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Abstract: Anomaly detection in time series data identifies abnormal events or behaviours. 
Traditional methods include principal component analysis (PCA) combined with Mahalanobis 
distance and long short-term memory (LSTM). Autoencoders and neural network techniques 
have been applied to the problem of anomaly detection. Still, challenges remain, such as large 
training data volume, network parameter initialisation, low training efficiency, and poor anomaly 
detection performance. This paper proposes an anomaly detection method based on parallel-long 
short-term memory (PARA-LSTM), which constructs two parallel processing structures. The 
method was tested on the rolling bearing vibration dataset collected by the NASA space station. 
It could detect anomalies five days ahead of the actual system destruction time, outperforming 
the PCA method by detecting anomalies one day earlier. PARA-LSTM has good performance, 
stability, and generalisation ability. 
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1 Introduction 
1.1 Introduction to anomaly detection 
In recent years, computer and sensor technologies have 
undergone rapid advancements, with the concept of 
intelligence (e.g., Haug and Drazen, 2023) permeating 
various domains. Modern industrial systems are evolving 
towards larger and more complex structures. Data that 
reflects the operational status of equipment possesses the 
characteristics of big data (e.g., Shen et al., 2023), including 
volume, undiscovered patterns, abrupt changes, multiple 
modes, heterogeneity, and sparsity. Consequently, 
traditional anomaly detection algorithms are inadequate for 
meeting the anomaly detection requirements of industrial 
big data features in this new era. 

Anomaly detection (e.g., Han et al., 2022; Ozdemir and 
Xiao, 2013; Sun et al., 2013) involves identifying data 
points that deviate significantly from most data points. 
Unlike problems with deterministic rules or obvious 
patterns, anomaly detection deals with rare events that are 
infrequent, difficult to predict, and uncertain. This gives rise 
to several unique complexities: 

1 Uncertainty: anomalies are associated with numerous 
unknown factors, exhibiting unknown behaviours, data 
forms, and distributions. Hence, anomalies cannot be 
fully predicted until they occur. 

2 Heterogeneity: anomalies lack deterministic rules or 
patterns. The features displayed by one anomaly are 
likely to be completely different from those exhibited 
by other anomalies. 

3 Class imbalance (e.g., Santos et al., 2022): gathering 
and accurately labelling anomalous data points is 
exceedingly challenging. Ample normal data points are 
often available, while anomalous ones are scarce. The 
severe class imbalance problem makes it impractical to 
apply current supervised learning algorithms that 
perform well directly. 

4 Low tolerance: misclassifying an anomalous data point 
as normal typically incurs much higher costs than 
misclassifying a normal data point as anomalous. 

5 Various types of anomalies: currently, the field of 
anomaly detection explores three distinct types of 
anomalies: 
• Point anomalies (e.g., Fisch et al., 2022): a few 

individuals differ from most others, such as health 
indicators in patient data. 

• Conditional anomalies (e.g., Gudovskiy et al., 
2022): data instances are anomalous under specific 
contextual conditions; otherwise, they are 
considered normal, such as a significant financial 
flow during a particular period. 

• Collective anomalies (e.g., Shayegan et al., 2022): 
in a collection of data instances, an individual data 
point may not be anomalous, but a subset of data 
instances portrays anomalous behaviour, as seen in 
network fraud where some social accounts appear 
normal individually but form an anomalous group 
chat when combined. 

In data analysis, anomaly detection (outlier detection) 
involves identifying points that significantly differ from 
most data and do not conform to a clear definition. Anomaly 
detection techniques find applications in various fields, 
including intrusion detection, fraud detection (e.g., Zhang  
et al., 2022), fault detection, system health monitoring, 
sensor network event detection, and ecosystem disruption 
detection. It is often employed to eliminate outlier data 
during the preprocessing stage. In supervised learning, 
datasets with removed outlier data often demonstrate 
statistically significant improvements in accuracy. Figure 1 
provides an illustration of outlier detection for two 
variables. 

Figure 1 Anomaly detection of two variables (see online version 
for colours) 

 

When dealing with two-dimensional data (X and Y), 
identifying outliers visually becomes effortless by locating 
data points outside the typical scatter plot distribution. 
However, as depicted in the right-hand plot of Figure 1, 
directly identifying outliers by examining only one variable 
at a time is impossible. Outliers can be easily identified only 
when considering the combination of X and Y variables, as 
shown in the left-hand plot of Figure 1. As we expand from 
two variables to a significantly larger number, such as ten or 
even 100 times, the complexity of the problem intensifies. 
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This complexity is precisely encountered in real-world 
applications of anomaly detection. 

