

International Journal of Information and Decision Sciences

ISSN online: 1756-7025 - ISSN print: 1756-7017
https://www.inderscience.com/ijids

Artificial neural networks in the development of business
analytics projects

Juan Bernardo Quintero, David Villanueva-Valdes, Bell Manrique-Losada

DOI: 10.1504/IJIDS.2024.10061743

Article History:
Received: 12 June 2020
Last revised: 29 June 2021
Accepted: 10 July 2021
Published online: 26 January 2024

Powered by TCPDF (www.tcpdf.org)

Copyright © 2024 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijids
https://dx.doi.org/10.1504/IJIDS.2024.10061743
http://www.tcpdf.org

 46 Int. J. Information and Decision Sciences, Vol. 16, No. 1, 2024

 Copyright © 2024 Inderscience Enterprises Ltd.

Artificial neural networks in the development of
business analytics projects

Juan Bernardo Quintero
Faculty of Engineering,
EAFIT University,
Medellín, Colombia
Email: jquinte1@eafit.edu.co

David Villanueva-Valdes and
Bell Manrique-Losada*
Faculty of Engineering,
University of Medellín,
Medellín, Colombia
Email: dvillanueva@udem.edu.co
Email: bmanrique@udem.edu.co
*Corresponding author

Abstract: The accelerated evolution of information and communication
technologies, with an ever-growing increase in their access and availability, has
become the foundation for the current big data age. Business analytics (BAs)
has helped different organisations leverage the large volumes of information
available today. In fact, artificial neural networks (ANNs) provide deep data
mining facilities to organisations for identifying patterns, predict probable
future states, and fully benefit from predictions/forecasts. This article describes
three ANNs application scenarios for the development of BA projects, by using
network learning for: 1) executing accounting processes; 2) time series
forecasts; 3) regression-based predictions. We validate scenarios by
implementing an application-case using actual data, thus demonstrating the full
extent of the capabilities of this technique. The main findings exhibit the
expressive power of the programming languages used in data analytics, the
wide range of tools/techniques available, and the impact these factors may have
on the BA development projects.

Keywords: artificial neural networks; ANNs; business analytics; data
analytics; big data; deep data mining; network learning process; time series
forecast; regression-based prediction; activity-based costing; supervised
learning; decision making.

Reference to this paper should be made as follows: Quintero, J.B.,
Villanueva-Valdes, D. and Manrique-Losada, B. (2024) ‘Artificial neural
networks in the development of business analytics projects’, Int. J. Information
and Decision Sciences, Vol. 16, No. 1, pp.46–72.

Biographical notes: Juan Bernardo Quintero is a software architect and data
scientist in a Colombian developer company. He obtained his PhD degree from
University of Antioquia in 2015. He is a Professor in areas like artificial
intelligence, software architecture and data analytics at the University of

 ANNs in the development of BAs projects 47

Antioquia, University EAFIT, and University of Quindío. His current research
interests and work areas include artificial neural network, distributed ledger
technologies, and cloud computing.

David Villanueva-Valdes is an active consultant for several companies in
Medellín, Colombia. Also, He is a Professor at the University of Medellín and
his research includes machine learning, data science, and data engineering to
resolve business questions or more specific for customer data behaviour
analysis.

Bell Manrique-Losada is a Software Engineer and Researcher from
ARKADIUS Research Group. He obtained her Master and PhD degrees from
Universidad Nacional de Colombia in 2006 and 2015, respectively. She is a
Professor in areas like software design, requirement engineering, and data
analytics at the University of Medellín, Colombia. Her current research
interests and work areas include natural language processing, text analytics,
software engineering, and engineering education.

1 Introduction

For several decades, artificial neural networks (ANNs), a branch of artificial intelligence,
have proposed analogies between brains and computers in terms of their function. For its
part, ‘data analytics’ is the discipline responsible for exploring, discovering, and even
interpreting data patterns with the purpose of drawing conclusions. However, whenever
these activities are used to support business decisions that generate added value to an
organisation, they are known as ‘business analytics’ (BAs) (Shmueli et al., 2016).
According to Gartner, Inc.’s (2020) IT glossary, BAs includes solutions for designing
analysis models, building simulation scenarios, understanding realities and predicting
future states.

This article assesses the integration strategies between ANNs and BAs projects by
means of application scenarios by using network learning for:

1 executing accounting processes

2 time series forecasts

3 regression-based predictions.

Based on such scenarios, we implement an application-case using actual data to validate
and demonstrate the full extent of the capabilities of the strategies.

The article is structured as follows: Section 2 introduces and explains the
methodologies used to develop data analytics projects; Section 3 proposes some key
scenarios for using ANNs in BAs; Section 4 describes the implementation of these
scenarios; Section 5 assesses scenario implementations; and Section 6 finally provides
conclusions and proposes future work.

 48 J.B. Quintero et al.

2 Analytical methodologies

Usually recognised as methodologies or processes used to discover hidden knowledge in
the data, these methodologies are divided into phases, which usually include data
contextualisation, preparation, processing, and analysis (Azevedo and Santos, 2008).
Below are some of the most common analytical methodologies:

• KDD – knowledge discovery in databases: This methodology involves the following
phases: selection, pre-processing, transformation, data mining, and interpretation. In
practice, KDD fosters the selection of information collected in database tables. Then,
its phases perform operations on these tables for the purpose of obtaining knowledge
both iteratively and through an interactive process (Fayyad, 1996). Because it
involves the evaluation and interpretation of patterns and models to make decisions,
KDD requires a broad and deep knowledge of a study area.

• SEMMA – sample, explore, modify, model and assess: This methodology, created by
the SAS Institute, according to Azevedo and Santos (2008), refers to a five-stage
data mining process that samples, explores, modifies, models, and assesses
information, as per its acronym. Although SEMMA is itself a methodology, it is
commonly associated with the SAS Enterprise Miner tool (SEMMA SAS Institute,
2020). Based on its structure SEMMA allows the conception, creation, and evolution
of data mining projects, helping to present solutions to business problems as well as
to find business goals.

• CRISP – DM cross industry standard process for data mining: This methodology,
developed by Dainmler Chrysler, SPSS, and NCR, proposes a data life cycle based
on a six-state cyclical process (Chapman et al., 2008). It is an iterative process
starting with obtaining a business understanding of the problem, and then, an
understanding of the dat. Next, such data is processed, and the result produced by the
machine learning algorithm is then evaluated. Given the way its stages are related,
CRIPS-DM can be considered more flexible when implemented in projects of
different nature.

