

International Journal of Cloud Computing

ISSN online: 2043-9997 - ISSN print: 2043-9989
https://www.inderscience.com/ijcc

Data consistency protocol for multicloud systems

Olga A. Kozina, Volodymyr I. Panchenko, Oleksii V. Kolomiitsev, Viktoriya V. Usik,
Nataliia K. Stratiienko, Ludmila V. Safoshkina, Yurii F. Kucherenko

DOI: 10.1504/IJCC.2024.10061839

Article History:
Received: 26 April 2021
Last revised: 28 July 2021
Accepted: 14 August 2021
Published online: 26 January 2024

Powered by TCPDF (www.tcpdf.org)

Copyright © 2024 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijcc
https://dx.doi.org/10.1504/IJCC.2024.10061839
http://www.tcpdf.org

 42 Int. J. Cloud Computing, Vol. 13, No. 1, 2024

 Copyright © 2024 Inderscience Enterprises Ltd.

Data consistency protocol for multicloud systems

Olga A. Kozina*, Volodymyr I. Panchenko,
Oleksii V. Kolomiitsev and Viktoriya V. Usik
Department of Computer Engineering and Programming,
National Technical University ‘Kharkiv Polytechnic Institute’
(NTU ‘KhPI’),
Kharkiv, Ukraine
Email: kozina4common@gmail.com
Email: vladimir.panchenko@gmail.com
Email: Kolomijcev.O.hnups@gmail.com
Email: usik.viktory@gmail.com
*Corresponding author

Nataliia K. Stratiienko
Software Engineering and Management
Information Technologies Department,
National Technical University ‘Kharkiv Polytechnic Institute’
(NTU ‘KhPI’),
Kharkiv, Ukraine
Email: strana.snk@gmail.com

Ludmila V. Safoshkina
Associate Research Centre,
National Academy of the National Guard of Ukraine,
Kharkiv, Ukraine
Email: saf0705@ukr.net

Yurii F. Kucherenko
Associate Scientific Centre of Air Force,
Kharkiv National Air Force University (KhNUPS),
Kharkiv, Ukraine
Email: KucherenkoYF@gmail.com

Abstract: Using the resources of several cloud service providers (CSPs) to
store, serve, and access user’s data can improve availability and reduce latency.
However, the management of multicloud systems also poses an important
challenge of how to guarantee that requests from any region to geo-distributed
replicas of the database will content equivalent actual data, which is considered
in this paper. The existing taxonomy of data consistency models allows
choosing the required level of data consistency in cloud systems, however, the
implementation of consistency protocols for multicloud systems requires a

 Data consistency protocol for multicloud systems 43

reasonable choice of middleware architecture and compromise decisions
between response time and other constraints required by clients requirements.
We propose consistency protocol based on the geo-distributed architecture of
multicloud middleware to assign the ordering of numbers in a global sequence
for incoming writing.

Keywords: data consistency; consistency protocol; consistency model; multi
clouds; cloud service providers; multicloud systems; latency; geo-distributed
database; response time; middleware architecture.

Reference to this paper should be made as follows: Kozina, O.A.,
Panchenko, V.I., Kolomiitsev, O.V., Usik, V.V., Stratiienko, N.K.,
Safoshkina, L.V. and Kucherenko, Y.F. (2024) ‘Data consistency protocol for
multicloud systems’, Int. J. Cloud Computing, Vol. 13, No. 1, pp.42–61.

Biographical notes: Olga A. Kozina is a Professor at the National Technical
University ‘Kharkiv Polytechnic Institute’, Kharkiv, Ukraine. She received her
PhD in Technical Sciences from Kharkiv National University of Radio
Electronics, Ukraine in 2001. She has experience in area of computer science,
system modelling and optimisation. Her research interests include cloud
computing, biomedical information processing technologies, networking, cloud
computing, distributed systems.

Volodymyr I. Panchenko is a Senior Lecturer at the National Technical
University ‘Kharkiv Polytechnic Institute’, Kharkiv, Ukraine. He has
experience in area of computer science, system programming and optimisation.
His research interests include operating systems, software engineering,
networking, web servers and distributed systems.

Oleksii V. Kolomiitsev is a Professor at the National Technical University
‘Kharkiv Polytechnic Institute’, Kharkiv, Ukraine. He received his Doctor of
Engineering Sciences from Ivan Kozhedub Kharkiv National Air Force
University, Ukraine, in 2017. He has experience in area of computer science,
system modelling and optimisation the parameters of the multifunctional
information-measuring system. His research interests include optimisation of
the multifunctional information-measuring system, distributed systems, cloud
computing.

Viktoriya V. Usik is a Professor at the National Technical University ‘Kharkiv
Polytechnic Institute’, Kharkiv, Ukraine. She received her PhD in Technical
Sciences from Kharkiv National University of Radio Electronics, Ukraine in
2005. She has experience in the field of informatics, modelling of acoustic
fields in confined spaces. Her research interests include architectural acoustics,
cloud computing, educational technologies, biomedical information processing
technologies.

Nataliia K. Stratiienko is a Professor at the Software Engineering and
Management Information Technologies Department in National Technical
University ‘Kharkiv Polytechnic Institute’, Kharkiv, Ukraine. She received her
PhD in Technical Sciences from National Technical University ‘Kharkiv
Polytechnic Institute’, Ukraine in 2000. She has experience in area of computer
science and IT-project management. Her research interests include analysis of
algorithms; cloud computing, operations research, and information
technologies.

 44 O.A. Kozina et al.

Ludmila V. Safoshkina is a Senior Researcher at Associate Research Center of
the National Academy of the National Guard of Ukraine, Kharkiv, Ukraine.
She received her PhD in Technical Sciences, Kharkiv, Ukraine, in 2014. Her
research interests include operations research, optimisation theory, information
technologies, cloud computing.

Yurii F. Kucherenko is a Leading research at Associate Scientific Сenter of Air
Force Ivan Kozhedub Kharkiv National Air Force University, Kharkiv,
Ukraine, in 1993. He has experience in area of construction automated control
systems and information systems. He has authored or co-authored more than
80 academic papers. He has experience in area of computer science, operations
research and specialised software. Him research interests include optimisation
theory, networks, and information technologies, cloud computing.