1.2 Literature review on bearing anomaly detection 
Bearings (e.g., Zhao et al., 2021), especially rolling bearings 
(Zhou et al., 2022), are essential components of various 
industrial machinery and equipment. They play a crucial 
role in ensuring the smooth operation of industrial processes 
and equipment safety. A bearing is a component that 
supports the rotational movement of mechanical bodies, 
reducing friction and ensuring rotational accuracy. Bearings 
can be classified based on the direction of load or nominal 
contact angle: radial bearings and thrust bearings. They can 
also be categorised according to the type of rolling 
elements: ball bearings and roller bearings. Furthermore, 
bearings can be classified based on their ability to 
accommodate misalignments: self-aligning and rigid 
bearings. Additionally, bearings can be classified based on 
the number of rolling elements: single-row, double-row, and 
multi-row bearings. They can also be divided into separable 
and non-separable bearings based on their component parts. 
Furthermore, bearings have various structural types, 
including those with or without filling grooves, with or 
without inner and outer rings, collar shapes, retaining edge 
structures, and the presence of cages. Lastly, bearings can 
be categorised based on their outer diameter size: miniature 
bearings (<26 mm), small bearings (28–55 mm), small and 
medium-sized bearings (60–115 mm), medium and  
large-sized bearings (120–190 mm), large bearings  
(200–430 mm), and extra-large bearings (>440 mm).  
Figure 2 depicts a physical diagram of a rolling bearing. 
However, when subjected to prolonged periods of  
high-intensity and high-load working conditions, bearings 
are prone to experiencing abnormal conditions, leading to 
failures. Accurately and timely detecting abnormal data can 
assist in promptly maintaining equipment and preventing 
serious accidents. In the era of big data, with the rapid 
advancements in sensor and machine learning technologies, 
there is a growing interest in utilising advanced theories and 
methods to extract features from historical state monitoring 
data. The construction of data-driven models for bearing 
abnormality detection aims to ensure the accuracy and 
stability of such detection. This field of research holds 
substantial academic value and practical significance. 

Monitoring (e.g., Lu et al., 2021; Sun et al., 2006) the 
vibration data of bearings provides the most straightforward 
and convenient means of determining their abnormality. By 
utilising acceleration sensors, data can be collected easily 
and rapidly, allowing for real-time monitoring. Typically, 
vibration data is gathered by placing multiple sensors at 
various locations. Consequently, the characteristics of 
vibration data primarily encompass a large volume of data, 
low dimensionality, and a certain level of correlation 
between dimensions. 

 

Figure 2 Physical drawing of a typical rolling bearing  
(see online version for colours) 

 

Various outlier detection methods (e.g., Nayak and Perros, 
2020; Wu et al., 2015; Ding and Feng, 2021) detect bearing 
vibration abnormalities. These methods primarily include: 

1 Statistical methods: this method assumes that most 
normal data follows a specific distribution, while 
abnormal data deviate from this distribution. However, 
determining the probability distribution model and its 
parameters can be challenging for this method. 

2 Neighbour-based outlier detection methods: these 
methods, such as the K-nearest neighbour algorithm 
(KNN) (e.g., Uddin et al., 2022) and the local outlier 
factor algorithm (LOF) (e.g., Aubert et al., 2022), are 
straightforward to implement. However, they may 
perform poorly when bearing vibration data with 
limited abnormal samples and unbalanced datasets. The 
LOF algorithm addresses the performance issues of the 
KNN algorithm for unbalanced datasets by introducing 
local reachable density. Nonetheless, the LOF 
algorithm is highly sensitive to parameter selection and 
entails high algorithm complexity and time cost. 

3 Support vector machine (SVM) (e.g., Tanveer et al., 
2022): this method determines abnormal data by 
training the boundary or features of data objects. It 
necessitates a sufficient amount of normal data for 
training and requires appropriate parameter 
configuration, as the choice of parameters greatly 
impacts the detection outcome. 

4 Isolation forest (iForest) (e.g., Tokovarov and 
Karczmarek, 2022) algorithm: this algorithm detects 
abnormal data by constructing isolation trees and 
exhibits linear time complexity. However, it adopts an 
unsupervised approach, meaning that it does not utilise 
labelled data for model training. Consequently, this can 
lead to lower detection accuracy, particularly when the 
data is unevenly distributed. 

In recent years, deep neural networks (DNNs) (e.g., Liu  
et al., 2022) have been effectively utilised for automatic 
feature extraction and recognition. DNNs can adaptively 
extract valuable and significant features, simplifying the 
complex and challenging feature extraction process and 
exhibiting good generalisation. Autoencoders (AEs) were 
initially introduced by Rumelhart (1993) for processing 
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intricate data. Subsequently, Hinton et al. proposed deep-
learning neural networks, leading to the development of 
deep autoencoders. Building upon deep autoencoders, Ng 
proposed high-dimensional and sparse hidden layers, 
incorporating sparsity constraints to enhance the feature 
learning capability of autoencoders, thus introducing sparse 
autoencoders. Autoencoders and deep neural networks are 
widely applied in fault diagnosis, image recognition, and 
anomaly detection. These techniques have also been 
extensively researched and applied to address the anomaly 
detection issue, including detecting anomalies in industrial 
data such as bearing vibration. Autoencoders have garnered 
much attention and utilisation due to their exceptional 
feature extraction capabilities. 