There is another methodology in the analytical trends called ASUM DM which
complements CRISP DM with additional phases and details which we describe and
compare in Table 1.
Table 1 Data mining methodologies

 KDD SEMMA CRISP-DM
Stage Pre-KDD --- Business understanding

Selection Sample Data understanding
Pre-processing Exploration
Transformation Modification Data preparation

Data mining Modelling Modelling
Interpretation/evaluation Assessment Evaluation

Post KDD --- Deployment

Source: Translation by Azevedo and Santos (2008)

 ANNs in the development of BAs projects 49

Table 1 compares the processing stages involved in the KDD, SEMMA, and CRISP DM
methodologies.

Comparison of the stages of the three methodologies described above indicates that
the business understanding stage in CRISP DM evidences the traceability of the
information requirements, starting from the domain, passing through knowledge
priorities, and ultimately leading to the objectives of the end users (Azevedo and Santos,
2008). KDD can be seen as an implementation of both SEMMA and CRISP DM. In
addition, it may be argued that CRISP DM is more complete than SEMMA since the
Sample stage should not be carried out without prior business knowledge. For these
reasons, and based on the popular relationship between CRISP DM and big data, we use
some of the CRISP DM stages to describe the scenarios in this article, as follows:

1 business understanding for describing scenarios in Section 3

2 data understanding and preparation, modelling, evaluation and deployment in
Sections 4 and 5.

In addition to the analytical spectrum, there’s another methodology called ASUM DM. It
looks like CRISP DM but with extra detailed in some phases: business understanding
with analytics approach, data understanding with data requirements and data collection,
and deployment with feedback. However, such additional phases in ASUM DM do not
contribute to explain the integration of ANNs and BAs. Therefore, in this paper we use
simple CRISP DM.

3 Scenarios for using ANNs in BAs

There are many types of topologies (architectures) that describe the structure and
behaviour of the ANN algorithms, with each one exhibiting features for the solution or
representation of different machine learning models (James et al., 2020). Table 2 lists the
most common topologies with their corresponding name or acronym.
Table 2 List of neural network topologies

Network name Acronym Network name Acronym
Multi-layer perceptron (MLP) Deep convolutional inverse

graphics networks
(DCIGN)

Radial basis function (RBF) Generative adversarial networks (GAN)
Hopfield network (HN) Recurrent neural networks (RNN)
Markov chains (MC) Long/short-term memory (LSTM)
Boltzmann machines (BM) Gated recurrent units (GRU)
Restricted Boltzmann machines (RBM) Neural Turing machines (NTM)
Autoencoders (AE) Bidirectional recurrent neural

networks
(BiRNN)

Sparse autoencoders (SAE) Deep residual networks (DRN)
Variational autoencoders (VAE) Echo state networks (ESN)
Denoising autoencoders (DAE) Extreme learning machines (ELM)
Deep belief networks (DBN) Liquid state machines (LSM)
Convolutional neural networks (CNN) Support vector machines (SVM)

 50 J.B. Quintero et al.

The scenarios implemented will use two of these topologies as follows:

1 Analogy: Propagation in an MLP network for the execution of accounting processes.

2 Forecasts: Using the learning processes of an LSTM network to process time series.

3 Predictions: Using the learning processes of an MLP network to implement
regressions.

For scenario 1, there is a latent justification, based on the analogy between an ANN and
an activity-based costing (ABC) model; however, scenarios 2 and 3 require further
argumentation. Although there are many tools, languages, and utilities for using time
series and regression techniques, the two scenarios in which they are implemented with
neural networks are motivated by the deep learning boom, in which artificial intelligence
engines streamline massive paralleling and processing works (Siami-Namini et al., 2019),
thus taking advantage of the graphics processing unit (GPU) to perform tasks such as
matrix multiplication. As deep learning exhaustively uses deep and convolutional neural
networks, the integration of time series and regression techniques in environments of this
nature provides two notorious advantages (Dong et al., 2017):

a Developers do not require making great efforts to leverage the good performance
provided by the execution environments of artificial intelligence engines.

b The same techniques, tools, and work environments can be used in the development
of BAs projects, which, by their nature, already deliver high levels of heterogeneity.

3.1 Analogy: propagation in an MLP network to process activity-based costing
costs

The ABC system helps companies determine the actual cost of their products or services
in order to improve their decision making and solve their indirect cost problems (Jara
et al., 2003). Through this system, companies may assess the costs of their products or
services with a greater degree of accuracy, taking into account the limitations of
traditional methodologies, such as indirect cost distributions or cost allocation,
throughout the entire product life cycle.

The main feature elements under this model for this cost structure are the collector,
cost levels, and links between them. At the behavioural level, the most important feature
is cost distribution, which uses the elements proposed in the structure to generate cost
objects. In this model we found the following:

• Each object requires several activities (e.g., design, engineering, purchasing, and
production).

• Each activity consumes resources of different categories (e.g., working time of the
manager).

• Cost drivers are measures of the activities performed (e.g., number of units
produced).

For this scenario, we used actual cost model data from different universities, compiled
into an ABC model such as the one provided in Figure 1.

 ANNs in the development of BAs projects 51

Figure 1 ABC model for a test university (see online version for colours)

Cost distribution is the most important ABC model operation since it realises the main
purpose of the cost model. Based on the similarities between an artificial neuron and a
cost structure collector from the ABC model, the Forward phase of an MLP network is
ideal for distributing costs if:

1 the network is modified so that each neuron becomes a collector (collecting neuron),
thus eliminating their activation function

2 the data preparation cost model is reduced to elements that coincide with the matrix
algebra, which also involves the implementation of the forward phase in an MLP
ANN, as shown in Figure 2.

Figure 2 Forward phase distribution in a modified MLP (see online version for colours)

The analysis of the data information available within the scope of ABC costs is known as
‘cost analysis’ and, for the particular case of ABC costs, analytics answer questions such
as the following: on what is the company spending? (Resources) why does the company
spend as much as it does? What does the company do? (Activities) why does the

 52 J.B. Quintero et al.

company do what it does and how much does it cost? What are the returns of our
activities? (Cost objects) (Cokins, 2001).

According to Cokins, if a cost methodology, such as ABC, provides greater accuracy
in cost calculation, then it also permeates company profit reports and analytics, which
positively improve estimates by providing better insight and improving decision making.
ABC can monitor the hidden losses and profits of the traditional costing methods. By
using the ABC system, activities can be classified as value-added and non-value-added
activities, aversely to traditional cost accounting systems where direct materials and
labour are the only costs that can be traced directly to the product.

Learning on a MLP network optimises processing costs in a cost distribution network.
As a potential contribution, they can also be used in other similar structures in different
areas, for instance with algorithm of exploration of a tangle in an Iota network, which is a
directed acyclic graph that serves to apply the principles of blockchain in the field of
internet of things (https://www.iota.org/).