1 Introduction

Multicloud systems have many advantages (Rafique et al., 2015; Abualkishik et al., 2020;
Kozina and Panchenko, 2018). Each organisation has a justified set of QoS requirements
for its customers and expects to achieve them using multiple CSP resources (Ibrahim
et al., 2016). Some organisations are using multicloud to obtain a high-power
high-bandwidth computing environment, as discussed in Koulouzis et al. (2020). For
other organisations, multicloud is primarily an opportunity to receive a reliable service
for storing, processing and geo-distributed data access for their customers, as shown in
Gudeme et al. (2019), García-Dorado (2015) and Jambunathan and Yoganathan (2018).
Still, others require some combination of a powerful computing environment and data
storage/processing. However, today, choosing the optimal architecture and organising
effective management of multicloud systems remains a challenge with highly specialised
ad hoc solutions (Bittencourt and Calheiros, 2017).

In this paper, we discuss the issues of ensuring data consistency in multicloud
systems designed primarily for storing and accessing data. A prime example of this type
of system is healthcare record systems (Chandavale et al., 2019; Rezaeibagha and Mu,
2016). The problem of data consistency does not arise when in all data storage and
processing centres the data itself, which the user can access at any moment, is identical,
in other words, there is no situation when at the same time in some data centres (DC)
there is new data, while others do not yet. How to organise replicas of data within cloud
resources is a task for each CSP that can be addressed in different ways. But the task of
replicating data between several CSPs should be solved by middleware developers (Viotti
and Vukolić, 2016), which is directly related to the choice of both the architecture and the
multicloud system consistency protocol.

This work proposes the protocol of monotonic write consistency VIP-Grab for
multicloud systems. The latency of user data writing can be used for numerical
comparison and selection of the optimal multicloud architecture. This paper discusses the
results of an experiment to determine the latency of writing in replicas of a real database
located in Azure, AWS and Google Cloud Platform (GCP) for a geo-distributed
middleware architecture.

 Data consistency protocol for multicloud systems 45

2 Problem statement

Applying at least three replicas in different storage centres into different CSPs minimises
the risk of failure data loss, thereby ensuring that users’ data can be recovered in the
event of a failure, as discussed at work Alshammari et al. (2020). In our work, the
structure of a multicloud system is considered as a resource group of three different CSPs
with a centralised control geo-distributed middleware with high availability (Figure 1).

Figure 1 General scheme of a multicloud system with geo-distributed middleware

In common case, a multicloud middleware can perform different types of tasks depending
on the purpose of use and multicloud’ architecture, for example, combining
heterogeneous resources from different administrative domains; providing
interoperability including managing data locality and latency; incentivising resource
sharing; implementing easy-to-use authentication and authorisation mechanisms;
analysing and combining a variety of billing models at different service as studied at
works (Bittencourt and Calheiros, 2017; Koulouzis et al., 2020; Wang et al., 2020;
Mealha et al., 2019). In this work, we assume that a multicloud middleware has a central
role in the management of resources from different cloud providers by enabling a
distributed system platform that can efficiently coordinate users traffic, route users’ data
read/write operations and also, as a service broker, collect real-time data.

Let the databases of each cloud contain identical data, i.e. are replicas, and the user is
guaranteed that a read request sent to the database of any CSP will return up-to-date and
identical data. We classify as a write (or update) any operation that modifies the value of
an object in the database, while, conversely, reads return to the caller the current value
held by the object’s replica without causing any change to it.

The middleware architecture significantly affects the final level of data consistency
for multiclouds, since the level of consistency implemented in the middleware
additionally superimposed on the level of consistency implemented by each CSPs
separately. In this regard, for numerical comparison of the final levels of data consistency
in multicloud, it is advisable to use the numerical values of data reading latency, which in

 46 O.A. Kozina et al.

turn depend on the consistency protocol implemented in the middleware. The main goal
of the work is to develop a data consistency protocol for the middleware that would
provide the minimal dynamically adjustable response from replicas in a multicloud with
guaranteed identical up-to-date data when clients contact from any location.

3 Related work

Several works in the literature deal with different types of consistency from traditional to
novel consistency models, such as Aldin et al. (2019) and Viotti and Vukolić (2016).
Consistency means that each process knows of the other processes have access to the
resource, whether they read or write, and also know what to expect. The authors
demonstrate that characteristics of the distributed systems such as reliability, availability,
latency, energy consumption, scalability, cost/monetary cost and others depend on the
correct choice and effective implementation of the consistency model. Although they
focus on more than 50 different consistency semantics that applies to distributed web
services and distributed storage systems, none of them is related to the consistency model
for multicloud systems with database replicas. Such research influenced the development
of this work.

In Ardekani and Terry (2014), the Tuba – a geo-replicated key-value store – was
implemented as middleware on top of Microsoft Azure Storage which provides
geo-replication consistency-based service level agreements and automatic
reconfiguration. Six levels of consistency – strong, eventual, read-my-writes (RMW),
monotonic reads, bounded, and causal – are implemented in the proposed cloud storage
system. Depending on the desired consistency/latency combination, the network delays
between clients and various DCs, and cost constraints, new configurations of replicas
executed. Authors experimentally demonstrated that cloud storage system reconfiguration
completed automatically every two hours can increases read with guaranteeing strong
consistency by 18% but the possibility of implementation of such an approach to
multicloud systems should be discussed.

Lots of works, like Crain and Shapiro (2016), Ren et al. (2019) and Mealha et al.
(2019), are focused on different types of algorithms and protocols for enforcing different
consistency, for example, causally consistent protocol, SLOG to ensure strict
serialisability guarantees, a weak consistency model protocols based on the operational
transformation or conflict-free replicated data types (CRDT).

Kakwani and Nasre (2020) proposed a protocol supported read-only transactions
(ROT), named Orion. Implementation of this protocol for enforcing causally consistent in
distributed multi-version key-value store with full replication across three Google Cloud
Platform DCs located in Iowa, Finland and Taiwan has demonstrated increasing up to
1.7× higher throughput against the existing protocol CausalSpartanX.