Advancements in sensor technology (e.g., Sun et al., 
2007a, 2007b) have facilitated the easier and quicker 
collection of bearing vibration data. However, this has 
resulted in a substantial increase in data volume. Handling 
large amounts of data can lead to reduced training efficiency 
and challenges in enhancing detection accuracy during the 
training process of autoencoders and neural networks. 
Extensive research on the LSTM (e.g., Kumar et al., 2022) 
algorithm has revealed that its modelling capability for 
periodic data surpasses its modelling capability for irregular 
data. Bearing sensor data falls under the category of 
irregular data, which differs significantly from LSTM-based 
predictions for periodic time series. Through extensive 
research and experimentation, we have developed a deeper 
comprehension of the intricacies of LSTM. We are working 
towards improving its network structure to enhance its 
ability and accuracy for bearing sensor time-series 
predictions. 

The proposed enhancement involves utilising two 
parallel network structures during training to prevent 
overfitting the abnormal dataset. Liu et al. connected two 
LSTM networks in a cascading manner, where the 
prediction value from the first network and the residual of 
the actual value were utilised as inputs for the second 
network. The objective was for the second network to learn 
the remaining information and patterns within the residual 
value. Building upon this idea, we propose the improved 
PARA-LSTM network and construct the network model, 
albeit in a parallel manner instead of a cascading one. 
Specifically, this paper establishes a network with two 
parallel processing structures: a ‘health model’ network and 
a ‘state model’ network. The parallel network structure 
effectively addresses the issue of LSTM’s detection 
capability diminishing in certain data due to its inability to 
learn the ‘normal state’ of the device. 

The major contributions of this paper are summarised as 
follows: 

• A parallel long short-term memory (PARA-LSTM) 
based anomaly detection method is proposed. The 
proposed method constructs two parallel processing 
networks: a ‘health model’ network and a ‘state model’ 
network. The outputs of these two parallel networks are 
then fed into a fully connected layer using ensemble 

voting to generate anomalous data. Finally, the 
predicted outputs are produced. 

• Three anomaly detection methods are applied to the 
bearing vibration dataset collected by the Intelligent 
maintenance system (IMS) provided by NASA. The 
methods include principal component analysis (PCA) 
with Mahalanobis distance, traditional LSTM, and the 
proposed PARA-LSTM-based anomaly detection 
method. Experimental results show that the  
PARA-LSTM method can detect anomalies on  
2004-02-14, one day earlier than the PCA method using 
the Mahalanobis distance model. Therefore, the 
proposed PARA-LSTM method outperforms other 
anomaly detection methods, exhibiting stability and 
generalisation capabilities. 

• The anomaly detection analysis of the bearing vibration 
dataset collected by the IMS provided by NASA 
demonstrates the superiority of the proposed  
PARA-LSTM method over conventional methods. 
Furthermore, the method can be applied in other time 
series-related fields, such as medical 
electrocardiograms and stock price prediction. 

The rest of the paper is organised as follows: in Section 2, 
theoretical foundations needed for anomaly detection, 
including PCA, Mahalanobis distance, and long short-term 
memory (LSTM), are introduced. Section 3 presents the 
construction of the PARA-LSTM model. Section 4 applies 
the three anomaly detection methods to NASA’s rolling 
bearing data. Finally, Section 5 summarises the research 
findings and presents an outlook. 

2 Theoretical background 
A complex device’s health cannot be assessed solely on a 
single measurement. We must consider a combination of 
different measurement methods to develop a true 
understanding of its condition. 

2.1 PCA for dimensionality reduction 
PCA (e.g., Elhaik, 2022) is a common dimensionality 
reduction technique for high-dimensional data. It extracts 
principal components – directions with maximum data 
variance. PCA performs a linear transformation projecting 
correlated variables onto a smaller orthogonal set that 
retains most of the original variance. PCA is one of the most 
widely used dimensionality reduction approaches, as it can 
handle high-dimensional, noisy, and correlated data. 

Training samples must consist of positive samples with 
zero mean. We apply z-score normalisation. Let the training 
samples be Xn∗m, where n is the number of samples and m is 
the number of features. The covariance matrix of the m 
features is calculated as shown in equation (1): 

1
1

T

m m

X X
n× −  (1) 
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We then calculate the eigenvalues λi and eigenvectors pi of 
the covariance matrix, arranging the eigenvalues in 
descending order as shown in equation (2): 

1 2 mλ λ λ≥ ≥ ≥  (2) 

We reorder the eigenvectors according to their 
corresponding eigenvalues, as shown in equation (3): 

[ ]1 2, , ,m m mV p p p∗ =   (3) 

The first k eigenvalues are chosen for PCA dimensionality 
reduction according to the selected principle. Then, the first 
k eigenvalues are arranged in a diagonal matrix Sk∗k as 
shown in equation (4), and the k corresponding eigenvectors 
form the dimensionality reduction matrix Pm∗k as shown in 
equation (5): 

( )1 2, , ,k k kS diag λ λ λ∗ =   (4) 

[ ]1 2, , ,m k kP p p p∗ =   (5) 

After dimensionality reduction, while the number of 
samples stays the same at n, the number of features is 
reduced to k. The dimensionality reduction formula is 
shown in equations (6)~(7): 

X XP=  (6) 

X XPT XPPT′ = =  (7) 

X′ is the matrix obtained by dimensionality reduction of X. 
The steps for performing fault detection using the PCA 

method are as follows: 

1 Build a normal principal component model 
Step1 Standardise the normal data, turning it into a 

dataset with a mean of 0 and a variance of 1. 
Step 2 Use the dataset in Step 1 as the training dataset 

to build a PCA principal component model 
and extract principal components. 