3.2 Forecasts: learning in an LSTM network to process time series

From our area of interest, time series are economic variable observations constantly
generated by organisations during their business activities (Franses, 1998). Conversely, a
forecast model must be associated to an analytical objective, thus turning this forecast
model into a means to achieve the corresponding business objective within the
organisation (Constangioara et al., 2009).

This scenario proposes the use of a longitudinal cost characterisation over time as a
supplement to the previous scenario report. In addition, the process of taking a single cost
object, studying its historical cost behaviour and forecasting its future cost represents an
important decision-making tool insofar as it provides the future costs of a product or
service, thus supplementing business objectives. For example, determining potential
losses or profits based on forecasts.

In the university context, and based on the previous scenario, an example of this type
of decision would be pricing. The cost of an academic program at a university over
semester-long interest periods is a time series in which the costs for the following period
are forecasted in a cost report.

ANNs are mathematical models based upon the functioning of the human brain, and
are composed of three different layers input, hidden and output layers, composed a set of
neurons. Forecasting with ANNs involves two steps: training and learning. Training of
feedforward networks – normally performed in a supervised manner. Further, recurrent
neural networks (RNNs) are a type of neural network topology widely used for the
prediction of time series (Bone et al., 2008; Siami-Namini et al., 2019). As RNNs learn
from temporary input data contexts to make better predictions, a particular type of RNN
that adequately handles the temporality of time series is the LSTM network. Figure 3
illustrates important elements for this scenario:

1 unveiling the full potential of the cost report, from cost temporality to a possible
future decision-making value

2 evidencing cost object data organised as the time series they represent

3 the structure of the LSTM network trained using a cost object value as an input
parameter to obtain a value forecast for the next period.

 ANNs in the development of BAs projects 53

We can say that using a LSTM network to forecast a time series is novel in the context of
cost analysis. Likewise, it can also be used to take advantage of the availability of
libraries optimised for deep learning such as TensorFlow and Keras and thus explore
more precise and efficient forecasting mechanisms. This network is able to model the
temporal properties of the data and improve on the results obtained from traditional
techniques could also be extended to the task of predicting the case outcome.

Figure 3 LSTM network with undergraduate dataset for training and forecasting
(see online version for colours)

3.3 Predictions: MLP network learning for the implementation of regressions

The word ‘forecast’ suggests ‘prior knowledge’ of a situation; therefore, in this context, it
is used to propose a future state based on past states, as it happens with time series. In
contrast, the word ‘prediction’ suggests ‘foretelling’ a situation; therefore, in this context,
this word proposes the value of a variable based on the values of other variables, as in the
case of regression.

Figure 4 Network MLP with a helpdesk dataset for training and predicting (see online version
for colours)

 54 J.B. Quintero et al.

Regression is a statistical technique used to unveil the existing relationship between
several variables; the value of one of these variables (the dependent or target variable) is
determined based on the values of the other variables (the independent or predictor
variables). In this work, a regression is implemented using an MLP network as an ANN,
as we show in Figure 4. Here, the number of neurons in the input layer matches the
number of independent or predictor variables, while the single neuron in the output layer
corresponds to the dependent or target variable. In the single hidden layer, the number of
neurons affects the complexity of the MLP network learning process, which is used to
refine the network weights and thus determine the relationship between the input and the
output variables. The outputs obtained for each input are compared against the outputs
observed to determine the level of correction needed and, therefore, train the network.
The experiments show that the simple MLP often outperforms more sophisticated
learning models in prediction tasks.

In this context, an MLP network is useful when implementing a multiple linear
regression, while other types of regressions, such as those using categorical variables or
logistic regression, must use variants of this technique or other typical ANN architectures
suitable for said purposes.

A helpdesk case study will be used to exemplify regression in the framework of BAs,
where the dependent variable is the average number of weekly tickets generated by a
client and the independent variables are the number of employees engaged by the client
and the total contract value.

In addition to making predictions in a regression, an MLP network makes it possible
to take advantage of the potential of GPU arrays for matrix multiplication and to add
cheaper processing capacity and diverse uses to those formulated in the field of deep
learning.
Table 3 ANN analysis in business analytics scenarios

Technique
description

Business case to
which it applies

Example of
business case

Artificial neural network
setup

Analogy:
propagation in an
MLP network for
the execution of
accounting
processes

Composition or
causation
relationships
between elements of
the same type that
assign values to
each other.

Accounting
records,
composition of
articles in
manufacturing,
hierarchical
relationships.

Components or elements of
the same type constitute
neurons; the relationships
among elements define
links and synapses; neurons
can be classified into levels.

Forecasts:
learning from an
LSTM network to
process time series

Succession of data
measured at certain
times and sorted
chronologically.

Variation of stock
market indicators;
profits or expenses
by time periods;
rainfall in a region.

A neuron in the input layer
with the value of the
variable to be measured and
the time it occurs, a neuron
in the output layer with the
values of the next period to
train and forecast.

Predictions:
learning from an
MLP network to
implement
regressions

Affecting a
dependent variable
based on changes to
one or more
independent
variables.

Price analysis;
time for a process;
productivity
analysis;
population growth
analysis.

A neuron in the input layer
for each independent
variable and a neuron in the
output layer to represent the
dependent variable for
training and predicting.

 ANNs in the development of BAs projects 55

In summary, in Table 3 we present a comparison of the scenarios for each topology,
which includes some application suggestions in specific contexts.

4 Scenario implementation

4.1 Analogy: distribute ABC costs with forward phase of a modified MLP
network

To implement the distribution scenario, the cost data must be prepared for processing as
an MLP ANN (Van Veen, 2020) and meet its propagation needs. Based on this, a
collecting neuron, a common artificial neuron without its activation function, was
conceived, as shown in Figure 5.

Figure 5 Modification of the artificial neuron for cost distribution, (a) artificial neuron
(b) modified artificial neuron (see online version for colours)

(a) (b)

Figure 5 displays a step-by-step example for an MLP architecture, using a simple cost
structure with a modified transfer function to propagate forward instead of learning.
Please note the calculation of the net function for each neuron or, to be more specific,
each collecting neuron. At the end, the business objective requires a report that may list
the cost objects from our university example during a given period using the resource
tables and the period criteria (links) as input.
Table 4 Characteristics of the ABC cost structure for a fictional university

Name Total no. of elements Name Total elements
Resources 85 Level 1 to level 2

links
237

Dependencies 4 Level 2 to level 3
links

103

Activities 103 (23 – 12 – 49 –
19)

Level 3 to level 4
links

515

Cost objects 5 Criteria types Weighted (N1 to N2)
MOTP (N2 to N3)
TAO (N3 to N4)

 56 J.B. Quintero et al.

Then, the data are prepared by converting the data from Oracle tables to datasets that can
be processed by our new special cost propagation network. Table 4 provides a summary
of the cost structure features. It should be noted that these features also define our
network. This data comes from a real business exercise in which we find a common ABC
cost structure among seven universities in Colombia, South America.