In some works, replication algorithms basing on various parameters combinations
that reflect the functioning efficiency of distributed systems are proposed. In Wang et al.
(2012), a dynamic data replication strategy based on a trade-off between reading access
time and write updating cost using historical access records and proactive deletion is
proposed. The authors note that the method of replica placement and weight of historical
records are essential to achieve the required dynamic replication performance in
distributed systems.

 Data consistency protocol for multicloud systems 47

In Zawirski et al. (2013), latency by geo-replicating data in several DCs across the
world was estimated. Proposed client-assisted failover protocol preserves causality
cheaply and in addition to its updates, a client may observe a causally-consistent view of
stable (i.e., stored at multiple servers) updates from other users. Experiment with DCs in
three Amazon EC2 availability zones had shown that in the cloud-no fault-tolerant
configuration, transaction latency is proportional to the client-DC RTT, and
cloud-fault-tolerant suffers additional latency for writing to a quorum. Besides,
SwiftCloud protocol has based on using a cache containing replicas of a subset of objects
(partial replication), so this protocol is difficult to use for multicloud systems.

In Wu and Madhyastha (2013), the potential latency benefits of deploying
webservices across three popular cloud infrastructure services – Amazon EC2, Google
Compute Engine (GCE) and Microsoft Azure are estimated. The authors examine reasons
for the potential latency benefits of web service deployments spanning multiple cloud
services but the latency of read/write operations in a multicloud architecture with
database replicas is not analysed.

In Eischer et al. (2020), a novel architecture of cloud-based geo-replication
applications with the protocol to perform guaranteed writes are proposed. The protocol
named Weave is a Paxos-based multi-leader state-machine replication protocol that
optimised quorum sizes to provide guaranteed writes locally within each replica group
hosted in separate cloud-provided fault domains. The experiment with replicas spread
across the three Amazon EC2 regions in Ohio, Frankfurt and Sydney, demonstrate that
Weave’s response time is more than 78% lower than the Paxos broadcast optimisation
protocol required two wide-area communication steps. Thus, this protocol can improve
the quality of service and reduce latency in cloud systems of one CSP, but the techniques
studied here are others. In this paper, we propose the VIP-Grab protocol of monotonic
write consistency for multicloud systems.

4 Protocol of consistency VIP-Grab

The basis of the algorithm for setting the order of data writing to databases on different
CSPs is a mechanism in which the write operation does not automatically synchronise the
replicas of databases located at different cloud providers. This is applying an approach
similar to that used for active replication with a fully ordered global sequence of data
write.

As a basic model of data consistency in a multicloud with middleware, the monotonic
write consistency model is used. Data transfers between resources of different CSPs tend
to have a longer WAN latency, so the proposed VIP-Grab protocol of consistency uses as
little data and message transfers between clouds as possible.

In the VIP-Grab protocol, the formation of message flows is based on the developed
data preparation algorithm, the input data for which is information about the data
transmission intervals between various parts of the entire system. The use of the
cumulative results of this algorithm allows for flexible adjustment of the response of the
multicloud system both in the long and short term. It is also proposed to use various
mechanisms for users data read and write operations processing.

 48 O.A. Kozina et al.

Figure 2 Flows of packages for writing

The scheme of data flow control in the VIP-Grab protocol is shown in Figure 2. The
client side of the cloud application sends a data packet for writing PW(key, data) with a
unique key to the databases of all cloud providers. At the same time, the client side of the
cloud application sends a message with this same key to the nearest middleware node.
When the key is received by the middleware the matching node sends a notification about
grab the current free number N in the global sequence for writing to the other nodes.

The proposed algorithm allows setting the correct order of increasing numbers in a
global sequence for writing during the adjustment interval for all data packets received by
all geo-distributed middleware nodes. At the end of the adjustment interval, each node
that received a unique key send to all cloud databases the message Ack(key, N*)
containing this key and the corrected number in the global sequence N* received after
sorted such numbers.

The package with user data is written to the database of each CSP only when from the
middleware the sorted number N* from the global sequence arrives issued for the
corresponding key and only after the successful execution of writing procedure with the
previous number N* – 1 package. Acknowledgements about the successful write
Ack(w, key) and the successful read Ack(r, key) go to the middleware.

 Data consistency protocol for multicloud systems 49

Such consistency protocol allows processing read operations separately from data
writing operations and directing read requests from users to the nearest CSP, thereby
reducing response time, but it requires a conscious choice of localisation of middleware
nodes. The middleware should have nodes located as close as possible to geographic
clusters of users. It means that, on the one hand, it is possible to arrange the middleware
at the CSP whose resources is going to use by the customer of the multicloud system for
access and process data. However, on the other hand, if the main goal of organising a
multicloud system is to avoid dependence on single cloud data storage, then middleware
nodes should be located at an additional cloud resource provider that has the lowest
round-trip time (RTT) from areas of the largest concentration of users.

4.1 Algorithm for preparing data for ordering numbers in a global sequence for
writing in multicloud replicas

A justified choice of middleware nodes localisation allows us to consider the directions
of data transfer between its nodes Bri as a complete graph. Moreover, we assume that
each middleware node serves its own assigned region of users. The directions of data
transfer between four nodes Bri with assigned regions of users are shown on the service
region map in Figure 3. When a new user is connected, depending on its geographic
location, the middleware determines which node it will be served by.

Figure 3 Service region map for middleware nodes

For each region, it is necessary to determine it – the average time of package delivery
from users to node Bri; Br

iσ – the standard deviation (SD) of the delivery time of packets
from users to node Bri.

 50 O.A. Kozina et al.

The choice of the sample duration for calculating such averages will be a very
important step. The accumulation of statistically reliable data will make it possible to
rank the necessary average response values from nodes depending on the day of the
week, time of day, season or other parameters that are significant for the operation of the
entire multicloud system, which means dynamically reconfigure data flows from users to
middleware nodes.

The set of SDs { | (1)}Br
iG σ i M= ∈ … is sorted in descending order and the position

numbers of the elements in such a sorted set correspond to the service priority numbers
by the SD Pr(σBr) for the corresponding node, for example, for eight middleware nodes,
i.e., for M = 8, priority table matching SDs might look like this:
Table 1 Priorities of nodes by SD

Br
iσ 0.065 0.064 0.057 0.057 0.033 0.031 0.029 0.026

Bri 5 3 4 7 8 2 6 1
Pr(σBr) 1 2 3 4 5 6 7 8

If the values σi are equal, the priority numbers are sorted by the node index of the
distributed middleware.