Step 3 Calculate the training dataset’s PCA statistics 
and control limits. 

2 Fault or anomaly detection and diagnosis 
Step 1 Obtain the test dataset and standardise it. 
Step 2 Calculate the T2 statistic for the standardised 

data and compare it with the control limits for 
the normal state. If it exceeds the control 
limits, it is considered abnormal. Otherwise, it 
is considered normal. 

2.2 Mahalanobis distance 
Renowned Indian statistician P.C. Mahalanobis (e.g., 
Colombo et al., 2022) introduced a generalised distance 
measure known as Mahalanobis distance (MD), which 
accounts for the correlation between variables. The primary 
concept involves utilising the covariance matrix between 
vectors to characterise their MD. MD is a widely employed 
distance metric in machine learning used to assess the 

similarity between data points, much like Euclidean 
distance, Manhattan distance, and Hamming distance. 
However, it specifically addresses the issue of non-
independent and non-identically distributed dimensions 
within high-dimensional linear datasets. 

For a dataset X = (X1, X2, …, Xn) with n data points with 
m dimensions, a mean μ = (μ1, μ2, …, μm)T, and covariance 
matrix Σ, and one data point x = (x1, x2, …, xm)T, the 
Mahalanobis distance is given by as shown in equation (8): 

1( ) ( ) Σ ( )T
MD x x μ x μ−= − −  (8) 

The Mahalanobis distance can be interpreted as the distance 
between a data point and the mean of the population data, 
where Σ–1 is the inverse of the covariance matrix Σ. 

2.3 LSTM 
Recurrent neural networks (RNNs) are a type of neural 
network utilised for sequential data processing. Compared 
to standard neural networks, RNNs can effectively handle 
data exhibiting temporal changes. 

LSTM is a specialised variant of RNNs specifically 
designed to address the challenge of gradient vanishing and 
exploding during extensive sequence training. In simpler 
terms, LSTMs outperform regular RNNs when operating on 
lengthy sequences. 

Figure 3 depicts the primary input and output 
distinctions between the LSTM structure (located on the 
right-hand side of the illustration) and a typical RNN. 

Figure 3 LSTM structure vs. regular RNN structure (see online 
version for colours) 
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In contrast to RNN, which only has a single state to 
propagate, LSTM incorporates two states for propagation: 
the cell state (ct) and the hidden state (ht). 

LSTM leverages the current input (xt) and the previous 
propagated state (ht–1) to train and acquire four distinct 
states, as illustrated in Figure 4. 

Among these, zf, zi, and zo represent gate states produced 
by multiplicatively combining concatenated vectors with 
weight matrices, subsequently transformed into values 
ranging from 0 to 1 using a sigmoid activation function. On 
the other hand, z is transformed into values ranging from –1 
to 1 using a hyperbolic tangent (tanh) activation function 
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(tanh is utilised since it is considered input data rather than 
gate signals). 

Figure 4 LSTM structure with four states (see online version  
for colours) 
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3 Methodology 
3.1 Method 1: PCA + Mahalanobis distance 
The Mahalanobis distance is a distance metric that considers 
the covariance matrix of the dataset. It is a more robust 
distance measure than the Euclidean distance because it 
considers the correlation between data features. In a dataset, 
a data point with a small Mahalanobis distance is more 
similar to the dataset mean than a data point with a large 
Mahalanobis distance. Features are often correlated in  
low-dimensional industrial datasets like bearing vibration 
data due to the manufacturing process and data acquisition 
equipment. Therefore, the Mahalanobis distance is a more 
suitable distance metric for bearing vibration data. 

To classify a test point into one of N categories using 
the Mahalanobis distance, we first estimate the covariance 
matrix of each category based on known samples that 
belong to that category. Since we are only interested in 
‘normal’ versus ‘abnormal’ classification in this paper, we 
use training data containing only normal operating 
conditions to calculate the covariance matrix. Then, for a 
given test sample, we calculate the Mahalanobis distance of 
the sample to the ‘normal’ class. The test point is classified 
as ‘abnormal’ if the distance exceeds a certain threshold. 

3.2 Method 2: autoencoder 
An autoencoder is an artificial neural network that learns 
efficient data encoding unsupervised. Its goal is to learn an 
‘encoding’ of a set of data – typically used for 
dimensionality reduction. Both the encoder and decoder 
learn so the autoencoder tries to generate an encoding as 
similar as possible to its original input from the reduced-
dimensional representation. 