Figure 6 Cost distribution based on an MLP without the activation function (see online version
for colours)

For the distribution process shown in Figure 6, our propagation algorithm defines the
calculation of each collecting neuron using equations (1) and (2) since they have no
additional activation function.

1 1 11 2 21 1 31nc x w x w x w= × + × + × (1)

2 1 12 2 22 1 32nc x w x w x w= × + × + × (2)

This suggests that ‘propagating’ is an operation that can be written as a matrix algebra
operation in which the set of values from the collecting neurons of each level is an array
given by equation (3).

[] []
11 12

1 2 1 2 3 21 22

31 32

w w
c c x x x w w

w w

 
 = ×  
  

 (3)

Therefore, the data must be available in four datasets: a 1 × 85 dataset containing the
resource values, an 85 × 4 dataset for the level 1 to level 2 links, a 4 × 103 dataset for the
level 2 to level 3 links, and a last 103 × 5 dataset for level 3 to level 4 links.

When the data preparation has been completed, there must be four files: one
containing the input data and three matrices relating each element from each previous
level with its corresponding element in the next level. These three matrices are named

 ANNs in the development of BAs projects 57

W1, W2, and W3 and will be the weight matrices required within the model adjusted for an
MLP network without activation function. Table 5 presents the data preparation results.
All data records on these datasets are money in Colombian pesos (COP) and units in
billions.
Table 5 Summary of data preparation result elements

Matrix Dataset name Dimension Origin
1 X recursos.csv 1 × 85 Movements table
2 W1 enlacesn1n2.csv 85 × 4 Links table
3 W2 enlacesn2n3.csv 4 × 103 Links table
4 W3 enlacesn3n4.csv 103 × 5 Links table

This scenario is validated by comparing execution times from a traditional
implementation in imperative PL/SQL language against two Python-based
implementations using the proposed model, with one implementation consuming data
directly from Oracle and the other from datasets in CSV format.

To implement the cost distribution scenario, some common tools were selected within
the scope of the current analytics, specifically using Spyder as a Python development
tool; TensorFlow as a library for high-performance numerical calculations capable of
being deployed in different platforms (CPUs, GPUs and TPUs) and from desktop
computers to server clusters and mobile devices, among others; and finally, Keras, a
high-level API, for the implementation of the ANN model. The algorithm is also
designed to run on other libraries, such as TensorFlow and Theano, increasing its
processing capacity while improving model simplicity.

Figure 7 Distribution results using Spyder (see online version for colours)

The results from the execution of the Python script on the described infrastructure can be
seen in Figure 7 and it is the result of the data manipulation provided by Table 5 in CSV
datasets.

4.2 Cost forecasting: processing time series using an LSTM network

As per the proposed third scenario, cost object data organised period by period may be
seen as a period-value pair sequence or time series, defined as statistical data collected,
observed or recorded in regular time intervals (Hamilton, 1994). The above allows us to
select one of the cost objects from our case study (the cost objects of our test university
are undergraduate, postgraduate, research, outreach, and special) to create a dataset that
meets the suggested period-value shape. For our purposes, undergraduate data will be
used to create a forecast model to predict future costs.

 58 J.B. Quintero et al.

Figure 8 Dataset before and after data preparation

The dataset mentioned above, and for which data are available within the business
context, is displayed in Figure 8. However, the type of model implementation requires
preparing the data in terms of machine learning and, more specifically, in terms of a
model within supervised learning. This implies that the dataset used was modified to
meet the following features:

• Scale: In order to be assimilated by the transfer function of each neuron in the LSTM
network. In this case, a sigmoid activation function was used, so the data must be on
a scale of 1 to –1.

• Stationary: Convert the series to stationary, after determining whether the series is
non stationary, because the series being non-stationary means that its projected
mean, and sometimes even its variance, will be changing, which makes the model
more difficult to adjust. In general, a series that does not exhibit this behaviour will
always be preferable as a model. That is, the use of stationary data series is highly
preferred to ensure that the model may be better adjusted.

Table 6 LSTM ANN model parameter set

Parameter # value
Sample Dataset obj. costs
Time step 1
Features 1
Batch size 1
No. of epochs 1,500
No. of neurons 54
No. of hidden layers 4
Activation function Hyperbolic tangent
Loss function Mean square error (MSE)
Optimisation algorithm ADAM
Learning/testing ratio 60/40%

 ANNs in the development of BAs projects 59

The test stationary state was performed using the Dickey-Fuller method augmented
through a Python script and the following hypotheses:

• Null hypothesis (H0): If accepted, it implies that the time series has a unit root,
which means that it is non-stationary. In other words, it has a time-dependent
structure.

• Alternative hypothesis (H1): The null hypothesis is rejected, which suggests that the
time series does not have a unit root and, therefore, it is stationary. It does not have a
structure which is dependent on time.

The test results may be interpreted through the p-value. A p-value below the threshold
(such as 5% or 1%) suggests that the null (stationary) hypothesis is rejected; otherwise, a
p-value above the threshold suggests that the null (non-stationary) hypothesis is accepted.

• p-value > 0.05: Accepts the null hypothesis (H0); the data have a unit root and are
not stationary.

• p-value <= 0.05: Rejects the null hypothesis (H0); the data do not have a unit root
and are stationary.

The result of the script is presented in Figure 9, considering the test values provided in
the previous code. One way to interpret the results is to determine whether the ADF
value, when compared with the critical values, defines the probability of rejecting the H0
hypothesis. In this case, a value of 0.0 (or positive) is greater than all critical values.
Therefore, it is less possible to reject the H0 hypothesis, and the data series is then
accepted as having a single root and being non-stationary.

Figure 9 Augmented Dickey-Fuller (ADF) test results

For the particular case of time series, such as supervised learning problems, the ‘lag’
statistical method, which consists of using the same series as input and output data and
trying to ‘offset’ the input data to create an appropriate matrix for learning, may be used.
Figure 8 shows the original dataset and the prepared dataset with scaling operations,
conversion to stationary series, and disposition for supervised learning.

For this scenario, we propose using the recurrent LSTM neural network since, for our
purposes, this type of network exhibits certain advantages over other methods, such as
their neurons being able to ‘remember’ throughout different epochs, and turning this
ability into a tool for adding useful information to the transfer function of each neuron in
the following epoch. In this case, unlike the common regression prediction model, time
series add complexity due to their dependence on the sequentiality between the input
variables. Here is where an LSTM network, commonly used in deep learning, may be
successfully trained for long and complex architectures.