The intervals during which the messages from one middleware nodes can reach other
nodes are random values, therefore, as input values for the considered algorithm for
generating numbers in the global sequence for writing, it is necessary to use a set of a
priori obtained mean values and SDs of such message delivery intervals τi,j from each
node to all others pairwise. For example, let for multicloud system with M = 8 the
obtained symmetric matrix of pairwise message delivery intervals τi,j look like this:

1 2 3 4 5 6 7 8

1

2

3

, 4

5

6

7

8

251 80 62 148 135 90 51
251 129 359 41 28 29 28
80 129 31 132 98 71 62
62 359 31 31 149 30 47

148 41 132 31 31 36 134
135 28 98 149 31 143 80
90 29 71 30 36 143 143
51 28 62 49 134 80 143

i j

Br Br Br Br Br Br Br Br
Br
Br
Br

τ Br
Br
Br
Br
Br

−
−

−
= −

−
−

−
−

 (1)

Then the set F of maximum values for each row {max τi,j} for this matrix will be such:

{251, 359, 142, 359, 148, 149, 143, 143}F = (2)

The set F is sorted in descending order. In this case, the position numbers in such a sorted
set correspond to the levels of service priorities for pairwise message delivery intervals,
for example, for M = 8 according to the set F, the priority table for pairwise message
delivery intervals Pr(τBr) may look like in Table 2.

 Data consistency protocol for multicloud systems 51

Table 2 Priorities of nodes by pairwise message delivery intervals

max τi,j 359 359 251 149 148 143 143 132
Bri 4 2 1 6 5 7 8 3
Pr(τBr) 1 2 3 4 5 6 7 8

In the case of equality of values max τi,j, the priority levels are set following the priority
levels by SDs for the same nodes, for example, according to the data in Table 2,
max τ4,2 = max τ2,4 = 359, however, the priority level is Pr(τBr4) > Pr(τBr2) because
Pr(τBr4) > Pr(τBr2). Thus, the priority levels by SDs are the second rule for ranking
middleware nodes when prioritising nodes by pairwise message delivery intervals.

The average value of the longest pairwise message delivery interval between nodes
max τ, taking into account the SD of this random variable, is the adjustment interval T for
numbers in the global sequence, i.e., T = max τ + σ. Thus, the adjustment interval is
longer than any length of message delivery interval between all nodes in the middleware.

During the adjustment interval T, the message with the key from the user may arrive
at the moment when the notification about the grab of the number, sent by this node, does
not have time to reach all nodes. The ‘availability window’ Wi of a node Bri is a certain
interval from the beginning of the adjustment interval T, during which all messages sent
by the node Bri will have, on average, sufficient time to reach all other middleware nodes

,
1

maxi i j
j M

W T τ
=

= −
…

 (3)

4.2 Algorithm for ordering numbers in a global sequence for writing in replicas
of a multicloud

The main mechanism for numbers ordering in the global sequence for writing in the
databases of various CSPs implies that a notification about sending data to cloud storages
with a unique key from the user is sent to one middleware node Bri only. During the
adjustment interval, each middleware node Bri receiving key must send to the rest of the
nodes a message about number grab Grab(Bri, Nj, Ix), which contains:

• the identifier of the node Bri that received key

• the primary version of the number in the sequence, Nj

• the identifier of the adjustment interval, Ix.

Each middleware node, having received a notification Grab(Bri, Nj, Ix) from any other
node, the so-called ‘foreign Grab’, according to the rules for managing numbers, can
correct the numbers of ‘own Grabs’ only, i.e., those capture notifications, the numbers for
which it generated. The following rules are formulated for managing numbers in the
global sequence for writing in each node:

1 Each node Bri in its ‘own Grab’, which is generated in response to the first message
from the user with a key in the ‘availability window’ Wi, uses the starting free
number Nf(Bri, Ix) of the node as the number in the sequence. Nf(Bri, Ix) then
increases by 1 and becomes the current sequence number for the current ‘availability
window’. When forming all subsequent ‘own Grabs’ from the ‘availability window’,
the current free number Ny(Bri, Ix) is used, after which 1 is also added to it.

 52 O.A. Kozina et al.

2 Each node Bri in its ‘own Grabs’ sent after the end of the ‘availability window’ in the
current adjustment interval, uses the value ‘Next’ instead of the current number
Nf(Bri, Ix) in the global sequence, i.e., it sends messages like Grab(Bri, Next, Ix). Each
subsequent notification in the current adjustment interval is assigned the value
‘Next + 1’ instead of a number in the sequence.

An example of ‘own Grabs’ exchange between nodes Br5 and Br7 in one adjustment
interval I12 if free start number Nf = 154 is demonstrated in Figure 4. Let packets
P(key4) and P(key5) arrived at node Br7 during the current adjustment interval I12 =
[t1, t1 + T] after the end of the ‘availability window’ W7. In this case, node Br7 should
send to node Br5 message Grab(Br7, Next, I12) about packet P(key4) and message
Grab(Br7, Next + 1, I12) about packet P(key5) but not use numbers from the sequence,
like 154 or 155.