Structurally, the simplest form of an autoencoder is a 
feedforward neural network, unlike a recurrent neural 
network. It resembles a multilayer perceptron (MLP) with 
an input layer, an output layer, and one or more hidden 
layers connecting them. However, the autoencoder’s output 
layer has the same number of nodes as the input layer, and 
its goal is to reconstruct its input, as shown in Figure 5. 

Figure 5 Autoencoder network (see online version for colours) 

 

The basic idea of anomaly detection and condition 
monitoring is to use autoencoders to compress sensor 
readings into a lower-dimensional representation that 
captures the correlations and interactions between various 
variables. 

3.3 Method 3: anomaly detection method based on 
PARA-LSTM 

PARA-LSTM is a neural network model that consists of 
two networks: a health model network and a state model 
network. The health model is a two-layer LSTM network 
that inputs all LSTM layers’ output states (h1, h2, …, ht) as 
input and outputs them to a fully connected layer. The fully 
connected layer outputs a single unit, which is the 
prediction of the network. The network’s input is now only 
the X vector rather than the X and Y vectors of the previous 
section. This network can be considered as an encoder-
decoder that reconstructs normal data. 

We feed the normal X vectors as input to the network 
and expect it to predict the next value of Y. By feeding the 
normal data X to train the model, the model should be able 
to reconstruct ‘normal’ data Y. In other words, under 
normal X data, the model should learn to output the value of 
the next Y that it believes is typical. 

However, if Y vectors are not introduced for training, 
the model cannot learn how historical Y vector values 
impact the trend of predicted values over time. When the 
health model is trained alone and used for prediction, it will 
produce globally biased predictions for some datasets. 
Therefore, we add a parallel-trained state model. 

The state model is a single-layer LSTM network that 
only uses the last output time ht as output. The input vector 
is the Y vector, and the output is the predicted next Y value. 
This network can be considered a state-preserving model 
that learns the historical features of Y vectors. After 
training, the state model should be able to correctly judge 
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the next Y’s development trend based on Y’s historical 
values. 

Finally, the outputs of the two parallel networks are 
input to another fully connected layer in an ensemble voting 
manner to generate the final predicted output Y. The model 
diagram is shown in Figure 6. 

Figure 6 PARA-LSTM model diagram (see online version for 
colours) 

 

LSTM is a recurrent neural network (RNN) model with 
space and time complexity of O(n), where n represents the 
sequence length. The PARA-LSTM model proposed in this 
paper consists of two parallel LSTM models, resulting in a 
space complexity of O(2n). 

4 Validation and analysis 
Three methods, namely PCA combined with Mahalanobis 
distance, an LSTM model, and a PARA-LSTM model, were 
employed to conduct anomaly detection analysis on the 
bearing vibration dataset obtained from the intelligent 
maintenance system provided by the National Aeronautics 
and Space Administration (NASA). The system is depicted 
in Figure 7. 

Table 1 Bearing data collection information 

Date Bearing 1 
(N.m/s) 

Bearing 2 
(N.m/s) 

Bearing 3 
(N.m/s) 

Bearing 4 
(N.m/s) 

2004/2/12 10:32 0.0583 0.0718 0.0832 0.0431 
2004/2/12 10:42 0.0590 0.0740 0.0844 0.0445 
2004/2/12 10:52 0.0602 0.0742 0.0839 0.0444 
2004/2/12 11:02 0.0615 0.0738 0.0845 0.0451 
2004/2/12 11:12 0.0614 0.0756 0.0828 0.0451 
… … … … … 
2004/2/19 6:22 0.0012 0.0008 0.0007 0.0017 

 

Figure 7 Bearing four sensor diagram 

Accelerommeters

Motor

Bearing 1 Bearing 2 Bearing 3 Bearing 4

ThermocouplesRadial Load

 

4.1 Data preparation 
For this study, we will utilise vibration sensor readings from 
the NASA Acoustics and Vibration Database as our dataset. 
The NASA study involved collecting sensor readings from 
four bearings operated under a constant load until failure 
occurred over multiple days. Our dataset comprises 
individual files containing 1-second snapshots of vibration 
signals recorded at 10-minute intervals. Each file contains 
20,480 sensor data points for each orientation, obtained 
from orientation sensors with a sampling rate of 20,000 Hz. 
Table 1 illustrates that data collection for the bearings 
spanned from 10:32 AM on 12 February 2004, to 6:22 AM 
on 19 February  2004, totalling nearly seven days. Figure 8 
depicts the time-varying curves of the bearing vibration 
data. As seen in Figure 8, bearing 1 displayed a notable 
abnormal fluctuation after 17 February, while the other 
three bearings showed more pronounced fluctuations after 
18 February until the entire system eventually failed on  
19 February. 