For the successful implementation of this model, the following elements must be
considered:

 60 J.B. Quintero et al.

• An LSTM network expects an input defined by three parameters:
1 samples
2 number of time steps
3 features.

The first is the input data; the second is the measurement of individual steps for a
single variable throughout an observation time; and the third are the individual
features measured during the observation time.

• Because the data are sequential, a single time step and feature may be used as model
parameters; this implies that a single step in the time series may be taken as an
individual sample.

• To take advantage of the main LSTM feature, that is, its ability to remember states
between epochs, it is necessary to also define the number of epochs that must be
saved before forgetting.

Finally, the batch size, the total number of times, and the number of neurons in the
hidden layer are defined. Table 6 summarises model configuration.

The model was assessed through the coefficient of determination (R2 value), which
demonstrates how close the predicted values are to the actual values of the series, and
whose general definition is as follows:

2 1 res

tot

SSR
SS

= − (4)

The R2 value is expressed as a number between 0 and 1, where 0 means that the model
does not fit at all and 1 means that it fits perfectly.

Figure 10 Summary results for the LSTM network model (see online version for colours)

 ANNs in the development of BAs projects 61

The script execution results can be seen in Figure 10. These results show a goodness of
fit or R2 value of 0.742 (74.2%), in addition to plotting the original values of the series
against the predicted values for each one.

4.3 Cost prediction: implement multiple linear regression using an MLP
network

The proposed scenario requires an implementation for the solution of a supervised
learning problem, where the business objective is achieved through regression by relating
the independent variables of the number of employees and contract value to the number
of tickets that were generated. Consequently, the data must be prepared to create two
datasets: one to feed the MLP network and another to validate the outputs of each
interaction from the backpropagation process, as we show in Table 7. All data records on
these datasets are money in COP and have units around billions.
Table 7 List of datasets after the data preparation

Dataset name Dimension
1 X 20 × 2
2 y 20 × 1
3 train_X 13 × 2
4 train_y 7 × 1

Table 8 List of MLP parameters

Parameter # value
Batch size 1
No. of epochs 200
No. of neurons 3
No. of hidden layers 1
Activation function ReLu
Loss function Mean square error (MSE)
Optimisation algorithm ADAM
data (learning/tests) 13/7

In addition, the model was configured using an MLP network with consumption
parameters for the described data and with an internal configuration similar to the one
presented in Figure 4. Table 8 shows the described parameter configuration, which is
consistent with this type of neural network.

Finally, a Python script is developed using the Skit Learn Library, which includes
models like the MLPRegressor for the deployment of the MLP network and its
subsequent configuration based on scenario needs. Below, we provide a part of the code
that simply illustrates the configuration, training, and prediction phases for the illustrated
data.

 62 J.B. Quintero et al.

#Creation of the MLP neural network
regMLP=MLPRegressor(hidden_layer_sizes=(1,3), max_iter=150)
#Training the network
regMLP.fit(X,y)
#Next predicted value
entrada=np.array ((230, 70,000]), dtype=int)
#Prediction
predicción=regMLP.predict(entrada)
print(predicción)

The execution result yields 54.57 tickets for 230 employees and a contract value of
70,000. Figure 11 displays the Python console with these results.

Figure 11 Spyder console prediction results

5 Scenario evaluation

5.1 Analysis of the distribution scenario

For the distribution scenario analysis, our implementation used actual data from a cost
structure at an actual university, which gave us permission to extract a part of their cost
structure for this research.

5.1.1 Operation in an imperative language (PL/SQL)
PL/SQL is an imperative language (it focuses on the ‘how’), which implies an
implementation that literally uses some cycles for the external structure (level cycles) and
other cycles for the internal structure (collection cycles). Within these two cycles, each
collector queries the corresponding criteria and features to make the corresponding cost
distribution with the linked collectors. For example, for the distribution of 1,000, 1,020,
2,400, and 5,300 dependencies within a given period of time, a total of 38,145 records are
obtained, which are then consolidated into 855 records, thus suggesting that the PL/SQL
distribution handles and processes more information to achieve its goal.

On the other hand, Python, which is a declarative language (focusing on the ‘what’),
does not require a consolidation process because the calculation of the matrix operation
consolidates without saving any trace of money discriminated in the links, thus
guaranteeing the matrix operation. For these purposes, one must only be careful to place
zeros in the matrix positions where there is no cost transfer from a collecting neuron from
a given original level to another collecting neuron in a target level. At the end, the
PL/SQL cost distribution process only required a total of 557 lines of code to perform the
cost distribution.

 ANNs in the development of BAs projects 63

5.1.2 Operation in a declarative language (Python)
As a declarative language, Python focuses on the ‘what’, which implies that, instead of
cycles, as in the case of PL/SQL, a matrix algebra-based implementation was performed,
as already described in 0. When performing the scenario implementation using Python,
the results from the script evidence a difference of billions over the values from the
PL/SQL-based implementation. Based on this, we decided to perform two
implementations instead of one to verify if there were any differences in terms of
ingestion. These two implementations and their features are described below:

1 Python-based implementation and ingestion from Oracle: A direct connection was
made to the Oracle database where the ABC cost model data is stored using the
cx_Oracle library. Then, the data preparation stage converted the data into matrix
form within Python using the Pandas and Numpy libraries. Finally, the cost
distribution was performed, successfully obtaining the five cost objects required.

2 Implementation exporting from Oracle and ingestion with Python: The movements
and links tables were exported in CSV format. Then, the data were prepared in
Google Spreadsheet to convert them into matrix form. Finally, the data were ingested
to Python using the Pandas library through its read_csv() function. Finally, the cost
distribution was performed, successfully obtaining the five cost objects required.

An advantage that became evident when performing both implementations using the
proposed scenario in Python is that error handling is simplified once the distribution to
matrix algebra issue is reduced. In this case, multiplication, since the support of null links
replaced by zeros, order correspondence in the matrix dimensions and the order of
operands must all basically be guaranteed. We must also emphasise the power offered by
the Pandas and Numpy libraries for data preparation, since they provide practically a
different function or procedure for each desired case cleaning, organisation, form, etc. At
the end, the distribution process in Python provides a total of 55 lines of code for the
implementation with ingestion from Oracle and 36 lines of code for ingestion from flat
files in CSV format.

5.1.3 Procedure execution analysis
Three implementations were simultaneously executed in the same computer for the cost
distribution scenario. Then, their execution times were measured, considering two
situations:

1 after restarting the Oracle service and the Python kernel

2 without restarting the Oracle service and the Python kernel.