Figure 4 An example of ‘own Grabs’ exchange between nodes Br5 and Br7 in one adjustment
interval I12 if free start number Nf = 154 (see online version for colours)

3 Upon expiration of each adjustment interval at each node Bri, a new free start
number is calculated in the sequence Nf(Bri, Ix) as the sum of the values: free start
number of the previous adjustment interval Nf(Bri, Ix–1); the amount of received
‘foreign Grabs’ without the value ‘Next’ for the current adjustment interval; the
amount of ‘own Grabs’ sent by this node during the ‘availability window’, i.e.,
amount of messages without ‘Next’; the amount of received ‘foreign Grabs’ with the
values ‘Next’ sent from the previous adjustment intervals:

() () ()

()
*

1
1... ,

1
1... ,

,

, , , ,

, ,

f i x f i x j x
j M

N Next

j x
j M

j i

N Br I N Br I Grab Br N I

Grab Br Next I

∗
−

=
≠

−
=

≠

= +

+




 (4)

4 All notifications about grab of the number generated by the current node Bri with the
value ‘Next’ in the previous adjustment intervals Ix–1, i.e., ‘own Grabs’ of the type
Grab(Bri, Next, Ix–1), at the beginning of a new adjustment interval Ix have received

 Data consistency protocol for multicloud systems 53

the replacement of the value ‘Next’ to the value of the new free start number
Nf(Bri, Ix) and recalculated. By such way, there is, as it were, a movement of the
generation time of such notifications from the interval Ix–1 to the beginning Ix and,
accordingly, an increasing of the free number in the sequence Nf(Bri, Ix) for all other
‘own Grabs’ or in other words ‘late notifications are considered first in the Next
interval’.

5 If the node Bri during the adjustment interval Ix received a ‘foreign Grab’ of the type
Grab(Bri, Next, Ix), sent also in Ix, then this does not change the values of numbers in
the sequence for ‘own Grabs’ in this Ix.

6 If the node Bri during the adjustment interval Ix received a ‘foreign Grab’ of the type
Grab(Brj, Next, Ix–1) sent in the previous adjustment interval Ix–1, then the free start
number in the sequence Nf(Bri, Ix) for the current adjustment interval is increased by
1, and accordingly, all the numbers already used in the current Ix are recalculated, in
other words, ‘skip ahead late notification’.

7 If the node Bri during the adjustment interval Ix received a ‘foreign Grab’ of the type
Grab(Brj, Ny Ix) sent in the current interval from a node with a higher priority
Pr() Pr(),j iBr Brτ τ> then all ‘own Grabs’ generated up to this moment during the
‘availability window’ Wi increase by 1 their numbers in the sequence. This also
means that for ‘own Grabs’ of the type Grab(Bri, Next, Ix–1) from the previous
adjustment interval, the new value instead of the ‘Next’ is not calculated.

At the finish of every adjustment interval Ix, each node Bri sends acknowledgement
messages of the type Ack(key, Ny) to all cloud storages. These messages are containing
the key of data key and the recalculated by this time numbers from the notifications
Grab(Bri, Ny, Ix) that were adjusted during this interval Ix.

The proposed algorithm for ordering numbers in a global sequence for writing
generates for data received from one region during one adjustment interval the order of
writing to the storages of various cloud providers similar to the order of their keys
entering in the middleware. Using the numbers formed by this algorithm allows writing
data received during the ‘availability windows’ from different regions in the same order
to entering of their keys in the middleware. Also, the data, whose keys arrived in the
middleware in the current adjustment interval, will have numbers for writing less than the
data, whose keys arrived in the subsequent intervals. Thus, the numbers obtained by the
proposed algorithm do not violate the chronology of writing data received as within each
interval so between intervals from one region, as well as do not violate the chronology of
writing data received within the ‘availability windows’ from different regions.

5 The latency of writing

As shown upper, applying the VIP-Grab protocol in a multicloud with the middleware
leads to general latency LMultiCl between the users sending of data to cloud storage, let it
be t0, and the moment when this data is written to all databases in a determined order

| 1 ,w
it i S= … where S is the number of CSPs in whose resources users’ data are storing.

Let S = 3, then for each cloud database

 54 O.A. Kozina et al.

0i
w

MultiCl iL t t= − (5)

According to the VIP-Grab protocol, writing in the databases of each cloud occurs at the
moments when both the message from the user containing the data and the key
PW(key, data) and the message from the middleware node Ack(key, N*) containing the
same key and the final corrected number N* in the global sequence already is collected.

Let us assume that the moment when the message PW(key, data) enters in ith cloud
depends primarily on the average delivery interval , iU Clt between a user device and the ith
cloud database, implying that the time interval required for processing and routing the
message inside the cloud is much less than data delivery to the cloud.

The message from the middleware node Ack(key, N*) can arrive in the ith cloud after
processing the message PW(key, data) by nearest to user middleware node Bri. The time
of this occurring also depends on the average delivery interval ,j iBr Clt of the message
between the jth middleware node and the ith cloud.

Each middleware node generates a corrected number N* during one adjustment
interval T if the message from the user arrived during the ‘availability window’ Wj of this
middleware node Bri in the current adjustment interval, or during the next adjustment
interval, if such message arrived to Bri after finishing the ‘availability window’ Wj in the
previous adjustment interval. This means that the minimum time for forming a corrected
number N* is the same for all middleware nodes and is equal to the adjustment interval T.
The maximum time for forming the corrected number N* depends on a node and for jth
node is ,

1
max .j i

i M
T τ

=
+

…

Considering that the adjustment interval depends on the maximum of inter-nodes
message delivery intervals, for the furthest middleware node BrA in terms of inter-nodes
pairwise delivery time, the duration of forming N* by VIP-Grab protocol Ts can be equal

, , , ,
1... 1... 1... 1...

max max max 2 maxA A A ABr i Br i A Br i Br i A
i M i M i M i M

T τ τ σ τ τ σ
= = = =

+ = + + = + (6)

In the common case, the duration Ts of forming corrected number N* for jth middleware
node take on value into

() ()(),
1

max max max j i
i M

τ σ τ σ τ
=

 + + +
 …

… (7)

Thus, in the absence of restrictions on writing associated with incomplete writing
operations of users data with previous numbers in the global sequence, writing of users’
data processed in jth middleware node occurs in the ith cloud at the moment w

it of the
presence of both messages, i.e. at the moment when the next logical expression is equally
true:

() ()()0 , 0 , ,i j j i
w

U Cl U Br s Br Clit t t t t T t= + ∧ + + + (8)

where , jU Brt is the average delivery interval between a user device and nearest to him/her
middleware node Brj. Then writing of users data in ith cloud database can be carried out
only after sending the data, i.e. after the duration of general latency LMultiCl:

 Data consistency protocol for multicloud systems 55

()
()() ()

0

0 , 0 ,

0 , , 0 , ,

, if 0

, if 0

i

i i

j j i j j i

w
MultiCl i

U Cl U Cl i

U Br s Br Cl U Br s Br Cl i

L t t

t t t t L

t t T t t t T t L

= − =

 + − = Δ <= 
+ + + − = + + Δ >

 (9)

where ΔLi is relative latency of writing determined as the difference between moments of
receiving user data PW(key, data) and the acknowledgement message Ack(key, N*) from
jth middleware node for ith cloud, i.e.,

(), , ,j j i ii U Br s Br Cl U ClL t T t tΔ = + + − (10)

Intervals determined relative latencies ΔLi of writing data to clouds Cl1, Cl2 and Cl3 are
shown in Figure 5. Suppose a data packet PW(key, data) sends by the client side at t0 and
the adjustment interval T for each node Brj starts at t1.

