
reduction false positive rate in severity prediction. Further, the intra class variation 
hippocampus and brainstem region prognostic analysis is represented in Figure 11. 

Figure 11 Representation of (a) performance measure, (b) interclass performance of HC+BS 
regions for normal and severity classes (see online version for colours) 

 
(a) 

 
(b) 
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The intermediate severity group such as MCI, EMCI, and LMCI variation was found to 
be statistically significant with higher p-value (p < 6.3e-0.9). Figure 12 shows the 
correlation plot of different diagnostic group with respect to prognostic analysis features 
and MMSE score. It can be witnessed that considered features are reliable to discriminate 
normal and severity groups. Thus, hippocampus and brainstem region prognostic analysis 
based significant features could capture the dementia progression under different extent 
of severity. 

Figure 12 Clinical correlation of hippocampus and brainstem region based features for normal, 
EMCI, MCI, LMCI and AD subjects (see online version for colours) 

 

4 Discussion 

Demented subject underwent brain deformation which directly affects the structural and 
functional activities of brain. This caused a difficulty in understanding the prognostic 
changes of biomarker in various severity stages. Identification of relevant biomarker in 
MR images can be helpful in performing effective diagnostic assessments. Hence, the 
present study is an attempt to understand the brain biomarkers in MR images such as 
ventricle, hippocampus, midbrain, and brainstem anatomical variations in MR images 
using fused features and hybrid optimiser based classification for dementia prognosis. 

The images of normal, EMCI, MCI, LMCI, and AD were obtained from ADNI 
database. This database has a complete clinical scoring of a subject based on neurological 
assessments. The considered biomarkers could show edges and structural changes in 
considered classes. However, these changes are not quantitative due to the limited ability 
of the human eye to identify the subtle, intrinsic and heterogeneous characteristics of 
certain tissues. Therefore, radiomic and deep features were extracted from considered 
biomarkers for normal, EMCI, MCI, LMCI, and AD subjects. Radiomic features could 
extract the microstructural in patterns from ventricle, hippocampus, midbrain and 
brainstem regions. Likewise, deep features revealed the relative quantitative and 
qualitative changes in biomarkers based on its sophisticated network layer arrangements. 
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Thus, the extracted feature which captures the sharp anatomical changes was fused to 
improve the prediction ability. Then, significant features were selected from fusion of 
radiomic and deep features using LASSO logistic regression model. This model 
identified the highly informative features based on coefficient shrinkage from fused 
feature set which support the high prediction ability in classification. The heatmap 
revealed the distinct difference of feature selection based on colour map. Row determined 
the subject and column indicated the biomarkers in the heatmap. It was observed from the 
heat map that each biomarker hold a different range of fused feature information based on 
its colour. 
Table 2 Comparison of proposed work with existing work 

Reference Dataset Image Class Method Average 
accuracy 

Cheng et al. 
(2017) 

ADNI MRI 3 class Multi-domain transfer 
classification (MDTC) 

94% 

Zeng et al. 
(2018) 

ADNI MRI 4 class SDPSO + SVM (switching delayed 
PSO) 

85% 

Feng et al. 
(2018) 

ADNI MRI 3 class Quantitative radiomic features and 
SVM 

70.51% 

Sun et al. 
(2018) 

ADNI MRI 4 class Group lasso SVM + SAR 89% 

Jain et al. 
(2019) 

ADNI MRI 3 class 2D convolution neural network 95% 

Lee et al. 
(2019) 

ADNI MRI 3 class RNN 81% 

Arco et al. 
(2021) 

ADNI MRI 3 class Data fusion+ PCA+ SVM 80.9% 

Liu et al. 
(2020) 

ADNI MRI 3 class 3D convolution neural network 
with instance normalisation, small-

sized kernels and wider network 

80% 

Rallabandi 
et al. (2020) 

ADNI MRI 4 class Freesurfer +SVM 75% 

Veluppal  
et al. (2022) 

ADNI MRI 2 class Corpus callosum texture features 
estimated using KDE 

81.3% 

Hazarika  
et al. 
(2021a) 

ADNI MRI 3 class Improved DenseNet-121 90.22% 

Alinsaif  
et al. (2021) 

ADNI MRI 4 class Wholebrain+ shearlet based 
descriptor with deep features 

94.4% 

Ghaffari  
et al. (2022) 

ADNI MRI 3 class Grey matter+ deep features 93.33% 

Proposed 
method 

ADNI MRI 5 class Fused feature+ LASSO+ hybrid 
GWOPSO SVM classification 

97.87% 

Further, the selected features from ventricle, hippocampus, midbrain and brainstem 
regions are given to meta-heuristic classifier such as MSVM, PSOSVM, GWOSVM, and 
GWO-PSO SVM. The classification performance measures indicate that hybrid optimiser 
such as GWO-PSO SVM shows an effective classification result in all considered 
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biomarkers compared to the other methods. Moreover, hippocampus region based on 
GWO-PSO SVM technique achieved superior classification result (accuracy = 95.6%) 
than ventricle, midbrain, and brainstem regions. This could be due to the ability of 
superior search of GWO and effective updation of PSO for global solution which resulted 
in reliable generalisation in SVM classification. Consequently, to reveal the EMCI, MCI 
and AD variations of hippocampus region prognostic analysis was carried out. Various 
combinations of the considered biomarkers were also performed. However, combined 
hippocampus and brainstem features showed a promising result in observing the 
variations in normal, EMCI, MCI, LMCI, and AD due to effective recognition of  
inter-relation tissue transitions. Thus, hippocampus and brainstem regions micro and 
macro level changes were well captured by fused features in each considered stages and 
GWO-PSO SVM provide better insight about the borderline differences. 

In addition, the intra relation between the considered classes and significant 
biomarkers were significant with p-value (p < 0.001). Then, the clinical correlation 
showed the stability of significant fused features to identify each class. Finally, the 
proposed pipeline was compared with various conventional methods as represented in 
Table 2. Thus, the strength of this work relies on effective assessment of dementia 
biomarker trivial changes in MR images using fusion, selection and optimised 
classification techniques which improved the differentiation of healthy and severity 
groups effectively. 

5 Conclusions 

The present study concluded by characterising the potential changes in extracted 
ventricle, hippocampus, brainstem, and midbrain in dementia progression. The pipeline 
was evaluated for important biomarker region of normal, EMCI, MCI, LMCI and AD 
images with fused feature extraction, significant feature selection and hybrid optimiser 
based classification techniques. The inclusion of LASSO effectively supported for a 
better identification of the distinct fused radiomic and deep features. The classifier based 
on GWO-PSO SVM showed distinct performance in HC+BS based significant fused 
features. The normal, EMCI, MCI, LMCI, and AD classification accuracy for HC+BS 
prognostic analysis was found to be 97.87%. The present study found that the observation 
of brainstem and hippocampus had greater potential to reveal progression in normal and 
severity classes. Hence, this framework was proved to facilitate the understanding of 
anatomical changes in neurodegenerative disorder efficiently. 

Conversely, this study also has a few limitations such as extracting and selecting 
appropriate higher level features from the network which consume more computation 
time. The parameter used in LASSO and meta-heuristic optimiser requires proper 
attention to attain maximum performance in diagnosis. The proposed approach could be 
used for unlabelled images. This framework could be suitable to identify the different 
stages of progression in various cancer, lung, and heart disorder to improve clinical 
decisions. 
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