Table 9 provides the runtime behaviour for the three implementations, taking into
account the situations described. In addition, separate times are recorded for the data
ingestion and the processing time of the distribution. Times on these datasets are from
two steps, data ingestion from SQL and Oracle engines at first and then from datasets
allocated on Google Spreadsheet and then processing, when the cost (money) was
distributed accordingly to ABC.

 64 J.B. Quintero et al.

Table 9 Time comparison between distribution implementations

Implementation PL/SQL Python + Oracle Python + TensorFlow
Time in seconds (with
kernel/service restart)

Distribution: 3.907 Ingestion: 2.405 Ingestion: 0.024
Consolidation: 0.438 Processing: 0.379 Processing: 0.126

Time in seconds (no
kernel/service restart)

Distribution: 1.328 Ingestion: 0.071 Ingestion: 0.019
Consolidation: 0.125 Processing: 0.001 Processing: 0.055

The results from Table 9 suggest an advantage for Python while using TensorFlow for
both the ingestion and the distribution process. Conversely, PL/SQL exhibits more
modest times in general with or without its service being restarted; however, it is clear
that the manipulation of distribution data takes more time than for its rival
implementations.

In turn, connecting directly to Oracle will still be an alternative despite requiring
more time after restarting the Python kernel, since once the kernel has cached the
necessary elements, the difference between times with the TensorFlow-based
implementation becomes similar. It should also be considered that, in practical terms, the
time spent preparing data outside of Python was much greater than the time dedicated to
the Oracle implementation, plus adding an accuracy matter that will be discussed in the
following chapter.
Table 10 Implemented cost structure level code

Level code Level name
10 Resources – chart of accounts
20 Dependencies
30 Activities
40 Cost objects

Next, in Table 10 we provide the results obtained by the distribution implementations
whose features were listed in the previous section. Labelling codes are an accounting
standard in Colombia and we use it to know where the money comes from, where it is
and where it needs to be in the way the cost distribution makes sense. However, it should
be noted that these comparisons are based not only on cost object results (last level) but
also on their dependency level, which evidences a resulting behaviour that enriches this
analysis.

This analysis excludes the first level since it is not affected by the cost distribution as
it is part of the data input consumed by the distribution. In the same way, the level of
activities is excluded because it would yield too many results, and these results would be
very similar to each other and would not denote the accuracy behaviour required for these
three implementations.

As we shown in Table 11, the level of accuracy of the three implementations is
almost indiscernible when comparing their absolute deviations. On the other hand, as per
Table 12, the level of accuracy decreases when increasing absolute deviations from
hundreds of thousands in Python + Oracle to millions in Python + TF (TensorFlow). To
find the reason behind this behaviour, the data were reviewed from their source in the
Oracle tables and printed after being consumed in the Python + Oracle implementation,

 ANNs in the development of BAs projects 65

and the files were reviewed in the Google Spreadsheet (where the data preparation was
completed) before and after being exported to CSV format.
Table 11 Comparison of distribution actual at level 20 (billions COP)

Dependence
Accrual X implementation Absolute deviations

PL/SQL Python +
Oracle Python + TF PL/SQL Python +

Oracle
Python +

TF
1,000 3,639,082,020 3,639,082,020 3,639,082,020 0 0 0.18
1,020 384,107,576 384,107,576 384,107,576 0 0 0.06
2,400 3,151,707,849 3,151,707,849 3,151,707,850 0 0 0.85
5,300 1,968,836,929 1,968,836,929 1,968,836,930 0 0 0.53

Table 12 Comparison of distribution accruals at level 40 (billions COP)

Cost
object

Result implementation X Absolute deviations

PL/SQL Python +
Oracle Python + TF PL/SQL Python +

Oracle Python + TF

1 1,829,955,277 1,829,823,583 1,805,124,100 0 131,694 24,831,177
2 1,843,178,998 1,843,076,888 1,827,238,780 0 102,109 15,940,218
3 1,870,132,432 1,870,035,020 1,830,307,200 0 97,412 39,825,232
4 1,655,262,545 1,655,152,527 1,612,636,800 0 110,019 42,625,745
5 1,945,205,122 1,945,098,039 1,912,159,870 0 107,083 33,045,252

Finally, it can be deduced that this accuracy behaviour is manifested when passing from
one level to another, with two possible causes:

1 The rounding when performing operations is different in each implementation and
also the number of operations is low in early levels; therefore, each implementation
has a different level of accuracy.

2 The PL/SQL-based implementation increases the possibility of inaccuracy because
the traceability implied in using temporary tables increases the number of operations
throughout the level distribution, as seen in the number of records involved before
and after consolidating.

Due to the above, it is very possible that the implementation that adds more accuracy is
the Python + Oracle, since it eliminates the need for the additional processing required by
the PL/SQL-based implementation and as well as the dependence on data preparation
outside Python, as with the Python + TensorFlow implementation.

5.2 Analysis of the time series scenario

For the analysis of this scenario, the different time-series forecasting methods were
compared with each other, based on the same data described in the implementation
chapter of this scenario. Figure 12 displays these ten time series datasets, with their
equation and trend line.

 66 J.B. Quintero et al.

Figure 12 Cost vs. semester chart, considering undergraduates (see online version for colours)

5.2.1 Comparison of time series results
Our comparative chart displays the behaviour of several regression methods for the
LSTM network, in an attempt to provide conclusions based on the results. Next, Table 13
shows the aforementioned methods and some of the data required for their execution.

()1 1 1t t t tF F A F− − −= + −α (5)

Once each method is applied to the source data series, their behaviour is compared to the
LSTM network, as shown in Table 14.

It is important to mention that the blank spaces evidenced in Table 14 are generated
by the amount of data required by the method to start making forecasts. For the LSTM
network, they are generated by converting data to a supervised learning problem. This
implies that, as exposed in the scenario implementation, the lag required to produce an
apt dataset disables two samples.
Table 13 Methods and data used for comparative analysis

Method/data Description
MMS 2 Simple moving average 2 periods
MMS 3 Simple moving average 3 periods
SE Exponential smoothing with alpha = 0.5 (5)
MMP Weighted moving average with 50% for t, 30% for t − 1, and 20% for t − 2
REG Regression
Intercept 8,612,762,440
Pending 937,624,448

Finally, Table 15 presents the accrued values, where evidently both the regression
accruals and the LSTM network obtain close results and are considered the best results.
However, the LSTM network is a more robust implementation. Further, when assessing
the values from period to period, it may be concluded that, with a greater number of data,
the network may achieve greater accuracy in learning and therefore in forecasting.