Figure 5 General latency 0i
w

MultiCl iL t t= − and relative latencies ΔLi of writing (see online
version for colours)

The duration of forming corrected number N* for jth middleware node can take values
from the interval (7), therefore the minimum relative latency ΔLi of writing for a user
data after arriving at the cloud:

min
, , ,Δ (max)j i j iU Br U Cl Br CliL t t τ σ t= − + + + (11)

and maximum relative latency equal to

max
, , ,Δ 2maxj i j iU Br U Cl Br CliL t t τ σ t= − + + + (12)

and therefore the difference between the maximal and minimal data writing relative
latency in a multicloud systems by using VIP-Grab protocol is determined by the
duration of the longest pairwise message delivery interval between middleware nodes
max τ.

 56 O.A. Kozina et al.

6 Reading control

The existence of general latency iMultiClL of writing for replicas in all clouds at applying
of VIP-Grab protocol of consistency data shows simultaneously requests to reading for
all clouds will not give identical results, so reading control mechanism must be used.

The justified choice of the middleware nodes localisation, as described in Section 4,
implies a priori analysis of pairwise message delivery intervals between its nodes, i.e. the
minimum relative latency min

iLΔ for each cloud can be estimated in advance. In this case,
during the interval iMultiClL ordered data will be written in all storages of the multicloud
system, which means that to ensure the identity of responses to read requests, it is
necessary to wait during an appropriate time before reading in every cloud.

The durations of pairwise message delivery intervals max τ between middleware
nodes are random values, the values of which many CSPs tend to reduce to improve the
quality of service to their customers, therefore, for the correct implementation of the
selected consistency model, it is necessary to collect and analyse data which also makes it
possible to dynamically correct the adjustment interval T in the middleware and reading
latency.

7 Experiment

Three CSPs for data storage were chosen as a test environment for numerical estimation
of data write latency: AWS, Azure and GCP. Copies of the relational database were
hosted on DC located in Ohio (AWS), on Frankfurt DC (GCP) and Western Europe DC
(Azure).

It is assumed that most users are located in Europe, but it is necessary to maintain
accessibility to the data for users from all over the world. It is assumed that most data
users of the selected multicloud system are located in Europe, but it is necessary to
maintain the accessibility of data for users from all over the world. Each provider of the
selected multi-cloud system has a data centre located in Frankfurt. To choose the provider
to host the middleware for the tested multicloud system, we analysed the average of the
data read intervals from the database copies for Frankfurt data centres of each provider.

The console application has been developed on .Net Core 2.2 to form a stream of
requests to read data from databases in all CSPs. Every day in the morning, afternoon and
evening for three weeks, our application sent 1,000 requests to select data from R rows
using the instruction select top R. Thus, we received 63,000 intervals with response times
from each database for every CSP. To reduce the risk of correlated results number of
rows N in each query was changed randomly, and every request was sent after getting a
reply to the previous one with a 20 ms delay. Our application has launched from the same
desktop PC located in Kharkiv (Ukraine). The request payload is set to 140 bytes.
Average values and SDs of the obtained response intervals from the database for each
CSP in milliseconds are presented in columns 2, 3, 4 of Table 3.

 Data consistency protocol for multicloud systems 57

Table 3 Response times from databases located at different CSPs

CSP (region) AWS (Frankfurt) Azure (Frankfurt) GCP (Frankfurt) AWS (Ohio)
1 2 3 4 5
Average time ms 101.08 105.17 108.87 208.47
SD, , ,iU Clt ms 0.0345 0.0249 0.0369 0.0385

AWS has the lowest average response time for reading requests at 101.08 ms, so we
recommend choosing AWS to host the multicloud middleware for the tested multicloud
system.

At the same time with using our application, the experiment of a similar form and
content was conducted to collect and analyse the response times for reading requests to
the database located on Ohio (AWS). Average values and SD of the obtained response
intervals from the Ohio database are presented in column 4 of Table 3.

The average values of the time intervals obtained in this experiment can be
considered approximately equal to twice the duration of the message delivery from a user
device to those CSPs whose resources there will be no middleware, i.e., half values from
columns 3, 4, 5 in Table 3 can be used as , iU Clt in general latency iMultiClL calculations.

Let us consider a case when a user, being in Kharkiv (Ukraine), writes data to AWS,
Azure and GCP databases. To determine the latency of writing in each cloud ,iMultiClL it
is necessary to compare the minimum relative latency min

iLΔ with zero. Assume that the
nearest middleware node that process users requests from Kharkiv is located in Frankfurt
(AWS), therefore, ,, 50.54AWS FrankfurtU Brt = ms.

The minimum duration Ts of the formation of a number N* in the global sequence due
to VIP-Grab protocol, as shown in Section 4, is determined as maxτ σ+ and is chosen as
the maximum values of pairwise message delivery interval between all middleware
nodes. According to data from AWS Latency Monitoring1 the average intra-region
latency for AWS nodes in December 2020 is 468.79 ms and we will consider this value
as an approximate doubled value of the data transfer interval between its nodes. SD for
average RTT was not found in the public sources, so we assume for AWS σ = 0.06 ms
and max τ + σ ≈ 234.39 + 0.06 = 234.45 ms. Now, let’s determine the general latency of
writing in each cloud.