For time series data, the division between the training 
and test sets is primarily based on a specific time point. In 
this study, we employed the data from an initial normal 
period, specifically 222 data points recorded between  
11:02 AM on 12 February 2004, and 1:23 PM on  
13 February 2004, as the training data. Subsequently, we 
utilised all the subsequent data, comprising 760 data points 
from 1:23 PM on 13 February 2004, to 6:22 AM on  
19 February 2004, as the test data. Figure 9 illustrates the 
training dataset, whereas Figure 9 represents the test dataset. 
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Figure 8 Time-varying trend of bearing sensor data (see online 
version for colours) 

 

Figure 9 Bearing sensor data training set (see online version  
for colours) 

 

As depicted in Figure 9, during the initial stage, which 
corresponds to the training data phase, the vibration data 
from all four bearings exhibit fluctuations yet remain within 
a reasonable range. In Figure 10, representing the later stage 
or test data phase, the vibration data of the four bearings 
show distinct abnormalities before the occurrence of 
destructive failure. Bearing 1, in particular, displays 
conspicuous abnormalities at an earlier stage, with 
significant abnormal fluctuations noted after 17 February. 

Figure 10 Bearing sensor data test set (see online version  
for colours) 

 

 

 

 

Figure 11 Schematic diagram of Fourier transform from time 
domain to frequency domain (see online version  
for colours) 

 

Figure 12 Bearing sensor frequency domain training set  
(see online version for colours) 

 

Figure 13 Bearing sensor frequency domain test set (see online 
version for colours) 

 

Within the test set timeframe, there is a notable shift in the 
sensor pattern. As the failure point approaches, the vibration 
readings in the bearings intensify and exhibit violent 
oscillations. We will utilise the Fourier transform to convert 
the signal from the time domain to the frequency domain to 
gain a slightly different perspective on the data. Figure 11 
visualises applying the Fourier transform to convert the 
signal. Figures 12 and 13 illustrate the frequency domain 
curves of the bearing sensor training set and test set, 
respectively. Figure 12 shows that during the training phase, 
the bearing sensor performance remains smooth in the 
frequency domain, just like in the time domain. Figure 13 
reveals that bearing one and bearing 3 exhibit distinct 
abnormalities near 480 Hz, while bearing four shows 
abnormalities near 720 Hz, and bearing three exhibits 
abnormalities near 750 Hz. As the failure time approaches, 
the frequency amplitude and energy of the four bearings 
experience a more pronounced increase. 
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4.2 PCA and MD 
The bearing sensor data is relatively clean and does not 
require any cleaning. Therefore, the data preprocessing 
involves a simple normalisation process. The normalisation 
is performed using the min-max normalisation method. The 
resulting normalised data is presented in Table 2. 

PCA extracts the principal components from the bearing 
sensor data. Initially, the number of principal components is 
set to 2. In this dataset, it is possible to increase the number 
of principal components to three for satisfactory results. 
However, given that the original dataset consists of  
four components, specifically the vibration data from  
four bearings, setting the number of principal components to 
three does not effectively accomplish the goal of 
dimensionality reduction. Therefore, this study sets the 
number of principal components to two, effectively 
reducing the original four-dimensional data to a  
two-dimensional representation. Table 3 presents the 
statistical results of the principal component analysis. 

As shown in Table 3, principal component 1 accounts 
for 51.0% of the information, while principal component 2 
only accounts for 20.4%. Together, principal component 1 
and principal component 2 represent a total of 71.4% of the 
data information. It is worth noting that projecting the four-
dimensional data to two dimensions results in a loss of 
28.6% of the information. 

Table 2 Normalised bearing data 

Date Bearing1 Bearing 2 Bearing 3 Bearing 4 

2004/2/12 11:02 0.5946 0.1250 0.9532 0.7947 
2004/2/12 11:12 0.5728 0.5152 0.7733 0.8078 
2004/2/12 11:22 0.6430 0.0000 1.0000 0.4723 
2004/2/12 11:32 0.7074 0.2906 0.7500 0.6447 
2004/2/12 11:42 0.5427 0.1974 0.6829 0.3545 
… … … … … 
2004/2/14 00:02 0.3546 0.2278 0.2445 0.4254 
2004/2/14 00:12 0.2497 0.3099 0.2311 0.2544 
2004/2/14 00:32 0.6108 0.5028 0.1623 0.3804 
… … … … … 

Figures 14 and 15 depict the trend of principal components 
in the bearing sensor training set and test set, respectively. 
In Figure 13, principal components 1 and 2 exhibit relative 
stability during the training stage, with no noticeable 
abnormal fluctuations observed. Conversely, Figure 15 
reveals that principal component 1 starts displaying 
abnormalities on 16 February, which becomes more 
pronounced on 17 February. Principal component 2, on the 
other hand, does not exhibit any significant abnormalities 
until around 19 February. 

Table 3 demonstrates that principal component 1 
encompasses 51.0% of the information in the bearing sensor 
data, indicating its higher information content compared to 
principal component 2. This aligns with the findings from 
Figure 15, which indicate that the principal component with 

greater information content can detect faults at an earlier 
stage. 