 ANNs in the development of BAs projects 67

Table 14 Forecast comparison table for each method (billions COP)

D
at

a

An
al

ys
is

 m
et

ho
d

Se
m

es
te

r
Va

lu
e

M

M
S2

M

M
S3

SE

M

M
P

RE
G

LS

TM

1
13

-0
6

9,
99

8,
00

1,
85

2

9,
99

8,
00

1,
85

2

9,
55

0,
38

6,
88

8

2
13

-1
2

10
,0

25
,4

45
,7

86

9,

99
8,

00
1,

85
2

10

,4
88

,0
11

,3
36

3
14

-0
6

11
,1

86
,3

94
,9

56

10

,0
11

,7
23

,8
19

10
,0

11
,7

23
,8

19

11

,4
25

,6
35

,7
84

10

,0
52

,8
89

,7
20

4

14
-1

2
11

,3
17

,9
03

,1
52

10
,6

05
,9

20
,3

71

10
,4

03
,2

80
,8

65

10
,5

99
,0

59
,3

88

10
,6

00
,4

31
,5

84

12
,3

63
,2

60
,2

32

11
,2

13
,8

38
,8

90

5
15

-0
6

12
,7

63
,5

73
,9

77

11

,2
52

,1
49

,0
54

10

,8
43

,2
47

,9
65

10

,9
58

,4
81

,2
70

11

,0
19

,9
59

,2
20

13

,3
00

,8
84

,6
81

11

,3
45

,3
47

,0
86

6

15
-1

2
16

,0
30

,6
51

,1
81

12
,0

40
,7

38
,5

65

11
,7

55
,9

57
,3

62

11
,8

61
,0

27
,6

23

12
,0

14
,4

36
,9

25

14
,2

38
,5

09
,1

29

12
,7

91
,0

17
,9

11

7
16

-0
6

16
,1

06
,4

18
,5

30

14

,3
97

,1
12

,5
79

13

,3
70

,7
09

,4
37

13

,9
45

,8
39

,4
02

14

,1
07

,9
78

,4
14

15

,1
76

,1
33

,5
77

16

,0
58

,0
95

,1
15

8

16
-1

2
16

,3
57

,4
12

,9
52

16
,0

68
,5

34
,8

56

14
,9

66
,8

81
,2

29

15
,0

26
,1

28
,9

66

15
,4

15
,1

19
,4

15

16
,1

13
,7

58
,0

25

16
,1

33
,8

62
,4

64

9
17

-0
6

16
,9

10
,0

21
,0

74

16

,2
31

,9
15

,7
41

16

,1
64

,8
27

,5
54

15

,6
91

,7
70

,9
59

16

,2
16

,7
62

,2
71

17

,0
51

,3
82

,4
73

16

,3
84

,8
56

,8
86

10

17

-1
2

17
,0

01
,1

45
,5

87

16

,6
33

,7
17

,0
13

16

,4
57

,9
50

,8
52

16

,3
00

,8
96

,0
17

16

,5
83

,5
18

,1
29

17

,9
89

,0
06

,9
21

16

,9
37

,4
65

,0
08

11

18

-0
6

16
,9

55
,5

83
,3

31

16
,7

56
,1

93
,2

04

16
,6

51
,0

20
,8

02

16
,8

45
,0

61
,7

06

18
,9

26
,6

31
,3

70

16
,9

37
,4

65
,0

08

 68 J.B. Quintero et al.

Table 15 Absolute deviations per period and accrued for each method (billions COP)

Ab
so

lu
te

 d
ev

ia
tio

ns

Se
m

es
te

r n
um

be
r

M
M

S2

M
M

S3

SE

M
M

P
RE

G

LS
TM

1
--

--
--

--
--

--
2

--
--

--
--

--
--

3
--

--
--

--
--

--
4

71
1,

98
2,

78
1

91
4,

62
2,

28
7

71
8,

84
3,

76
5

71
7,

47
1,

56
8

1,
04

5,
35

7,
08

0
10

4,
06

4,
26

2
5

1,
51

1,
42

4,
92

3
1,

92
0,

32
6,

01
2

1,
80

5,
09

2,
70

7
1,

74
3,

61
4,

75
7

53
7,

31
0,

70
4

1,
41

8,
22

6,
89

1
6

3,
98

9,
91

2,
61

7
4,

27
4,

69
3,

81
9

4,
16

9,
62

3,
55

8
4,

01
6,

21
4,

25
6

1,
79

2,
14

2,
05

2
3,

23
9,

63
3,

27
0

7
1,

70
9,

30
5,

95
1

2,
73

5,
70

9,
09

3
2,

16
0,

57
9,

12
8

1,
99

8,
44

0,
11

6
93

0,
28

4,
95

3
48

,3
23

,4
15

8

28
8,

87
8,

09
7

1,
39

0,
53

1,
72

3
1,

33
1,

28
3,

98
6

94
2,

29
3,

53
7

24
3,

65
4,

92
7

22
3,

55
0,

48
8

9
67

8,
10

5,
33

3
74

5,
19

3,
52

0
1,

21
8,

25
0,

11
5

69
3,

25
8,

80
3

14
1,

36
1,

39
9

52
5,

16
4,

18
8

10

36
7,

42
8,

57
4

54
3,

19
4,

73
5

70
0,

24
9,

57
0

41
7,

62
7,

45
8

98
7,

86
1,

33
4

63
,6

80
,5

79

11

9,
25

7,
03

8,
27

5
12

,5
24

,2
71

,1
90

12

,1
03

,9
22

,8
29

10

,5
28

,9
20

,4
95

5,

67
7,

97
2,

45
0

5,
62

2,
64

3,
09

3

 ANNs in the development of BAs projects 69

5.3 Analysis of scenario 3

For the analysis of scenario 3, a comparison was made between the results from a
multiple linear regression and the results from the regression using an MLP network.
Figure 11 denotes the results of the MLP regression in the Spyder console, indicating that
for the 230 employees and 70,000 contract value, the prediction yields 54.5 tickets.
However, the prediction improves after feeding the network with the arrangement of all
the available X values. Figure 13 shows this result considering that only the last record
will be used for the comparison.

Figure 13 Prediction for each value pair from arrangement X

5.3.1 Comparison of regression results
Table 16 shows the results of both regressions after the implementation, evidencing
consistency after providing values that are quite close to each other.
Table 16 Comparison of regression predictions

Entry Multiple linear regression Regression with MLP
230, 70,000 45.9 44.5

6 Conclusions and future work

The main conclusion of this article refers to the possibilities represented, for example, by
using techniques and methods that may enrich BAs and their current application. We
worked with three scenarios that responded to our business objectives within the analytics

 70 J.B. Quintero et al.

environment by using the different tools available. Conclusions pertaining to each
scenario are presented below:

6.1 Cost distribution scenario using the MLP Forward phase

A similarity between the cost model and a neural network structure provides an
opportunity to optimise critical business processes and, by methodologically demanding a
culture of business and data understanding, open the door to generate a foundation for an
analytical environment where other models may be developed to cover more and better
business objectives.