The minimum relative latency of writing for a user data after arriving at the Azure
database is

0 1 0 1

0 1

0 1

min
, , ,1

,

,

Δ (max)

50.54 52.58 234.45

232.41 0

U Br U Cl Br Cl

Br Cl

Br Cl

L t t τ σ t

t

t

= − + + +

= − + +

= + >

 (13)

where 0 1,Br Clt is the average message delivery interval between the nearest middleware
node (AWS, Frankfurt) and cloud database in Azure (Frankfurt). According to round-trip
latency Azure2, the average intra-regional RTT between the closest West Europe Azure
nodes is 11 ms, therefore, we will assume 0 1, 5Br Clt ≈ ms. Then, min

1 237.41LΔ = ms and
the general latency of writing data to the Azure database equal to

 58 O.A. Kozina et al.

()1 0 0 1, , (50.54 234.45) 5 289.99 msMultiCl U Br s Br ClL t T t= + + = + + = (14)

The minimum relative latency of writing for a user data after arriving at the GCP
(Frankfurt)

0 2 0 2

0 2

0 2

min
, , ,2

,

,

Δ (max)

50.54 54.43 234.45

230.56 0

U Br U Cl Br Cl

Br Cl

Br Cl

L t t τ σ t

t

t

= − + + +

= − + +

= + >

 (15)

According to Google Cloud latency between regions3 the average intra-regional RTT
between the nearest nodes of GCP in Europe is 7.42 ms, therefore, let message delivery
interval between the middleware node (AWS, Frankfurt) and GCP (Frankfurt) is

0 2, 3Br Clt ≈ ms. Then, the minimum relative latency equal to min
2 233.56LΔ = ms and

general latency of writing data to the GCP database is

()2 0 0 2, , (50.54 234.45) 3 287.99 msMultiCl U Br s Br ClL t T t= + + = + + = (16)

The minimum relative latency of writing for a user data after arriving at the AWS (Ohio)

0 3 0 3

0 3

0 3

min
, , ,3

,

,

Δ (max)

50.54 104.23 234.45

180.76 0

U Br U Cl Br Cl

Br Cl

Br Cl

L t t τ σ t

t

t

= − + + +

= − + +

= + >

 (17)

According to 1 the average intra-regional RTT between AWS nodes in Ohio and
Frankfurt determined due to 30-days observations is 102 ms, so assume that

0 2, 51 ms.Br Clt ≈ Then, minimum relative latency equal to min
3 231.76 msLΔ = and general

latency of writing data to the AWS database is

()3 0 0 3, , (50.54 234.45) 51 335.99 msMultiCl U Br s Br ClL t T t= + + = + + = (18)

8 Discussion and conclusions

Analysis of the obtained values of the minimum relative latency min
iLΔ of writing in a

multicloud system by using the VIP-Grab consistency protocol shows that the main
contribution to them is made by the duration of the adjustment interval determined as
max τ + σ, which in turn depends on the intra-region latency between the middleware
nodes. On the other hand, the analysis of message delivery intervals between a
geographic cluster of users , jU Brt and middleware nodes also plays a significant role in
location choosing for middleware, as in the dynamical correction of the adjustment
interval. The more values , jU Brt are collected for potential CSPs with middleware before
deciding on its placement, the more optimal response of the entire multicloud system will
be obtained, both at reading/writing for users.

 Data consistency protocol for multicloud systems 59

For the cases of using a multicloud system to organise a highly reliable service with
wide geo-distributed data availability, it should be noted the impact of the quality of a
priory collection of message delivery intervals between all parts of the multicloud
system: multicloud architects should pay attention to statistically significant sample size,
the type of protocol in experiments – ICMP or TCP, as well as the dependence of latency
on the time of day and seasons.

Thus, in this paper, we presented VIP-Grab protocol based on the geo-distributed
architecture of middleware, which provides the ordering of numbers in a global sequence
for writing operations in database replicas located in different CSPs. The duration of the
interval iMultiClL during which the data ordered by VIP-Grab protocol will be written to
the databases of all clouds can be used to numerically compare the optimality of
multicloud systems architectures and select the appropriate CSPs configuration per the
client’s requirements. Determining the optimal latency of writing in each database of a
multicloud system with middleware, and hence the values of deferred reading, is a
multi-criteria task even from the point of view of estimating time parameters.

References
Abualkishik, A.Z., Alwan, A.A. and Gulzar, Y. (2020) ‘Disaster recovery in cloud computing

systems: an overview’, (IJACSA) International Journal of Advanced Computer Science and
Applications, Vol. 11, No. 9, pp.702–710, ISSN 2158-107X.

Aldin, H.N.S., Deldari, H., Moattar, M.H. and Ghods, M.R. (2019) Consistency Models in
Distributed Systems: A Survey on Definitions, Disciplines, Challenges and Applications
[online] https://arxiv.org/pdf/1902.03305v1.pdf (accessed 20 April 2021).

Alshammari, M.M., Nordin, A., Alwan, A.A. and Abualkishik, A.Z. (2020) ‘Data backup and
recovery with a minimum replica plan in a multi-cloud environment’, International Journal of
Grid and High Performance Computing, Vol. 12, No. 2, pp.102–120, ISSN 1938-0259;
E-ISSN 1938-0267.

Ardekani, M.S. and Terry, D.B. (2014) ‘A self-configurable geo-replicated cloud storage system’,
11th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 14),
pp.367–381, ISBN 978-1-931971-16-4.

Bittencourt, L.F. and Calheiros, R.N. (2017) ‘Middleware for multicloud’, IEEE Cloud Computing,
Vol. 4, No. 4, pp.22–25, E-ISSN 2325-6095 [online] https://www.computer.org/csdl/
magazine/cd/2017/04/mcd2017040022/13rRUILLkxA (accessed 20 April 2021).

Crain, T. and Shapiro, M. (2016) ‘Designing a causally consistent protocol for geo-distributed
partial replication’, PaPoC ‘15: Proceedings of the First Workshop on Principles and Practice
of Consistency for Distributed Data, April, Article No. 6, pp.1–4 [online] https://doi.org/
10.1145/2745947.2745953 (Accessed 22 July 2021).

Chandavale, A., Gade, A. and Dixit, A. (2019) ‘Medical knowledge extraction scheme for
cloudlet-based healthcare system to avoid malicious attacks’, International Journal of Cloud
Computing, Vol. 8, No. 4, pp.319–331, ISSN 2043-9989.