Figure 14 Principal components trend plot of sensor training 
data (see online version for colours) 

 

Figure 15 Principal components trend plot of sensor test data 
(see online version for colours) 

 

Table 3 Statistics on the proportion of each principal 
component 

Principal  
component 1 (%) 

Principal  
component 2 (%) Total (%) 

51.0 20.4 71.4 

The calculation of the Mahalanobis distance involves three 
main steps: verifying if the matrix is positive definite, 
solving the covariance and inverse covariance matrices, and 
computing the Mahalanobis distance. To automatically 
determine the threshold of the Mahalanobis distance during 
normal operation, there are functions available for 
automated threshold calculation. However, the threshold 
itself needs to be appropriately adjusted based on the 
specific project requirements, and the function cannot 
automatically set it. The specific calculation process of the 
Mahalanobis distance includes: firstly, computing the 
covariance matrix and its inverse matrix based on the data 
in the training set; secondly, calculating the average value 
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of the input variables in the training set; and finally, 
utilising the average value to individually compute the 
Mahalanobis distance between the training set and the test 
set to the centre of gravity. If the input variables follow a 
normal distribution, the square of the Mahalanobis distance 
between the dataset and the distribution centre should 
follow a χ2 distribution. This hypothesis forms the basis for 
determining the ‘threshold’ to identify outliers. However, as 
the data may not always conform to this hypothesis in 
certain cases, it is necessary to visualise the distribution of 
the Mahalanobis distance. Figures 16 and 17 present the 
square distribution of the Mahalanobis distance in the 
training data and the distribution of the Mahalanobis 
distance. 

Figure 16 Square distribution of Mahalanobis distance in the 
training dataset (see online version for colours) 

 

Figure 17 Distribution of Mahalanobis distance in training 
dataset (see online version for colours) 

 

Based on the distribution of the Mahalanobis distance 
illustrated in Figure 17, the outlier threshold can be set to  
4 standard deviations of the average Mahalanobis distance 
in the training data. Specifically, we select 3.812 as the 
critical value for the Mahalanobis distance. Points that 
exceed this critical value are classified as outliers, while 
points below the critical value are classified as normal. The 
training set comprises 222 normal points, and the test set 
consists of 760 points, of which 409 points are identified as 

outliers. This analysis demonstrates the adequacy of our 
data partition between the training and test sets. 

Figure 18 Anomaly detection using Mahalanobis distance (see 
online version for colours) 

 

Figure 18 depicts the application of the Mahalanobis 
distance for bearing fault detection. In Figure 17, the initial 
fault was detected at 5:42 AM on 15 February, and the 
system failed at 6:22 AM on 19 February. This 
demonstrates that the PCA and MD method can identify 
faults four days before the vibration system experiences a 
failure. Consequently, this enables timely repairs and 
maintenance of the bearing monitoring system before 
failure. Furthermore, Figure 18 reveals that not all 
monitoring points following the initial fault detection at 
5:42 AM on 15 February were considered abnormal. At 
1:12 PM on 16 February, all monitoring data were 
unanimously classified as abnormal. Table 4 presents the 
first five instances when the system exhibited abnormal 
behaviour. The table reflects that although the system 
demonstrated abnormality during these five-time points, the 
severity of the abnormalities remained relatively low. This 
observation underscores the ability of the MD and PCA 
model to detect abnormalities before system failure. 

Table 4 The first five time points when the MD and PCA 
model detected abnormalities 

Date MD Threshold Anomaly 

2004/2/15 05:42:39 4.178 3.812 True 
2004/2/16 04:12:39 5.031 3.812 True 
2004/2/16 06:12:39 4.835 3.812 True 
2004/2/16 06:52:39 4.101 3.812 True 
2004/2/16 07:22:39 4.241 3.812 True 

4.3 LSTM model 
Using LSTM for time series anomaly detection (TSAD) 
involves two steps. The first step entails employing LSTM 
for time series prediction, while the second step entails 
utilising the discrepancy between the predicted and actual 
outcomes to determine the range of anomalies. Figure 19 
displays the loss curve of the training set data. The 
horizontal axis (epoch) represents the number of training 
iterations, while the vertical axis denotes the training loss 
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value, measured by mean absolute error (MAE). Examining 
Figure 19, two notable features of the curve become 
apparent: a rapid decline and subsequent convergence. This 
behaviour arises due to the relatively small size of the 
training data, enabling the model to converge expeditiously. 
Figure 20 illustrates the distribution diagram of the loss 
function. Observing Figure 20, one can discern that the 
overall distribution of the loss function approximates a 
normal distribution. To establish the anomaly judgment 
threshold criterion, the 95% confidence level is selected, 
corresponding to a value of 0.285. 