For this scenario, the implementation differences are very promising and, while the
stored procedures require additional intrinsic processing, the Python scripts are cleaner
and more versatile in terms of data management and the distribution process itself.

The execution times are also promising, although the TensorFlow multiprocessing
could be much more differentiating in an implementation that requires kernel selection
from an available GPU multiprocessor. This does not mean that the advantage is not
evident with or without restarting the kernel, but it does raise a test scenario for future
study works.

Regarding the results, it is clear that the data themselves provoke or require special
handling of the approximations, especially since the cost objects are measured in billions.
In the PL/SQL-based implementation, after many data inspections in different parts of the
levels, it became evident that accuracy was being affected by the number of transactions
that the temporary tables drag when the distribution approaches the lower levels. The
same cannot be said for Python-based implementations because matrix algebra, in this
case multiplication, does not differentiate the portions of money throughout the
distribution, but instead it simply consolidates level by level and, thus, the trace is lost.

6.2 Time series scenario using an ANN

The main conclusion for this scenario is expressed from the point of view of the
network’s capability of providing decent learning with a small amount of training data, as
shown in the comparison of absolute deviations. However, another point of view would
be a very robust implementation associated with a relatively simple data preparation
offering the same simple regression features. Still, in spite of the less optimistic point of
view, the small amount of data available for training is evident and therein lies the
opportunity for better accuracy with a largely trained ANN.

An additional observation implies that a more adjusted implementation to business
requires exploring a multivariable forecast to include all cost object values.

Finally, current business demands, exemplified in a continuous use of information as
a competitive advantage, have created reasonable conditions of knowledge, tools, and
methodologies, so that certain disciplines, such as machine learning, may contribute in
finding scenarios where techniques, such as ANNs, may represent an analytical
opportunity.

The use of big data tools in business scenarios, from data processing platforms used
exclusively for analytics to TensorFlow mathematical libraries, can provide companies
access to multiprocessing data by leveraging different and relatively inexpensive
infrastructure. TensorFlow, in particular, allows us to think beyond physical CPU

 ANNs in the development of BAs projects 71

arrangements and start thinking about GPU arrangements that are more common today,
such as cryptocurrency mining.

The integration strategies between ANNs and BAs have demonstrated that learning
on a MLP network optimises processing costs in cost distribution and help to forecast in
time series. As a potential contribution, they can also be used in other similar structures
in different areas such as internet of things, for instance with algorithms of exploration of
a tangle in an Iota network, improving the availability of libraries optimised, or adding
processing capacity in the deep learning field.

In terms of future work, a second method for the implementation of the
backpropagation algorithm may be formulated; a complete and possibly convenient way
in terms of costs. This method would require a more sophisticated neuron structure that
could store more information, transfer cost information ‘between epochs’ and be used not
only at the cost level but also at cost object level.

We also believe that a classification exercise may improve the selection of
cost-inducing criteria, which would allow us to decide which criteria to use and at what
level, based on the different costs between them.

References
Azevedo, A. and Santos, M.F. (2008) ‘KDD, SEMMA and CRISP-DM: a parallel overview’, in

IADIS 2008: Proc. Int’l Assoc. Development of the Information Soc., European Conf. Data
Mining, Amsterdam, The Netherlands, pp.182–185.

Bone, R., Assaad, M. and Cardot, H. (2008) ‘A new boosting algorithm for improved time-series
forecasting with recurrent neural networks’, Information Fusion, Vol. 9, No. 1, pp.45–55.

Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C. and Wirth, R. (2008)
CRISP-DM 1.0 – Step-by-Step Data Mining Guide, Technical Report CRISPMWP-1104,
SPSS Inc., USA [online] https://www.the-modeling-agency.com/crisp-dm.pdf (accessed 28
February 2020).

Cokins, G. (2001) Activity-Based Cost Management: An Executive’s Guide, John Wiley & Sons,
USA.

Constangioara, A., Bodog, S., Laszlo, F. and Petrica, D. (2009) ‘Forecasting in business’, Journal
of Electrical and Electronics Engineering, Vol. 2, No. 211, pp.211–214.

Dong, X., Qian, L. and Huang, L. (2017) ‘Short-term load forecasting in smart grid: a combined
CNN and K-means clustering approach’, in BigComp 2017: Proceedings of the IEEE
International Conference on Big Data and Smart Computing, Jeju, Korea, pp.119–125.

Fayyad, U.M. (1996) ‘Data mining and knowledge discovery: making sense out of data’, IEEE
Expert: Intelligent Systems and Their Applications, Vol. 11, No. 5, pp.20–25.

Franses, P.H. (1998) Time Series Models for Business and Economic Forecasting, Cambridge
University Press, London.

Gartner, Inc. (2020) Gartner IT Glossary, Technical Report, Gartner, Inc., Stamford [online]
https://www.gartner.com/it-glossary/business-analytics (accessed 28 February 2020).

Hamilton, J.D. (1994) Time Series Analysis, 2nd ed., Princeton University Press, New Jersey.
James, M., Tom, M., Groeneveld, P. and Kibardin, V. (2020) ‘Physical mapping of neural networks

on a wafer-scale deep learning accelerator’, in ISPD 2020: Proceedings of the International
Symposium on Physical Design, Taipei, Taiwan, pp.145–149.

Jara, G.N., Castañeda, J. and Gómez, L.F. (2003) ‘Sistema de costeo basado en actividades como
herramienta del presupuesto inteligente para el distrito capital, Santa Fé de Bogotá –
Colombia-Secretaria de Hacienda Distrital Bogotá DC’, Contaduría Universidad de
Antioquia, Vol. 1, No. 43, pp.179–204.

 72 J.B. Quintero et al.

SEMMA SAS Institute (2020) [online] http://www.sas.com/en_us/software/analytics/enterprise-
miner.html (accessed 20 February 2020).

Shmueli, G., Patel, N. and Bruce, P. (2016) Data Mining for Business Analytics, John Wiley &
Songs, New Jersey.

Siami-Namini, S., Tavakoli, N. and Namin, A.S. (2019) ‘The performance of LSTM and BiLSTM’,
in Big Data 2019: Proceedings IEEE International Conference on Big Data, Forecasting
Time Series, Los Angeles, California, USA, pp.3285–3292.

Van Veen, F. (2020) Neural Network Zoo Prequel: Cells and Layers [online] https://www.
asimovinstitute.org/author/fjodorvanveen/ (accessed 28 February 2020).