Eischer, M., Straßner, B. and Distler, T. (2020) ‘Low-latency geo-replicated state machines with
guaranteed writes’, PaPoC ‘20: Proceedings of the 7th Workshop on Principles and Practice
of Consistency for Distributed Data, April, Article No. 13, pp.1–9 [online] https://doi.org/
10.1145/3380787.3393686 (Accessed 20 April 2021).

García-Dorado, J.L. (2015) Bandwidth in the Cloud [online] https://export.arxiv.org/ftp/arxiv/
papers/1512/1512.01129.pdf (accessed 20 April 2021).

Gudeme, J.R., Pasupuleti, S.K. and Kandukuri, R. (2019) ‘Review of remote data integrity auditing
schemes in cloud computing: taxonomy, analysis, and open issues’, International Journal of
Cloud Computing, Vol. 8, No. 1, pp.20–49, ISSN 2043-9989.

 60 O.A. Kozina et al.

Ibrahim, A.A.Z.A., Kliazovich, D. and Bouvry, P. (2016) ‘Service level agreement assurance
between cloud services providers and cloud customers’, CCGRID ‘16: Proceedings of the
16th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing, pp.588–
591, ISBN 978-1-5090-2452-0.

Jambunathan, B. and Yoganathan, K. (2018) ‘Managing storage in multicloud environment’,
International Journal of Pure and Applied Mathematics, Vol. 118, No. 9, pp.617–623,
ISSN 1311-8080.

Kakwani, D. and Nasre, R. (2020) ‘Orion: time estimated causally consistent key-value store’,
PaPoC ‘20: Proceedings of the 7th Workshop on Principles and Practice of Consistency for
Distributed Data, April, Article No. 3, pp.1–6 [online] https://doi.org/10.1145/
3380787.3393676 (Accessed 20 April 2021).

Koulouzis, S., Martin, P. and Zhao, Z. (2020) ‘Virtual infrastructure optimisation’, in Zhao, Z. and
Hellström, M. (Eds.): Towards Interoperable Research Infrastructures for Environmental and
Earth Sciences. Lecture Notes in Computer Science, Vol. 12003, pp.192–207, Springer, Cham,
ISBN 978-3-030-52828-7.

Kozina, O.A. and Panchenko, V.I. (2018) ‘Karta nesuperechnosti danykh dlia
bahatokorystuvatskykh onlain rolovykh ihor [Consistency data map for multiplayer online role
games]’, Herald of the National Technical University ‘KhPI’. Subject Issue: Information
Science and Modelling, No. 24(1300), pp.160–168, in Ukrainian, ISSN 2079-0031.

Mealha, D., Preguiça, N., Gomes, M.C. and Leitão, J. (2019) ‘Data replication on the cloud/edge’,
PaPoC ‘19: Proceedings of the 6th Workshop on Principles and Practice of Consistency for
Distributed Data, March, Article No. 7, pp.1–7 [online] https://doi.org/10.1145/
3301419.3323973 (accessed 20 April 2021).

Rafique, A., Landuyt, D.V., Lagaisse, B. and Joosen, W. (2015) ‘Policy-driven data management
middleware for multi-cloud storage in multi-tenant SaaS’, 2015 IEEE/ACM 2nd International
Symposium on Big Data Computing, Limassol, Cyprus, pp.78–84, ISBN 978-0-7695-5696-3.

Ren, K., Li, D. and Abadi, D.J. (2019) ‘SLOG: serializable, low-latency, geo-replicated
transactions’, Proceedings of the VLDB Endowment, Vol. 12, No. 11, pp.1747–1761,
ISSN 2150-8097.

Rezaeibagha, F. and Mu, Y. (2016) ‘Distributed clinical data sharing via dynamic access-control
policy transformation’, International Journal of Medical Informatics, Vol. 89, pp.25–31,
ISSN 1386-5056, http://dx.doi.org/10.1016/j.ijmedinf.2016.02.002.

Viotti, P. and Vukolić, M. (2016) ‘Consistency in non-transactional distributed storage systems’,
ACM Computing Surveys, Vol. 49, No. 1 [online] https://doi.org/10.1145/2926965 (accessed
20 April 2021).

Wang, P., Zhao, C., Wei, Y., Wang, D. and Zhang, Z. (2020) ‘An adaptive data placement
architecture in multicloud environments’, Scientific Programming, Vol. 2020 [online]
https://www.hindawi.com/journals/sp/2020/1704258/ (accessed 20 April 2021).

Wang, Z., Li, T., Xiong, N. and Pan, Y. (2012) ‘A novel dynamic network data replication scheme
based on historical access record and proactive deletion’, J. Supercomput., Vol. 62, No. 1,
pp.227–250 [online] https://doi.org/10.1007/s11227-011-0708-z (accessed 20 July 2021).

Wu, Z. and Madhyastha, H.V. (2013) ‘Understanding the latency benefits of multi-cloud
webservice deployments’, ACM SIGCOMM Computer Communication Review, April,
Vol. 43, No. 2, pp.13–20, ISSN 0146-4833.

Zawirski, M., Bieniusa, A., Balegas, V., Duarte, S., Baquero, C., Shapiro, M. and Preguiça, N.
(2013) ‘Fault-tolerant geo-replication integrated all the way to the client machine’,
Proceedings of the IEEE Symposium on Reliable Distributed Systems, October [online]
https://arxiv.org/pdf/1310.3107.pdf (accessed 20 April 2021).

 Data consistency protocol for multicloud systems 61

Notes
1 AWS Latency Monitoring [online] https://www.cloudping.co/grid/p_98/timeframe/1M

(Accessed 20 April 2021).
2 December 2020 Round-trip Latency Azure [online] https://docs.microsoft.com/en-

us/azure/networking/azure-network-latency (Accessed 20 April 2021).
3 Kumar, C. (2020) How much is Google Cloud Latency between Regions? Netsparker Web

Application Security Scanner – The Only Solution that Delivers Automatic Verification of
Vulnerabilities with Proof-Based Scanning [online] https://geekflare.com/google-cloud-
latency/ (accessed 20 April 2021).