Figure 19 Loss iteration curve of the training set with the 
LSTM model (see online version for colours) 

 

Figure 20 Loss distribution diagram with LSTM model  
(see online version for colours) 

 

Figure 21 LSTM model uses threshold loss for anomaly 
detection (see online version for colours) 

 

 

 

Table 5 The first five time points when the LSTM model 
detected anomalies 

Date MD Threshold Anomaly 

2004/2/12 11:22 0.293 0.285 TRUE 
2004/2/14 14:02 0.288 0.285 TRUE 
2004/2/14 19:52 0.293 0.285 TRUE 
2004/2/14 20:32 0.293 0.285 TRUE 
2004/2/15 1:12 0.296 0.285 TRUE 

Figure 21 depicts the application of the loss function 
threshold for anomaly detection. Observing Figure 21, it 
becomes evident that the LSTM model can detect anomalies 
in the system as early as 2:02 PM on 14 February, before 
system failure. However, the model also exhibited a clear 
misjudgement by indicating an anomaly at 11:22 AM on  
12 February, directly contradicting the actual events. 
Therefore, the traditional LSTM model can detect 
anomalies before system failure, but it also displays 
instances of clear misjudgement. Table 5 enumerates the 
first five instances when the system exhibited abnormal 
behaviour. Notably, each time point listed in Table 5 occurs 
one day earlier than in Table 4. It is important to exclude the 
first erroneous anomaly point. This observation underscores 
the capability of the traditional LSTM model to identify 
anomalies before system failure. 

4.4 PARA-LSTM 
The proposed improved anomaly detection model,  
PARA-LSTM, in this paper, combines the outputs of  
two parallel networks using ensemble voting. These 
combined outputs are fed into another fully connected layer 
to generate the final prediction output. The model 
incorporates the ELU (exponential linear unit) activation 
function, as illustrated in Figure 22. For values of x greater 
than 0, the model returns x; for x less than 0, the model 
returns exp((x) – 1). Compared to RELU, ELU provides a 
non-zero output for x < 0, which promotes faster 
convergence of the model weights. 

Figure 22 ELU activation function (see online version  
for colours) 
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Figure 23 Loss iteration curve of the training set with the 
PARA-LSTM model (see online version for colours) 

 

Figure 24 Loss distribution diagram with PARA-LSTM model 
(see online version for colours) 

 

Figure 25 PARA-LSTM model uses threshold loss for 
anomaly detection (see online version for colours) 

 

Figure 23 presents the curve of the loss function for the 
PARA-LSTM model during the iteration process. The 
figure illustrates a gradual decrease in the loss function, 
which tends to stabilise as the number of iterations 
increases, both in the training and validation sets. Moreover, 
Figure 23 reveals that 100 iterations are viable for the 
PARA-LSTM model. This allows for model convergence 
while effectively minimising the number of iterations 
required. 

By visualising the distribution of the loss function in the 
training set, we can determine a suitable threshold for 
anomaly identification. Figure 24 displays the curve 
representing the distribution of the loss function, indicating 

that 0.26 is a more suitable threshold for identifying 
anomalies. Once the appropriate threshold has been 
selected, the loss function of the test set can be computed, 
enabling us to identify the time at which the anomaly 
occurred. 

Table 6 The first five time points when the PARA-LSTM 
model detected anomalies 

Date MD Threshold Anomaly 

2004/2/14 14:02 0.275 0.260 TRUE 
2004/2/14 19:52 0.262 0.260 TRUE 
2004/2/14 20:32 0.268 0.260 TRUE 
2004/2/15 1:12 0.286 0.260 TRUE 
2004/2/15 3:02 0.278 0.260 TRUE 

Similar to the PCA method using the Mahalanobis distance, 
Figure 25 illustrates that the PARA-LSTM model 
effectively detects the system anomaly at 2:02 PM on  
14 February. This detection is consistent with the second 
anomalous point identified by the traditional LSTM model, 
showcasing the absence of similar LSTM misjudgments in 
the PARA-LSTM model. Additionally, Table 6 presents the 
first five time points when the system experiences 
abnormalities. A comparison reveals that 4 of these five 
abnormal time points align perfectly with Table 5. This 
further demonstrates that the PARA-LSTM model 
successfully inherits the robust anomaly detection capability 
of the traditional LSTM model. The PARA-LSTM model 
proposed in this paper accurately detects anomalies nearly 
five days before system failure while avoiding potential 
misjudgements that could occur in the traditional LSTM 
model. 

5 Conclusions 
This paper explores the application of three models for 
analysing the issue of anomaly detection in NASA-bearing 
sensors. All three models yield similar results, successfully 
detecting anomalies before the bearing failure on  
19 February. The MD and PCA model detected the earliest 
anomaly at 5:42 AM on 15 February, while the traditional 
LSTM and PARA-LSTM models identified the first 
anomaly at 2:02 PM on 14 February. Nonetheless, it is 
worth noting that the traditional LSTM model exhibited 
some misjudgement. 

The MD and PCA model can detect anomalies in the 
bearing system four days before failure, whereas the PARA-
LSTM model can detect anomalies five days in advance. 
The PARA-LSTM model’s ability to detect anomalies 
earlier is highly significant for timely spacecraft repair and 
maintenance. 

Based on the previous analysis, it is evident that 
detecting anomalies greatly relies on selecting an 
appropriate threshold. The selection of this threshold is 
closely tied to choosing the model’s hyperparameters, such 
as the learning rate, momentum factor, number of iterations, 
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and early stopping. This aspect also holds significant 
importance for future research endeavours. 
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